Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Tarumã-do-Cerrado ( Bertero ex Spreng, TC) is a little-explored Brazilian native fruit.

Objective

The sustainable bioprospecting of new fruits is essential to devise strategies for preventing and treating noncommunicable diseases, like obesity, and even contribute to food diversity and discovering functional ingredients.

Methods

This study evaluated the proximate composition, minerals, dietary fiber, and their fractions, phenolic compounds by two types of extraction, and antioxidant activity in the TC edible part. We also determined its fatty acid profile from the seed’s crude oil.

Results

TC has 100 g low-fat content (0.19 g) containing good phosphorus (91.50 mg) source and is rich in chromium (0.05 mg) and molybdenum (0.53 mg). It has a high range of dietary fiber in fresh and freeze-dried fruit (4.01 g and 26.23 g, respectively). The different extraction conditions showed medium to high content (101.58 to 598.80 µg GAE/100 g) of phenolic compounds. Antioxidant activity has been demonstrated using electron or hydrogen/proton transfer mechanisms. The crude oilseed is a source of oleic (35.91%) and linoleic acid (32.20%).

Conclusion

TC provides essential nutrients, fibers, and bioactive compounds to be allied to sustainable health strategies for food diversity and nutraceutical product development.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629267914231025081551
2023-11-24
2025-01-24
Loading full text...

Full text loading...

References

  1. SharmaS. ChungH. KimH. HongS. Paradoxical effects of fruit on obesity.Nutrients201681063310.3390/nu8100633 27754404
    [Google Scholar]
  2. JasmineC. AkashJ. BhatiaM. Fruits in weight loss: A natural approach to combat obesity. Bulletin of Environment.Pharmacology and Life Sciences20211012276284
    [Google Scholar]
  3. GuerraA. ReisL.K. BorgesF.L.G. Ecological restoration in Brazilian biomes: Identifying advances and gaps.For. Ecol. Manage.202045811780210.1016/j.foreco.2019.117802
    [Google Scholar]
  4. de LimaF.F. LescanoC.H. de OliveiraI.P. Fruits of the Brazilian Cerrado.ChamSpringer International Publishing2021
    [Google Scholar]
  5. FonsecaE. FigerA. FurtadoD. LopesD. AlvianoD. AlvianoC. Chemical analysis and antimicrobial activity of the essential oil from Vitex cymosa fruits.Bertero. Rev Bras Pl Med20068791
    [Google Scholar]
  6. LeitãoS.G. SantosT.C. Delle MonacheF. MatheusM.E. FernandesP.D. MarinhoB.G. Phytochemical profile and analgesic evaluation of Vitex cymosa leaf extracts.Rev. Bras. Farmacogn.201121587488310.1590/S0102‑695X2011005000160
    [Google Scholar]
  7. SilvaJ.I de M. Nunez CV. Estudo fitoquímico de Vitex cymosa Bertero ex Spreng. (Lamiaceae).IV Congresso de Iniciação Científica do INPA38993
    [Google Scholar]
  8. BallardC.R. dos SantosE.F. DuboisM.J. Two polyphenol-rich Brazilian fruit extracts protect from diet-induced obesity and hepatic steatosis in mice.Food Funct.202011108800881010.1039/D0FO01912G 32959866
    [Google Scholar]
  9. BehlT. BungauS. KumarK. Pleotropic effects of polyphenols in cardiovascular system.Biomed. Pharmacother.202013011071410.1016/j.biopha.2020.110714 34321158
    [Google Scholar]
  10. SunC. ZhaoC. GuvenE.C. Dietary polyphenols as antidiabetic agents: Advances and opportunities.Food Front.202011184410.1002/fft2.15
    [Google Scholar]
  11. Cháirez-RamírezM.H. de la Cruz-LópezK.G. García-CarrancáA. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways.Front. Pharmacol.20211271030410.3389/fphar.2021.710304 34744708
    [Google Scholar]
  12. SinghM. ThrimawithanaT. ShuklaR. AdhikariB. Managing obesity through natural polyphenols: A review.Future Foods20201-210000210.1016/j.fufo.2020.100002
    [Google Scholar]
  13. MendonçaR.D. CarvalhoN.C. Martin-MorenoJ.M. Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: The SUN cohort study.Nutr. Metab. Cardiovasc. Dis.2019291697810.1016/j.numecd.2018.09.012 30459074
    [Google Scholar]
  14. MarranzanoM. RosaR.L. MalaguarneraM. PalmeriR. TessitoriM. BarberaA.C. Polyphenols: Plant sources and food industry applications.Curr. Pharm. Des.201924354125413010.2174/1381612824666181106091303 30398104
    [Google Scholar]
  15. AOACOfficial Methods of Analysis of AOAC International. HorwitzW. 2000
    [Google Scholar]
  16. IOMdietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients).Washington, DC: The National Academies Press20051133110.17226/10490
    [Google Scholar]
  17. do Espirito SantoB.L.S. da SilvaÉ.C. Jordão CândidoC. Dietary fiber chemical structures and physicochemical properties of edible Pouteria glomerata fruits, native from Brazilian Pantanal.Food Res. Int.2020137July10957610.1016/j.foodres.2020.109576 33233188
    [Google Scholar]
  18. IOMDietary reference intakes.Nutr. Rev.199755931932610.1111/j.1753‑4887.1997.tb01621.x 9329268
    [Google Scholar]
  19. AOCSOfficial methods and recommended practices of the American Oil Chemists’ Society. Champaign2009
    [Google Scholar]
  20. HartmanL. LagoR.C. Rapid preparation of fatty acid methyl esters from lipids.Lab. Pract.1973226475476, passim 4727126
    [Google Scholar]
  21. StahlM.A. BuscatoM.H.M. GrimaldiR. CardosoL.P. RibeiroA.P.B. Low sat-structured fats enriched in α-linolenic acid: physicochemical properties and crystallization characteristics.J. Food Sci. Technol.201754113391340310.1007/s13197‑017‑2780‑8 29051634
    [Google Scholar]
  22. ViganóJ. BrumerI.Z. BragaP.A.C. Pressurized liquids extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds.Food Bioprod. Process.201610038239010.1016/j.fbp.2016.08.011
    [Google Scholar]
  23. AnhêF.F. VarinT.V. Le BarzM. Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts.Curr. Obes. Rep.20154438940010.1007/s13679‑015‑0172‑9 26343880
    [Google Scholar]
  24. OuB. ChangT. HuangD. PriorR.L. Determination of total antioxidant capacity by oxygen radical absorbance capacity (ORAC) using fluorescein as the fluorescence probe: First Action 2012.23.J. AOAC Int.20139661372137610.5740/jaoacint.13‑175 24645517
    [Google Scholar]
  25. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.0292 8660627
    [Google Scholar]
  26. World Health OrganizationDiet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation.World Health Organization2003
    [Google Scholar]
  27. HerforthA. ArimondM. Álvarez-SánchezC. CoatesJ. ChristiansonK. MuehlhoffE. A global review of food-based dietary guidelines.Adv. Nutr.201910459060510.1093/advances/nmy130 31041447
    [Google Scholar]
  28. FAO, IFAD, UNICEF, WFP, WHOThe State of Food Security and Nutrition in the World20202020.
    [Google Scholar]
  29. WallaceTC BaileyRL BlumbergJB Burton-FreemanB Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake.2019601321741
    [Google Scholar]
  30. CaldeiraS.D. HianeP.A. RamosM.I.L. Ramos FilhoM.M. Physicochemical characterization of araçá (Psidium guineense SW.) and Tarumã (Vitex cymosa Bert.) from the State of Mato Grosso do Sul.Bol. Cent. Pesqui. Process. Aliment.200422114515410.5380/cep.v22i1.1186
    [Google Scholar]
  31. KaranjaC. ImathiuS. NelsonK.O.O. ThariW. Determination of nutritional composition and selected phytochemical and anti-nutrient content of Vitex payos (Chocolate Berry), a neglected and underutilized fruit from two Kenyan Counties.Journal of Food Security2022102445210.12691/jfs‑10‑2‑1
    [Google Scholar]
  32. AdejumoA.A. AbiR.O. Nutritional and anti-nutritional composition of black-plum (Vitex doniana).J. Nat. Sci.2013312Available from: www.iiste.org
    [Google Scholar]
  33. LufuR. AmbawA. OparaU.L. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors.Sci. Hortic. (Amsterdam)202027210951910.1016/j.scienta.2020.109519
    [Google Scholar]
  34. NEPA-UNICAMPTabela Brasileira de Composicao de Alimentos (TACO).CampinasNEPA-UNICAMP2011
    [Google Scholar]
  35. USDAAgricultural research service food data central.2019Available from https://fdc.nal.usda.gov/
  36. FDASpecific Requirements for Nutrient Content Claims.2022Available from https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-101/subpart-D
    [Google Scholar]
  37. PriceC.T. KovalK.J. LangfordJ.R. Silicon: a review of its potential role in the prevention and treatment of postmenopausal osteoporosis.Int. J. Endocrinol.201320131610.1155/2013/316783 23762049
    [Google Scholar]
  38. DanzeisenR. WilliamsD.L. ViegasV. DoursonM. VerberckmoesS. BurzlaffA. Bioelution, bioavailability, and toxicity of cobalt compounds correlate.Toxicol. Sci.2020174231132510.1093/toxsci/kfz249 32058562
    [Google Scholar]
  39. SharmaA. Low nickel diet in dermatology.Indian J. Dermatol.201358324010.4103/0019‑5154.110846 23723488
    [Google Scholar]
  40. LøvikM. FrøylandL. HaugenM. Assessment of dietary intake of chromium (III) in relation to tolerable upper intake level.Eur. J. Nutr. Food Saf.20188419519710.9734/EJNFS/2018/42532
    [Google Scholar]
  41. BlüherM. Obesity: global epidemiology and pathogenesis.Nat. Rev. Endocrinol.201915528829810.1038/s41574‑019‑0176‑8 30814686
    [Google Scholar]
  42. JiangS. MaX. LiM. Association between dietary mineral nutrient intake, body mass index, and waist circumference in U.S. adults using quantile regression analysis NHANES 2007-2014.PeerJ202083e912710.7717/peerj.9127 32411541
    [Google Scholar]
  43. SagorM.A.T. SmitaR.M. ShuvoA.P.R. The role of mineral deficiencies in insulin resistance and obesity.Curr. Diabetes Rev.2022187e17112119798710.2174/1573399818666211117104626 34789132
    [Google Scholar]
  44. GuyenetS.J. Impact of whole, fresh fruit consumption on energy intake and adiposity: a systematic review.Front. Nutr.201966610.3389/fnut.2019.00066 31139631
    [Google Scholar]
  45. Ciudad-MuleroM. Fernández-RuizV. Matallana-GonzálezM.C. MoralesP. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals.Adv. Food Nutr. Res.20199083134
    [Google Scholar]
  46. THE BRAZILIAN CITY OF CARDIOLOGY FaludiA IzarM SaraivaJ Update of the Brazilian guideline on dyslipidemia and prevention of atherosclerosis Brazilian Cardiology Archives2017109177Available from: http://www.gnresearch.org/doi/10.5935/abc.20170121
  47. Garcia-AmezquitaL.E. Tejada-OrtigozaV. Serna-SaldivarS.O. Welti-ChanesJ. Dietary fiber concentrates from fruit and vegetable by-products: processing, modification, and application as functional ingredients.Food Bioprocess Technol.20181181439146310.1007/s11947‑018‑2117‑2
    [Google Scholar]
  48. RocchettiG. GregorioR.P. LorenzoJ.M. Functional implications of bound phenolic compounds and phenolics-food interaction: A review.Compr. Rev. Food Sci. Food Saf.202221281184210.1111/1541‑4337.12921 35150191
    [Google Scholar]
  49. Quirós-SaucedaA.E. Palafox-CarlosH. Sáyago-AyerdiS.G. Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion.Food Funct.2014561063107210.1039/C4FO00073K 24740575
    [Google Scholar]
  50. DuC. AbdullahJ.J. GreethamD. Valorization of food waste into biofertiliser and its field application.J. Clean. Prod.201818727328410.1016/j.jclepro.2018.03.211
    [Google Scholar]
  51. KikalishviliB. ZurabashviliD. SulakvelidzeTs. MalaniaM. TurabelidzeD. Study of lipids seed’s oil of Vitex agnus castus growing in Georgia.Georgian Med. News2016256-2577781 27661281
    [Google Scholar]
  52. AliA. GharbyS. AsdadiA. Idrissi HassaniL. ChebliB. MoutajR. Chemical composition and antifungal activity of Vitex agnus-castus l. seeds oil growing in Morocco.J. Mater. Environ. Sci.201453823830
    [Google Scholar]
  53. GonçalvesR. AyresV.F.S. CarvalhoC. Chemical composition and antibacterial activity of the essential oil of Vitex agnus-castus L. (Lamiaceae).An. Acad. Bras. Cienc.20178942825283210.1590/0001‑3765201720170428 29267797
    [Google Scholar]
  54. SimõesT. FerreiraJ. LemosM.F.L. Argan oil as a rich source of linoleic fatty acid for dietetic structured lipids production.Life (Basel)20211111111410.3390/life11111114 34832990
    [Google Scholar]
  55. TutunchiH. OstadrahimiA. Saghafi-AslM. The effects of diets enriched in monounsaturated oleic acid on the management and prevention of obesity: a systematic review of human intervention studies.Adv. Nutr.202011486487710.1093/advances/nmaa013 32135008
    [Google Scholar]
  56. MatlockM.G. Introduction: The need for high-oleic oils.High Oleic Oils.Elsevier20221610.1016/B978‑0‑12‑822912‑5.00006‑X
    [Google Scholar]
  57. DelgadoG.E. MärzW. LorkowskiS. von SchackyC. KleberM.E. Omega-6 fatty acids: Opposing associations with risk—The Ludwigshafen Risk and Cardiovascular Health Study.J. Clin. Lipidol.201711410821090.e1410.1016/j.jacl.2017.05.003 28647413
    [Google Scholar]
  58. Martínez-GalánJ.P. Ontibón-EcheverriC.M. Campos CostaM. Enzymatic synthesis of capric acid-rich structured lipids and their effects on mice with high-fat diet-induced obesity.Food Res. Int.202114811060210.1016/j.foodres.2021.110602 34507747
    [Google Scholar]
  59. MoreiraD.K.T. RactJ.N.R. RibeiroA.P.B. MacedoG.A. Production and characterization of structured lipids with antiobesity potential and as a source of essential fatty acids.Food Res. Int.201799Pt 171371910.1016/j.foodres.2017.06.034 28784535
    [Google Scholar]
  60. QuideauS. DeffieuxD. Douat-CasassusC. PouységuL. Plant polyphenols: chemical properties, biological activities, and synthesis.Angew. Chem. Int. Ed.201150358662110.1002/anie.201000044 21226137
    [Google Scholar]
  61. GalanakisC.M. TsatalasP. CharalambousZ. GalanakisI.M. Control of microbial growth in bakery products fortified with polyphenols recovered from olive mill wastewater.Environmental Technology & Innovation20181011510.1016/j.eti.2018.01.006
    [Google Scholar]
  62. BasantaM.F. RojasA.M. MartinefskiM.R. TripodiV.P. De’NobiliM.D. FissoreE.N. Cherry (Prunus avium) phenolic compounds for antioxidant preservation at food interfaces.J. Food Eng.2018239152510.1016/j.jfoodeng.2018.06.028
    [Google Scholar]
  63. AlaraO.R. AbdurahmanN.H. UkaegbuC.I. Extraction of phenolic compounds: A review.Current Research in Food Science2021420021410.1016/j.crfs.2021.03.011 33899007
    [Google Scholar]
  64. DanielD.L. HuertaB.E.B. SosaI.A. MendozaM.G.V. Effect of fixed bed drying on the retention of phenolic compounds, anthocyanins and antioxidant activity of roselle (Hibiscus sabdariffa L.).Ind. Crops Prod.20124026827610.1016/j.indcrop.2012.03.015
    [Google Scholar]
  65. LangG.H. LindemannI.S. FerreiraC.D. HoffmannJ.F. VanierN.L. de OliveiraM. Effects of drying temperature and long-term storage conditions on black rice phenolic compounds.Food Chem.201928719720410.1016/j.foodchem.2019.02.028 30857689
    [Google Scholar]
  66. Al JuhaimiF. ÖzcanM.M. UsluN. GhafoorK. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils.J. Food Sci. Technol.201855119019710.1007/s13197‑017‑2895‑y 29358810
    [Google Scholar]
  67. AntonyA. FaridM. Effect of temperatures on polyphenols during extraction.Appl. Sci. (Basel)2022124210710.3390/app12042107
    [Google Scholar]
  68. Osorio-TobónJ.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds.J. Food Sci. Technol.202057124299431510.1007/s13197‑020‑04433‑2 33087945
    [Google Scholar]
  69. JensenJ.S. BlachezB. EgeboM. MeyerA.S. Rapid extraction of polyphenols from red grapes.Am. J. Enol. Vitic.200758445146110.5344/ajev.2007.58.4.451
    [Google Scholar]
  70. IsmailB.B. GuoM. PuY. WangW. YeX. LiuD. Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods.Ultrason. Sonochem.20195225726710.1016/j.ultsonch.2018.11.023 30514599
    [Google Scholar]
  71. Sharifi-RadM. Anil KumarN.V. ZuccaP. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases.Front. Physiol.20201169410.3389/fphys.2020.00694 32714204
    [Google Scholar]
  72. TunS. SpainhowerC.J. CottrillC.L. Therapeutic efficacy of antioxidants in ameliorating obesity phenotype and associated comorbidities.Front. Pharmacol.202011123410.3389/fphar.2020.01234 32903449
    [Google Scholar]
  73. Che SulaimanI.S. BasriM. Fard MasoumiH.R. CheeW.J. AshariS.E. IsmailM. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology.Chem. Cent. J.20171115410.1186/s13065‑017‑0285‑1 29086900
    [Google Scholar]
  74. YimH.S. ChyeF.Y. RaoV. Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology.J. Food Sci. Technol.201350227528310.1007/s13197‑011‑0349‑5 24425917
    [Google Scholar]
  75. de SouzaV.R. PereiraP.A.P. QueirozF. BorgesS.V. de Deus Souza CarneiroJ. Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits.Food Chem.2012134138138610.1016/j.foodchem.2012.02.191
    [Google Scholar]
  76. SiqueiraE.M de A. RosaF.R. FustinoniA.M. de Sant’AnaL.P. ArrudaS.F. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple.PLoS ONE201388e72826
    [Google Scholar]
  77. EveretteJ.D. BryantQ.M. GreenA.M. AbbeyY.A. WangilaG.W. WalkerR.B. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent.J. Agric. Food Chem.201058148139814410.1021/jf1005935 20583841
    [Google Scholar]
  78. PlatzerM. KieseS. HerfellnerT. Schweiggert-WeiszU. EisnerP. How does the phenol structure influence the results of the folin-ciocalteu assay?Antioxidants202110581110.3390/antiox10050811 34065207
    [Google Scholar]
/content/journals/cff/10.2174/0126668629267914231025081551
Loading
/content/journals/cff/10.2174/0126668629267914231025081551
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Bioactive compounds; fiber; fruit; linolenic acid; mineral; oilseed; oleic acid; phenolic compounds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test