Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Introduction

Osteoarthritis (OA) is a degenerative joint disease resulting from the breakdown of joint cartilage and underlying bone. The most common symptoms of osteoarthritis are joint pain and stiffness. The major hurdle in its treatment is that the oral administration of NSAIDs (Lornoxicam) causes side effects like GI side effects, cardiovascular problems, liver issues, or renal problems. Thus, there is a need to develop a Transdermal drug delivery system for the transport of drugs, which reduces side effects and has several benefits over oral delivery, and a Novel drug delivery system to enhance the permeation of drugs and give relief from symptoms of OA.

Objectives

This work deals with the formulation and evaluation of niosomal-loaded Transdermal Patches for the treatment of Osteoarthritis.

Methods

The Niosomes were prepared using the thin film hydration method, and Niosomal-loaded Transdermal patches were prepared using the Solvent Casting method. The preliminary evaluation and characterization studies were conducted to find the optimized formulation. The release and permeation studies were investigated. Stability studies were also assessed.

Results

The prepared Niosomes suspension (F2) was found to have particle size 320.2 nm, Zeta potential 23.9 mV, and Drug entrapment 79 ± 0.32%. The drug release studies of optimized formulation show 96.44 ± 0.34% drug release for 24 hours. Then, the optimized Niosome formulation (F2) was loaded into the transdermal patches. The permeation studies of Niosomal-loaded transdermal patch F1 (NLXTP) were performed, which showed a higher permeability than plain drug-loaded transdermal patch. F1 (NLXTP) followed Zero order release kinetic model, which shows a non-fickian controlled release diffusion mechanism. The drug release studies of optimized formulation F1 (NLXTP) show 2.79 ± 0.76 (µg/ml) drug permeated for 8 hours with a flux value of 0.35 ± 0.55, and the percentage of drug retention was found to be 5.67%. The stability studies showed that patches were stable over 90 days in different atmospheric conditions.

Conclusion

The Lornoxicam-loaded Niosomal transdermal patch was found to be a promising nano-drug-delivery alternative that showed better entrapment and release with a permeation profile for the daily management of osteoarthritis.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031283166240619043041
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. PeachC.A. CarrA.J. LoughlinJ. Recent advances in the genetic investigation of osteoarthritis.Trends Mol. Med.200511418619110.1016/j.molmed.2005.02.005 15823757
    [Google Scholar]
  2. SinusasK. Osteoarthritis: Diagnosis and treatment.Am. Fam. Physician20128514956 22230308
    [Google Scholar]
  3. HunterD.J. McDougallJ.J. KeefeF.J. The symptoms of osteoarthritis and the genesis of pain.Rheum. Dis. Clin. North Am.200834362364310.1016/j.rdc.2008.05.004 18687276
    [Google Scholar]
  4. WeiY. BaiL. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis.Connect. Tissue Res.201657424526110.1080/03008207.2016.1177036 27285430
    [Google Scholar]
  5. ScanzelloC.R. GoldringS.R. The role of synovitis in osteoarthritis pathogenesis.Bone201251224925710.1016/j.bone.2012.02.012 22387238
    [Google Scholar]
  6. SacitharanP.K. VincentT.L. Cellular ageing mechanisms in osteoarthritis.Mamm. Genome2016277-842142910.1007/s00335‑016‑9641‑z 27215642
    [Google Scholar]
  7. DaharwalS.J. Development and validation of UV spectrophotometric method for simultaneous estimation of diazepam and propranolol in bulk drug and its formulations.Asian J Pharm Ana.2013312023
    [Google Scholar]
  8. AbhishekA. JonesA. DohertyM. Topical pharmacological treatments.Oxford Textbook of Osteoarthritis and Crystal Arthropathy.EnglandOxford University Press201610.1093/med/9780199668847.003.0028
    [Google Scholar]
  9. SacitharanP.K. Ageing and osteoarthritis. Biochem cell Biol ageing part II.Clin. Sci. (Lond.)2019123159
    [Google Scholar]
  10. BharathiJ. MenakaK. PadmavathiP. A Study to assess the effectiveness of Structured Teaching Programme on knowledge regarding self care management among knee Osteoarthritis Patients attending outpatient departments at selected hospitals, Thiruvannamalai.Asian J Nurs Edu Res20166223710.5958/2349‑2996.2016.00045.8
    [Google Scholar]
  11. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  12. MarianecciC. Di MarzioL. RinaldiF. CeliaC. PaolinoD. AlhaiqueF. EspositoS. CarafaM. Niosomes from 80s to present: The state of the art.Adv. Colloid Interface Sci.201420518720610.1016/j.cis.2013.11.018 24369107
    [Google Scholar]
  13. RasheedN. MohammadA.S. HafeezH. FarheenS. Simultaneous formulation, evaluation and estimation of controlled release of NSAID drug.Asian J Pharmaceut Anal20177317618410.5958/2231‑5675.2017.00028.X
    [Google Scholar]
  14. SahinN.O. Niosomes as nanocarrier systems.Nanomaterials and Nanosystems for Biomedical Applications.ChamSpringer20076781
    [Google Scholar]
  15. SelvakumarK. A review on stability testing guidelines of pharmaceutical products.Asian J. Pharm. Clin. Res.2020131039
    [Google Scholar]
  16. BarbéC. BartlettJ. KongL. FinnieK. LinH.Q. LarkinM. CallejaS. BushA. CallejaG. Silica particles: A novel drug‐delivery system.Adv. Mater.200416211959196610.1002/adma.200400771
    [Google Scholar]
  17. MakeshwarK.B. WasankarS.R. Niosome: A novel drug delivery system.Asian J Pharm Res.2013311620
    [Google Scholar]
  18. SargaziS. HosseinikhahS.M. ZargariF. ChauhanaN.P.S. HassanisaadiM. AmaniS. pH-responsive cisplatin-loaded niosomes: Synthesis, characterization, cytotoxicity study and interaction analyses by simulation methodology.Nanofabrication20216111510.1515/nanofab‑2020‑0100
    [Google Scholar]
  19. PardakhtyA. VarshosazJ. RouholaminiA. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin.Int. J. Pharm.2007328213014110.1016/j.ijpharm.2006.08.002 16997517
    [Google Scholar]
  20. ShinuP. NairA.B. KumariB. JacobS. KumarM. TiwariA. TiwariV. VenugopalaK.N. AttimaradM. NagarajaS. Recent advances and appropriate use of niosomes for the treatment of skin cancer. Indian J Pharmaceut Edu Res,202256410.5530/ijper.56.4.170
    [Google Scholar]
  21. MakadiaH.A. BhattA.Y. ParmarR.B. PaunJ.S. TankH.M. Self-nano emulsifying drug delivery system [SNEDDS]: Future aspects.Asian J Pharm Res.2013312124
    [Google Scholar]
  22. SagarGH. ArunagirinathanMA. BellareJR. Self-assembled surfactant nano-structures important in drug delivery: A review.Indian J. Exp. Biol.2007452133159
    [Google Scholar]
  23. NasirA. HarikumarS.L. AmanpreetK. Niosomes: An excellent tool for drug delivery.Int. J. Res. Pharm. Chem.201222479487
    [Google Scholar]
  24. BhavsarD. Niosomes: Revolutionizing the field of targeted drug delivery system.SSRN2023
    [Google Scholar]
  25. SubediR.K. OhS.Y. ChunM.K. ChoiH.K. Recent advances in transdermal drug delivery.Arch. Pharm. Res.201033333935110.1007/s12272‑010‑0301‑7 20361297
    [Google Scholar]
  26. PrausnitzM. Transdermal drug delivery.Nature. Biotechnol.2008261112611268
    [Google Scholar]
  27. ZhangD. LiS. FanM. ZhaoC. The novel compounds with biological activity derived from soil fungi in the past decade.Drug Des. Devel. Ther.2022163493355510.2147/DDDT.S377921 36248243
    [Google Scholar]
  28. MaH. PanZ. LaiB. ZanC. LiuH. Recent research advances in nano-based drug delivery systems for local anesthetics.Drug Des. Devel. Ther.2023172639265510.2147/DDDT.S417051 37667787
    [Google Scholar]
  29. KadamA.S. RatnaparkhiM.P. ChaudharyS.P. Transdermal drug delivery: An overview.Int J Res Dev Pharm Life Sci.20143410421053
    [Google Scholar]
  30. SarohaK. YadavB. SharmaB. Transdermal patch: A discrete dosage form.Int. J. Curr. Pharm. Res.20113398108
    [Google Scholar]
  31. DassanayakeM.K. KhooT.J. ChongC.H. Di MartinoP. Molecular docking and in-silico analysis of natural biomolecules against dengue, ebola, zika, SARS-CoV-2 variants of concern and monkeypox virus.Int. J. Mol. Sci.202223191113110.3390/ijms231911131 36232431
    [Google Scholar]
  32. HassanN.A. AlshamariA.K. HassanA.A. ElharrifM.G. AlhajriA.M. SattamM. KhattabR.R. Advances on therapeutic strategies for Alzheimer’s disease: From medicinal plant to nanotechnology.Molecules20222715483910.3390/molecules27154839 35956796
    [Google Scholar]
  33. HafeezA. SinghJ. MauryaA. RanaL. JainU. Recent advances in Transdermal Drug Delivery System (TDDS): An overview.J Sci Innov Res201323695709
    [Google Scholar]
  34. BalaP. JatharS. KaleS. PalK. Transdermal drug delivery system [TDDS]-a multifaceted approach for drug delivery.J. Pharm. Res.201481218051835
    [Google Scholar]
  35. BakadiaB.M. LamboniL. AhmedA.A.Q. ZhengR. BoniB.O.O. ShiZ. SongS. SouhoT. MukoleB.M. QiF. YangG. Antibacterial silk sericin/poly (vinyl alcohol) hydrogel with antifungal property for potential infected large burn wound healing: Systemic evaluation.Smart Mater Med.20224002
    [Google Scholar]
  36. MondalK. TripathyP.K. Preparation of smart materials by additive manufacturing technologies: A review.Materials (Basel)20211421644210.3390/ma14216442 34771968
    [Google Scholar]
  37. ChaurasiaG. A review on pharmaceutical preformulation studies in formulation and development of new drug molecules.Int. J. Pharm. Sci. Res.20167623132320
    [Google Scholar]
  38. PavaniM. Formulation and evaluation of orodispersible tablets of taste masked nizatidine, Master of Pharmacy, The Tamilnadu Dr.ChennaiM.G.R. Medical University2012
    [Google Scholar]
  39. Sundhar RajanV. Formulation development and evaluation of colon targeted compression coated tablets of amitriptyline hydrochloride for irritable bowel syndrome.2016Available From: http://www.w3.org/1999/xlink"ext-link-type="uri" xlink:href= https://core.ac.uk/outputs/235664140/?source=1&algorithmId=15&similarToDoc=233973389&similarToDocKey=CORE&recSetID=8b266989-b386-4222-95fc-bdb9123da203&position=3&recommendation_type=same_repo&otherRecs=296274652%2C235670210%2C235664140%2C235661058%2C235653854
    [Google Scholar]
  40. VilegaveK. VidyasagarG. ChandankarP. Preformulation studies of pharmaceutical new drug molecule and products: An Overview.Am. J. Pharm.201313120
    [Google Scholar]
  41. KuryakovV.N. IvanovaD.D. Determination of melting point of n-alkanes by means of light scattering technique.J. Phys. Conf. Ser.20191385101204510.1088/1742‑6596/1385/1/012045
    [Google Scholar]
  42. NoyaE.G. VegaC. de MiguelE. Determination of the melting point of hard spheres from direct coexistence simulation methods.J. Chem. Phys.20081281515450710.1063/1.2901172 18433235
    [Google Scholar]
  43. ZingoneG. RubessaF. Preformulation study of the inclusion complex warfarin-β-cyclodextrin.Int. J. Pharm.20052911-231010.1016/j.ijpharm.2004.11.013 15707726
    [Google Scholar]
  44. Siavosh-HaghighiA. ThompsonD.L. Melting point determination from solid−liquid coexistence initiated by surface melting.J. Phys. Chem. C2007111227980798510.1021/jp070242m
    [Google Scholar]
  45. CroviniL. MarcarinoP. MilazzoG. Apparatus for accurate determination of melting and freezing points.Anal. Chem.198153468168610.1021/ac00227a024
    [Google Scholar]
  46. SheetalM. A simple ultraviolet spectrophotometric method for the estimation of docetaxel in bulk drug and formulation.Asian J Pharm Anal.2013324852
    [Google Scholar]
  47. PramodK. AnsariS.H. AliJ. UV spectrophotometric method for the quantification of eugenol during in vitro release studies.Asian J Pharm Ana.2013338689
    [Google Scholar]
  48. SinghB. SainiG. SharmaD.N.N. RoyS.D. GautamN. Estimation of lornoxicam in tablet dosage form by uv spectrophotometric method.Int. J. Pharm. Sci. Res.201121102106
    [Google Scholar]
  49. KharwadeM. AchyutaG. SubrahmanyamC.V.S. Sathesh BabuP.R. Solubility behavior of lornoxicam in binary solvents of pharmaceutical interest.J. Solution Chem.20124181364137410.1007/s10953‑012‑9876‑6
    [Google Scholar]
  50. ShakeelF. HaqN. AlanaziF.K. AlsarraI.A. Solubility of anti-inflammatory drug lornoxicam in ten different green solvents at different temperatures.J. Mol. Liq.201520928028310.1016/j.molliq.2015.05.035
    [Google Scholar]
  51. SapoundjievD. LorenzH. Seidel-MorgensternA. Determination of solubility data by means of calorimetry.Thermochim. Acta20054361-21910.1016/j.tca.2005.06.031
    [Google Scholar]
  52. LiF. SongS. GuoY. ZhaoQ. ZhangX. PanW. YangX. Preparation and pharmacokinetics evaluation of oral self-emulsifying system for poorly water-soluble drug Lornoxicam.Drug Deliv.201522448749810.3109/10717544.2014.885615 24524289
    [Google Scholar]
  53. AlshehriS. ShakeelF. Solubility determination, various solubility parameters and solution thermodynamics of sunitinib malate in some cosolvents, water and various (Transcutol + water) mixtures.J. Mol. Liq.202030711297010.1016/j.molliq.2020.112970
    [Google Scholar]
  54. AhmedM.O. Al-BadrA.A. Lornoxicam.Profiles of Drug Substances, Excipients and Related Methodology.AmsterdamElsevier2011205239
    [Google Scholar]
  55. KontturiK. MurtomäkiL. Electrochemical determination of partition coefficients of drugs.J. Pharm. Sci.1992811097097510.1002/jps.2600811003 1432622
    [Google Scholar]
  56. Al-SuwayehSA. TahaEI. Al-QahtaniFM. AhmedMO. BadranMM. Evaluation of skin permeation and analgesic activity effects of carbopol lornoxicam topical gels containing penetration enhancer.Sci World J2014201412749510.1155/2014/127495
    [Google Scholar]
  57. KalraY.P. Determination of pH of soils by different methods: Collaborative study.J. AOAC Int.199578231032410.1093/jaoac/78.2.310
    [Google Scholar]
  58. JassimZ.E. MohammedM.F. SadeqZ.A. Formulation and evaluation of fast dissolving film of lornoxicam.Asian J. Pharm. Clin. Res.201811921722310.22159/ajpcr.2018.v11i9.27098
    [Google Scholar]
  59. YoungO.A. WestJ. HartA.L. van OtterdijkF.F.H. A method for early determination of meat ultimate pH.Meat Sci.200466249349810.1016/S0309‑1740(03)00140‑2 22064153
    [Google Scholar]
  60. ThabetY. ElsabahyM. EissaN.G. Methods for preparation of niosomes: A focus on thin-film hydration method.Methods202219991510.1016/j.ymeth.2021.05.004 34000392
    [Google Scholar]
  61. DuanC. YuM. XuJ. LiB.Y. ZhaoY. KankalaR.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges.Biomed. Pharmacother.202316211464310.1016/j.biopha.2023.114643 37031496
    [Google Scholar]
  62. JayaprakashS. HalithS.M. FirthouseP.M. Yasmin; Nagarajan, M. Preparation and evaluation of celecoxib transdermal patches.Pak. J. Pharm. Sci.2010233279283 20566440
    [Google Scholar]
  63. DhimanS. SinghT.G. RehniA.K. Transdermal patches: A recent approach to new drug delivery system.Int. J. Pharm. Pharm. Sci.2011352634
    [Google Scholar]
  64. SankarV. JohnsonD.B. SivanV. RavichV. RaghuramanS. VelrajanG. Design and evaluation of nifedipine transdermal patches.Indian J. Pharm. Sci.2003655510
    [Google Scholar]
  65. PattnaikS. SwainK. MallickS. LinZ. Effect of casting solvent on crystallinity of ondansetron in transdermal films.Int. J. Pharm.20114061-210611010.1016/j.ijpharm.2011.01.009 21237257
    [Google Scholar]
  66. MadishettiS.K. PalemC.R. GannuR. ThatipamulaR.P. PanakantiP.K. YamsaniM.R. Development of domperidone bilayered matrix type transdermal patches: Physicochemical, in vitro and ex vivo characterization.Daru2010183221229 22615620
    [Google Scholar]
  67. MittalA. SaraU.S. AliA. MohammedA. Design, development, physicochemical, in vitro and in vivo evaluation of monolithic matrix type transdermal patches containing nitrendipine.Pharm. Dev. Technol.200914442243410.1080/10837450902748388 19630699
    [Google Scholar]
  68. SharmaP.K. PandaA. PradhanA. ZhangJ. ThakkarR. WhangC.H. RepkaM.A. MurthyS.N. Solid-state stability issues of drugs in transdermal patch formulations.AAPS PharmSciTech2018191273510.1208/s12249‑017‑0865‑3 28895101
    [Google Scholar]
  69. WareA.L. PekamwarS.S. Development and validation of bioanalytical uv-spectrophotometric method for determination of candesartan and development and validation of uv-spectrophotometric method for determination of candesartan in bulk drug and formulation.Asian J Pharm Anal202111200015
    [Google Scholar]
  70. DaharwalS.J. JangadeR.K. ThakurV.D. SahuB.P. Compatibility study of Ambroxol HCl drug-excipients by using IR spectroscopy.Asian J Pharm Anal.20133398101
    [Google Scholar]
  71. GhotkarM.N. JamdarR.M. MahajanR.R. ChouguleA.S. DhavaneS.M. IngoleP.N. In-vitro evaluation of different marketed brands of rabiprazol tablets using quality control tests.20205310
    [Google Scholar]
  72. SalveP.S. Development and in vitro evaluation colon targeted drug delivery system using natural gums.Magnesium2011614121
    [Google Scholar]
  73. SinghJ.V. SinghS.J. KumarS.A. MehraG.R. AnilS. KumarJ.R. Design, formulation and in vitro drug release from transdermal patches containing Nebivolol hydrochloride as model drug.Asian J Pharm Res.201224136141
    [Google Scholar]
  74. AhY.C. ChoiJ.K. ChoiY.K. KiH.M. BaeJ.H. A novel transdermal patch incorporating meloxicam: In vitro and in vivo characterization.Int. J. Pharm.20103851-2121910.1016/j.ijpharm.2009.10.013 19833177
    [Google Scholar]
  75. DathathriE. LalS. MittalM. ThakurG. DeS. Fabrication of low-cost composite polymer-based micro needle patch for transdermal drug delivery.Appl. Nanosci.202010237137710.1007/s13204‑019‑01190‑3
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031283166240619043041
Loading
/content/journals/ddl/10.2174/0122103031283166240619043041
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): drug; in-vitro; Osteoarthritis; patch; skin; transdermal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test