Skip to content
2000
Volume 5, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Background

Brazil is the world’s largest producer of short fiber cellulose, generating large amounts of eucalyptus bark residue (EBR). Aiming to obtain composites known as wood plastic composites (WPC), the effect of ground EBR addition to a poly(vinyl chloride) (PVC) matrix was studied, considering different granulometries and matrix/load proportions. The influence of fiber content addition and particle size range was analyzed in terms of mechanical and thermal properties of the PVC-EBR fiber composites obtained. Finally, by comparing these properties with those reported in the literature, the viability of EBR application as filler/reinforcement in a WPC with PVC matrix was verified.

Objective

The main objective of the present study was to evaluate the influence of EBR fiber size and content in the WPC with PVC matrix, aiming to reduce the costs and improve its mechanical and physical properties.

Materials and Methods

The processing method for preparing the composites was two-roll milling and subsequent hot pressing. The residue was characterized chemical and thermogravimetric analyses, scanning electron microscopy (SEM), and aspect ratio determination. Composite evaluation involved density, tensile and flexural tests, impact resistance, heat deflection temperature (HDT), moisture absorption, and SEM of tensile fractured specimens.

Results

Tensile and flexural moduli were improved with fiber addition attaining 46% and 58% increases, respectively, with better results for smaller particle size fibers; impact resistance and elongation at break, however, were reduced, attaining 48% and 5% of the control sample’s properties. SEM images reveal fiber detachment and pull-out due to their low matrix adhesion. EBR fibers cause more void formation due to low interface adhesion, which results in poor stress transference from the matrix to the fiber, in addition to EBR acting as stress concentrators in the PVC matrix; therefore, impact fracture occurs with lower energy levels.

Discussion

Regions with fiber detachment and pull-out from the matrix are visible, clearly demonstrating the low adhesion properties of the phases and also in accordance with the observed decrease in mechanical properties for both fibers. SEM images indicate that fibers can be considered foreign particles inside the PVC matrix, acting as stress concentrators. Also, since fibers have diameters larger than the voids caused by crazing, planar density is reduced in the direction perpendicular to chain stretching leading to low strain at break values. Composites of fiber with finer particles showed fewer voids, possibly indicating a more efficient adhesion for fibers. This could be due to higher penetration of polymeric chains in the rugosity of finer fibers, leading to higher values of tensile strength.

Conclusion

The addition of EBR content increased, especially flexural and tensile moduli whilst elongation at break and impact resistance are reduced. The reduction in tensile strength due to poor fiber-matrix interfacial adhesion, though significant, allowed the use of composites with higher fiber additions. The use of EBR is coherent with the concept of circular economy. Thus, higher fiber additions relate directly to money savings since this residue costs less than PVC, and also, this is an environmentally correct destination for this residue since WPC is long-term usable, allowing for recycling.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666220524105918
2022-08-23
2024-12-25
Loading full text...

Full text loading...

References

  1. IUFRO 2.08.03 Montpellier, Ed., Eucalyptus 2018 Managing Eucalyptus plantations under global changes, Cirad, Paris2018
    [Google Scholar]
  2. Indústria Brasileira de Árvores2019Available from: https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf
  3. IBGEProdução da Extração Vegetal e da Silvicultura.2018Available from: https://biblioteca.ibge.gov.br/visualizacao/periodicos/74/pevs_2018_v33_informativo.pdf
    [Google Scholar]
  4. FoelkelC. Resíduos Sólidos industriais do processo de fabrição de celulose e papel de eucalipto.2010Available from: https://www.eucalyptus.com.br/eucaliptos/PT21_CascaSuja.pdf
    [Google Scholar]
  5. MoraA.L. GarciaC.H. Eucalypt Cultivation in Brazil.São Paulo, BrazilSociedade Brasileira de Silvicultura2000
    [Google Scholar]
  6. PickeringK.L. EfendyM.G.A. LeT.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos - A.Compos., Part A Appl. Sci. Manuf.2016839811210.1016/j.compositesa.2015.08.038
    [Google Scholar]
  7. JiangH. KamdemD.P. Development of poly(vinyl chloride)/wood composites.J. Vinyl Additive Technol.2004102596910.1002/vnl.20009
    [Google Scholar]
  8. Abdul KhalilH.P.S. TehraniM.A. DavoudpourY. BhatA.H. JawaidM. HassanA. Natural fiber reinforced poly(vinyl chloride) composites: A review.J. Reinf. Plast. Compos.201332533035610.1177/0731684412458553
    [Google Scholar]
  9. RodolfoA.Jr Tecnologia do PVC.3rd edOlharesSão Paulo2018
    [Google Scholar]
  10. WitenhaferD.E. Encyclopedia of pvc.2nd edNew YorkMarcel Dekker1988
    [Google Scholar]
  11. Bahiense NetoM. TsukamotoC.T. Tecnologia do PVC.3rd edOlharesSão Paulo2018
    [Google Scholar]
  12. PetchwattanaN. CovavisaruchS. SanetuntikulJ. Recycling of wood-plastic composites prepared from poly(vinyl chloride) and wood flour.Constr. Build. Mater.201228155756010.1016/j.conbuildmat.2011.08.024
    [Google Scholar]
  13. LahtiT. WincentJ. ParidaV. A definition and theoretical review of the circular economy, value creation, and sustainable business models: where are we now and where should research move in the future?Sustainability (Basel)2018108279910.3390/su10082799
    [Google Scholar]
  14. BoubekeurB. BelhanecheB.N. MassardierV. Low-density polyethylene/poly(lactic acid) blends reinforced by waste wood flour.J. Vinyl Additive Technol.202026444345110.1002/vnl.21759
    [Google Scholar]
  15. NaldonyP. Flores-SahagunT.H.S. SatyanarayanaK.G. Effect of the type of fiber (coconut, eucalyptus, or pine) and compatibilizer on the properties of extruded composites of recycled high density polyethylene.J. Compos. Mater.2015501455610.1177/0021998315570141
    [Google Scholar]
  16. RobertsonN-L.M. NychkaJ.A. AlemaskinK. WolodkoJ.D. Mechanical performance and moisture absorption of various natural fiber reinforced thermoplastic composites.J. Appl. Polym. Sci.2013130296998010.1002/app.39237
    [Google Scholar]
  17. XuY. WuQ. LeiY. YaoF. ZhangQ. Natural fiber reinforced poly(vinyl chloride) composites: Effect of fiber type and impact modifier.J. Polym. Environ.200816425025710.1007/s10924‑008‑0113‑8
    [Google Scholar]
  18. SombatsompopN. ChaochanchaikulK. Effect of moisture content on mechanical properties, thermal and structural stability and extruded texture of poly(vinyl chloride)/wood sawdust composites.Polym. Int.20045391210121810.1002/pi.1535
    [Google Scholar]
  19. JiangH. KamdemD.P. Characterization of the surface and the interphase of PVC–copper amine-treated wood composites.Appl. Surf. Sci.2010256144559456310.1016/j.apsusc.2010.02.047
    [Google Scholar]
  20. MüllerM. RadovanovicI. GrünebergT. MilitzH. KrauseA. Influence of various wood modifications on the properties of polyvinyl chloride/wood flour composites.J. Appl. Polym. Sci.2012125130831210.1002/app.34647
    [Google Scholar]
  21. ShengK. QianS. WangH. Influence of potassium permanganate pretreatment on mechanical properties and thermal behavior of moso bamboo particles reinforced PVC composites.Polym. Compos.20133581460146510.1002/pc.22799
    [Google Scholar]
  22. XuK. LiK. ZhongT. XieC. Reinforcement on the mechanical-, thermal-, and water-resistance properties of the wood flour/chitosan/poly(vinyl chloride) composites by physical and chemical modification.J. Appl. Polym. Sci.2014131183985410.1002/app.40757
    [Google Scholar]
  23. ChaochanchaikulK. RosarpitakV. SombatsompopN. Photodegradation profiles of PVC compound and wood/PVC composites under UV weathering.Express Polym. Lett.20137214616010.3144/expresspolymlett.2013.14
    [Google Scholar]
  24. ChaochanchaikulK. SombatsompopN. Stabilizations of molecular structures and mechanical properties of PVC and Wood/PVC composites by tinuvin and TiO2 stabilizers.Polym. Eng. Sci.20115171354136510.1002/pen.21893
    [Google Scholar]
  25. MatuanaL.M. KamdemD.P. ZhangJ. Photoaging and stabilization of rigid PVC/wood-fiber composites.J. Appl. Polym. Sci.200180111943195010.1002/app.1292
    [Google Scholar]
  26. MatuanaL.M. KamdemD.P. Accelerated ultraviolet weathering of PVC/wood-flour composites.Polym. Eng. Sci.20024281657166610.1002/pen.11060
    [Google Scholar]
  27. KositchaiyongA. RosarpitakV. SombatsompopN. Antifungal properties and material characteristics of PVC and wood/PVC composites doped with carbamate-based fungicides.Polym. Eng. Sci.20145461248125910.1002/pen.23672
    [Google Scholar]
  28. SrimalanonP. YamsaengsungW. KositchaiyongA. WimolmalaE. IsarangkuraK. SombatsompopN. Effects of UV-accelerated weathering and natural weathering conditions on anti-fungal efficacy of wood/PVC composites doped with propylene glycol-based HPQM.Express Polym. Lett.201610428930110.3144/expresspolymlett.2016.27
    [Google Scholar]
  29. AlarifiI.M. Investigation into the morphological and mechanical properties of date palm fiber-reinforced epoxy structural composites.J. Vinyl Additive Technol.2021271778810.1002/vnl.21785
    [Google Scholar]
  30. ArjmandiR. HassanA. MajeedK. ZakariaZ. Rice husk filled polymer composites.Int. J. Polym. Sci.201550147113210.1155/2015/501471
    [Google Scholar]
  31. PetchwattanaN. CovavisaruchS. Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride).J. Bionics Eng.201310111011710.1016/S1672‑6529(13)60205‑X
    [Google Scholar]
  32. SainiG. BhardwajR. ChoudharyV. NarulaA.K. Poly(vinyl chloride)–Acacia bark flour composite: Effect of particle size and filler content on mechanical, thermal, and morphological characteristics.J. Appl. Polym. Sci.201011731309131810.1002/app.29987
    [Google Scholar]
  33. SainiG. ChoudharyV. BhardwajR. NarulaA.K. Study on PVC composites containing Eugenia jambolana wood flour.J. Appl. Polym. Sci.200710742171217910.1002/app.27198
    [Google Scholar]
  34. BaligaM.S. BhatH.P. BaligaB.R.V. WilsonR. PalattyP.L. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): A review.Food Res. Int.20114471776178910.1016/j.foodres.2011.02.007
    [Google Scholar]
  35. FoelkelC. Casca da árvore do eucalipto: Aspectos morfológicos, fisiológicos, florestais, ecológicos e industriais, visando a produção de celulose e papel.2005Available from: https://www.eucalyptus.com.br/capitulos/capitulo_casca.pdf
    [Google Scholar]
  36. de AndradeM.C.N. MinhoniM.T.A. SansígoloC.A. ZiedD.C. Chemical analysis of the wood and bark of different eucalyptus types before and during the shiitake cultivation.Rev. Arvore201034116517510.1590/S0100‑67622010000100018
    [Google Scholar]
  37. Arteaga-PérezL.E. SeguraC. Bustamante-GarcíaV. Gómez CápiroO. JiménezR. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures.Energy2015931731174110.1016/j.energy.2015.10.007
    [Google Scholar]
  38. ChenW-H. PengJ. BiX.T. A state-of-the-art review of biomass torrefaction, densification and applications.Renew. Sustain. Energy Rev.20154484786610.1016/j.rser.2014.12.039
    [Google Scholar]
  39. Lawson-WoodK. RobertsonI. Study of the decomposition of calcium oxalate monohydrate using a hyphenated thermogravimetric analyser - ft-ir system (TG-IR).2016Available from: https://resources.perkinelmer.com/lab-solutions/resources/docs/app-DecompositionCalcium-oxalate-monohydrate-013078-01.pdf
    [Google Scholar]
  40. VlaevL. NedelchevN. GyurovaK. ZagorchevaM. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate.J. Anal. Appl. Pyrolysis200881225326210.1016/j.jaap.2007.12.003
    [Google Scholar]
  41. MishraR.K. MohantyK. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.Bioresour. Technol.2018251637410.1016/j.biortech.2017.12.029 29272770
    [Google Scholar]
  42. Sanchez-SilvaL. López-GonzálezD. VillaseñorJ. SánchezP. ValverdeJ.L. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.Bioresour. Technol.201210916317210.1016/j.biortech.2012.01.001 22297048
    [Google Scholar]
  43. WhiteJ.E. CatalloW.J. LegendreB.L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies.J. Anal. Appl. Pyrolysis201191113310.1016/j.jaap.2011.01.004
    [Google Scholar]
  44. BakarA.A. HassanA. YusofA.F.M. Mechanical and thermal properties of oil palm empty fruitbunch-filled unplasticized poly(vinyl chloride)composites.Polym. Polymer Compos.200513660761710.1177/096739110501300606
    [Google Scholar]
  45. SpaltK.W. ReifsnyderW.E. Bark characteristics and fire] resistance a literature survey.1962Available from: https://ir.library.oregonstate.edu/concern/defaults/mp48sf28v?locale=en
    [Google Scholar]
  46. BraskemB.T. Propriedades de Referência dos Compostos] de PVC.2002Available from: https://www.braskem.com.br/Portal/Principal/Arquivos/html/boletm_tecnico/Tabela_de_Propriedades_de_Referencia_dos_Compostos_de_PVC.pdf
    [Google Scholar]
  47. MengelogluF. MatuanaL.M. KingJ.A. Effects of impact modifiers on the properties of rigid PVC/wood-fiber composites.J. Vinyl Additive Technol.20006315315710.1002/vnl.10244
    [Google Scholar]
  48. BettiniS.H.P. BicudoA.B.L.C. AugustoI.S. Investigation on the use of coir fiber as alternative reinforcement in polypropylene.J. Appl. Polym. Sci.201011852841284810.1002/app.32418
    [Google Scholar]
  49. IkejimaI. NomotoR. McCabeJ.F. Shear punch strength and flexural strength of model composites with varying filler volume fraction, particle size and silanation.Dent. Mater.200319320621110.1016/S0109‑5641(02)00031‑3 12628432
    [Google Scholar]
  50. MatuanaL.M. KimJ-W. Fusion characteristics of rigid PVC/wood-flour composites by torque rheometry.J. Vinyl Additive Technol.200713171310.1002/vnl.20092
    [Google Scholar]
  51. MaitiS.N. SinghK. Influence of wood flour on the mechanical properties of polyethylene.J. Appl. Polym. Sci.19863234285428910.1002/app.1986.070320341
    [Google Scholar]
  52. RodolfoA.Jr LauriniR.V. Tecnologia do PVC.3rd edOlharesSão Paulo2018
    [Google Scholar]
  53. BucknallC.B. Toughened Plastics.DordrechtSpringer Netherlands197710.1007/978‑94‑017‑5349‑4
    [Google Scholar]
  54. DeblieckR.A. van BeekD. RemerieK. WardI.M. Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network.Polymer (Guildf.)201152142979299010.1016/j.polymer.2011.03.055
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666220524105918
Loading
/content/journals/caps/10.2174/2452271605666220524105918
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): circular economy; composites; eucalyptus bark; natural fibers; PVC; residues; WPC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test