Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Green tea is a commonly used dietary supplement and food product. Green tea contains many polyphenolic compounds known as green tea catechins (GTCs). There are numerous reports exploring the potential benefit of using green tea catechins as chemotherapeutic agents to treat neoplastic disorders and infectious processes. The prevalence of cancer diagnoses, bacterial infections, and viral diseases that include SARS-CoV-2 have led to increased interest in GTCs as a therapeutic option in patients suffering from these conditions.

This concise review explores the evidence related to the therapeutic use of GTCs to treat neoplastic disorders as well as bacterial and viral infections.

PubMed, NIH, and OVID online databases were utilized to retrieve relevant scientific literature that addresses GTCs role in treating cancer and infectious disease.

While there are preliminary data indicating potentially adventitious properties of GTCs, there is a paucity of large prospective clinical trial data to support the use of GTCs in a therapeutic capacity to treat these disease processes. There are documented instances of GTCs interacting with medications indicated to treat neoplastic diseases.

Currently, it seems that the therapeutic benefit of using GTCs is outweighed by the potential risks.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978602666211124093814
2022-02-01
2025-01-10
Loading full text...

Full text loading...

References

  1. GrazioseR. LilaM.A. RaskinI. Merging traditional Chinese medicine with modern drug discovery technologies to find novel drugs and functional foods.Curr. Drug Discov. Technol.20107121210.2174/15701631079116276720156139
    [Google Scholar]
  2. BhagwatS. BeecherG. HaytowitzD. HoldenJ. DwyerJ. PetersonJ. GebhardtS. EldridgeA. AgarwalS. BalentineD. Flavonoid composition of tea: Comparison of black and green teas. Agricultural Research Service. USDA database for the flavonoid content of selected foods. Available from: http://www.nal. usda.gov/fnic/foodcomp 2003
  3. GopalJ. MuthuM. PaulD. KimD-H. ChunS. Bactericidal activity of green tea extracts: The importance of catechin containing nano particles.Sci. Rep.20166197101971010.1038/srep1971026818408
    [Google Scholar]
  4. ReygaertW.C. The antimicrobial possibilities of green tea.Front. Microbiol.2014543443410.3389/fmicb.2014.0043425191312
    [Google Scholar]
  5. ChackoS.M. ThambiP.T. KuttanR. NishigakiI. Beneficial effects of green tea: A literature review.Chin. Med.2010511310.1186/1749‑8546‑5‑1320370896
    [Google Scholar]
  6. GrahamH.N. Green tea composition, consumption, and polyphenol chemistry.Prev. Med.199221333435010.1016/0091‑7435(92)90041‑F1614995
    [Google Scholar]
  7. FarhanM. ShamimU. HadiS. Green Tea Polyphenols: A putative mechanism for cytotoxic action against cancer cells.Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery UllahM.F. AhmadA. John Wiley & Sons, Inc.New York 2019, 305-332.10.1002/9781119436713
    [Google Scholar]
  8. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  9. CoussensL.M. WerbZ. Inflammation and cancer.Nature2002420691786086710.1038/nature0132212490959
    [Google Scholar]
  10. FungM. BabikJ.M. COVID-19 in immunocompromised hosts: What we know so far.Clin. Infect. Dis.202172234035010.1093/cid/ciaa86333501974
    [Google Scholar]
  11. SteinmannJ. BuerJ. PietschmannT. SteinmannE. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea.Br. J. Pharmacol.201316851059107310.1111/bph.1200923072320
    [Google Scholar]
  12. XuJ. XuZ. ZhengW. A review of the antiviral role of green tea catechins.Molecules2017228133710.3390/molecules2208133728805687
    [Google Scholar]
  13. ZhouY. YaoQ. ZhangT. ChenX. WuZ. ZhangN. ShaoY. ChengY. Antibacterial activity and mechanism of green tea polysaccharide conjugates against Escherichia coli.Ind. Crops Prod.202015211246410.1016/j.indcrop.2020.112464
    [Google Scholar]
  14. BhandariK. DeB. GoswamiT.K. Evidence based seasonal variances in catechin and caffeine content of tea.SN Appl Sci20191121610.1007/s42452‑019‑1766‑8
    [Google Scholar]
  15. LeeM-J. MaliakalP. ChenL. MengX. BondocF.Y. PrabhuS. LambertG. MohrS. YangC.S. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3- gallate by humans: formation of different metabolites and individual variability.Cancer Epidemiol. Biomarkers Prev.20021110 Pt 11025103212376503
    [Google Scholar]
  16. Oketch-RabahH.A. RoeA.L. RiderC.V. BonkovskyH.L. GiancasproG.I. NavarroV. PaineM.F. BetzJ.M. MarlesR.J. CasperS. GurleyB. JordanS.A. HeK. KapoorM.P. RaoT.P. SherkerA.H. FontanaR.J. RossiS. VuppalanchiR. SeeffL.B. StolzA. AhmadJ. KohC. SerranoJ. Low DogT. KoR. United States pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts.Toxicol. Rep.2020738640210.1016/j.toxrep.2020.02.00832140423
    [Google Scholar]
  17. RubabS. RizwaniG.H. BahadurS. ShahM. AlsamadanyH. AlzahraniY. ShuaibM. HershanA. HobaniY.H. ShahA.A. Determination of the GC–MS analysis of seed oil and assessment of pharmacokinetics of leaf extract of camellia sinensis L.J. King Saud Univ. Sci.20203273138314410.1016/j.jksus.2020.08.026
    [Google Scholar]
  18. ChuK. O. PangC. C. Pharmacokinetics And Disposition Of Green Tea Catechins.Pharmacokinetics and Adverse Effects of Drugs: Mechanisms and Risks Factors ManlanguN. IntechOpenLondon2018Vol. 1710.5772/intechopen.74190
    [Google Scholar]
  19. CliffordM.N. van der HooftJ.J. CrozierA. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols.Am. J. Clin. Nutr.2013986Suppl.1619S1630S10.3945/ajcn.113.05895824172307
    [Google Scholar]
  20. RothM. TimmermannB.N. HagenbuchB. Interactions of green tea catechins with organic anion-transporting polypeptides.Drug Metab. Dispos.201139592092610.1124/dmd.110.03664021278283
    [Google Scholar]
  21. KimT-E. HaN. KimY. KimH. LeeJ.W. JeonJ-Y. KimM-G. Effect of epigallocatechin-3-gallate, major ingredient of green tea, on the pharmacokinetics of rosuvastatin in healthy volunteers.Drug Des. Devel. Ther.2017111409141610.2147/DDDT.S13005028533679
    [Google Scholar]
  22. MisakaS. YatabeJ. MüllerF. TakanoK. KawabeK. GlaeserH. YatabeM.S. OnoueS. WerbaJ.P. WatanabeH. YamadaS. FrommM.F. KimuraJ. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects.Clin. Pharmacol. Ther.201495443243810.1038/clpt.2013.24124419562
    [Google Scholar]
  23. AlbassamA.A. MarkowitzJ.S. An appraisal of drug-drug interactions with green tea (camellia sinensis).Planta Med.201783649650810.1055/s‑0043‑10093428118673
    [Google Scholar]
  24. HuangX. ZhangR. YangT. WeiY. YangC. ZhouJ. LiuY. ShiS. Inhibition effect of epigallocatechin-3-gallate on the pharmacokinetics of calcineurin inhibitors, tacrolimus, and cyclosporine A, in rats.Expert Opin. Drug Metab. Toxicol.202117112113410.1080/17425255.2021.183711133054444
    [Google Scholar]
  25. SchollC. LepperA. LehrT. HankeN. SchneiderK.L. BrockmöllerJ. SeufferleinT. StinglJ.C. Population nutrikinetics of green tea extract.PLoS One2018132e019307410.1371/journal.pone.019307429466429
    [Google Scholar]
  26. KimT-E. ShinK-H. ParkJ-E. KimM-G. YunY-M. ChoiD-H. KwonK.J. LeeJ. Effect of green tea catechins on the pharmacokinetics of digoxin in humans.Drug Des. Devel. Ther.2018122139214710.2147/DDDT.S14825730022812
    [Google Scholar]
  27. ChowH.H. HakimI.A. ViningD.R. CrowellJ.A. CordovaC.A. ChewW.M. XuM.J. HsuC.H. Ranger-MooreJ. AlbertsD.S. Effects of repeated green tea catechin administration on human cytochrome P450 activity.Cancer Epidemiol. Biomarkers Prev.200615122473247610.1158/1055‑9965.EPI‑06‑036517164372
    [Google Scholar]
  28. NetschM.I. GutmannH. SchmidlinC.B. AydoganC. DreweJ. Induction of CYP1A by green tea extract in human intestinal cell lines.Planta Med.200672651452010.1055/s‑2006‑93153716773535
    [Google Scholar]
  29. ChenL. BondocF.Y. LeeM.J. HussinA.H. ThomasP.E. YangC.S. Caffeine induces cytochrome P4501A2: Induction of CYP1A2 by tea in rats.Drug Metab. Dispos.19962455295338723732
    [Google Scholar]
  30. ZaragozaM.V. BrandonM.C. DiegoliM. ArbustiniE. WallaceD.C. Mitochondrial cardiomyopathies: How to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny.Eur. J. Hum. Genet.201119220020710.1038/ejhg.2010.16920978534
    [Google Scholar]
  31. MisakaS. OnoY. UchidaA. OnoT. AbeO. OgataH. SatoH. SuzukiM. OnoueS. ShikamaY. ShimomuraK. Impact of green tea catechin ingestion on the pharmacokinetics of lisinopril in healthy volunteers.Clin. Transl. Sci.202114247648010.1111/cts.1290533048477
    [Google Scholar]
  32. FilippiniT. MalavoltiM. BorrelliF. IzzoA. A. Fairweather‐TaitS. J. HorneberM. VincetiM. Green tea (Camellia sinensis) for the prevention of cancer.Cochrane Database Sys Rev202033CD00500410.1002/14651858.CD005004.pub332118296
    [Google Scholar]
  33. ShirakamiY. ShimizuM. Possible mechanisms of green tea and its constituents against cancer.Molecules2018239228410.3390/molecules2309228430205425
    [Google Scholar]
  34. NiedzwieckiA. RoomiM.W. KalinovskyT. RathM. Anticancer efficacy of polyphenols and their combinations.Nutrients20168955210.3390/nu809055227618095
    [Google Scholar]
  35. GuptaS. HastakK. AfaqF. AhmadN. MukhtarH. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis.Oncogene200423142507252210.1038/sj.onc.120735314676829
    [Google Scholar]
  36. ParkM.H. HongJ.T. Roles of NF-κB in Cancer and inflammatory diseases and their therapeutic approaches.Cells2016521510.3390/cells502001527043634
    [Google Scholar]
  37. ShankarS. MarshL. SrivastavaR.K. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin.Mol. Cell. Biochem.20133721-2839410.1007/s11010‑012‑1448‑y22971992
    [Google Scholar]
  38. ZhaoX. FanW. XuZ. ChenH. HeY. YangG. YangG. HuH. TangS. WangP. ZhangZ. XuP. YuM. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma.Oncotarget2016749811108112210.18632/oncotarget.1321227835602
    [Google Scholar]
  39. KürbitzC. HeiseD. RedmerT. GoumasF. ArltA. LemkeJ. RimbachG. KalthoffH. TrauzoldA. Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells.Cancer Sci.2011102472873410.1111/j.1349‑7006.2011.01870.x21241417
    [Google Scholar]
  40. TsaoA.S. LiuD. MartinJ. TangX.M. LeeJ.J. El-NaggarA.K. WistubaI. CulottaK.S. MaoL. GillenwaterA. SagesakaY.M. HongW.K. PapadimitrakopoulouV. Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions.Cancer Prev. Res. (Phila.)200921193194110.1158/1940‑6207.CAPR‑09‑012119892663
    [Google Scholar]
  41. JatoiA. EllisonN. BurchP.A. SloanJ.A. DakhilS.R. NovotnyP. TanW. FitchT.R. RowlandK.M. YoungC.Y. FlynnP.J. A phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma.Cancer20039761442144610.1002/cncr.1120012627508
    [Google Scholar]
  42. LaneJ.A. ErV. AveryK.N.L. HorwoodJ. CantwellM. CaroG.P. CrozierA. SmithG.D. DonovanJ.L. DownL. HamdyF.C. GillattD. HollyJ. MacefieldR. MoodyH. NealD.E. WalshE. MartinR.M. MetcalfeC. ProDiet: A phase II randomized placebo-controlled trial of green tea catechins and lycopene in men at increased risk of prostate cancer.Cancer Prev. Res. (Phila.)2018111168769610.1158/1940‑6207.CAPR‑18‑014730309839
    [Google Scholar]
  43. GuoY. ZhiF. ChenP. ZhaoK. XiangH. MaoQ. WangX. ZhangX. Green tea and the risk of prostate cancer: A systematic review and meta-analysis.Medicine (Baltimore)20179613e6426e642610.1097/MD.000000000000642628353571
    [Google Scholar]
  44. SamavatH. UrsinG. EmoryT.H. LeeE. WangR. TorkelsonC.J. DostalA.M. SwensonK. LeC.T. YangC.S. YuM.C. YeeD. WuA.H. YuanJ.M. KurzerM.S. A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer.Cancer Prev. Res. (Phila.)2017101271071810.1158/1940‑6207.CAPR‑17‑018728904061
    [Google Scholar]
  45. YuZ. SamavatH. DostalA.M. WangR. TorkelsonC.J. YangC.S. ButlerL.M. KenslerT.W. WuA.H. KurzerM.S. YuanJ.M. Effect of green tea supplements on liver enzyme elevation: Results from a randomized intervention study in the United States.Cancer Prev. Res. (Phila.)2017101057157910.1158/1940‑6207.CAPR‑17‑016028765194
    [Google Scholar]
  46. Najaf NajafiM. SalehiM. GhazanfarpourM. HoseiniZ.S. Khadem-RezaiyanM. The association between green tea consumption and breast cancer risk: A systematic review and meta-analysis.Phytother. Res.201832101855186410.1002/ptr.612429876987
    [Google Scholar]
  47. McNaughtJ. On the action of cold or lukewarm tea on Bacillus typhosus.BMJ Military Health19067437237310.1136/JRAMC‑07‑04‑08
    [Google Scholar]
  48. Hamilton-MillerJ. Microbiological properties of tea infusions. Chemical and biological properties of tea infusions.Frankfurt am Main, GermanyDeutscher Medizinischer Imformationsdienst19976375
    [Google Scholar]
  49. TaylorP.W. Hamilton-MillerJ.M.T. StapletonP.D. Antimicrobial properties of green tea catechins.Food Sci. Technol. Bull.20052718110.1616/1476‑2137.1418419844590
    [Google Scholar]
  50. StapletonP.D. ShahS. AndersonJ.C. HaraY. Hamilton-MillerJ.M.T. TaylorP.W. Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates.Int. J. Antimicrob. Agents200423546246710.1016/j.ijantimicag.2003.09.02715120724
    [Google Scholar]
  51. KheirabadiZ. MehrabaniM. SarafzadehF. DabaghzadehF. AhmadiniaN. Green tea as an adjunctive therapy for treatment of acute uncomplicated cystitis in women: A randomized clinical trial.Complement. Ther. Clin. Pract.201934131610.1016/j.ctcp.2018.10.01830712716
    [Google Scholar]
  52. ReygaertW.C. Green tea catechins: Their use in treating and preventing infectious diseases.BioMed Res. Int.20182018910526110.1155/2018/910526130105263
    [Google Scholar]
  53. DibK. EnnibiO. AlaouiK. CherrahY. Filali-MaltoufA. Antibacterial activity of plant extracts against periodontal pathogens: A systematic review.J. Herb. Med.20212910049310.1016/j.hermed.2021.100493
    [Google Scholar]
  54. FalcinelliS.D. ShiM.C. FriedlanderA.M. ChuaJ. Green tea and epigallocatechin-3-gallate are bactericidal against Bacillus anthracis.FEMS Microbiol. Lett.20173641210.1093/femsle/fnx12728605495
    [Google Scholar]
  55. MehradB. ClarkN.M. ZhanelG.G. LynchJ.P.III Antimicrobial resistance in hospital-acquired gram-negative bacterial infections.Chest201514751413142110.1378/chest.14‑217125940252
    [Google Scholar]
  56. ChaturvediV. KaoreS. KaoreN. KaurS. GautamS. Evaluation of the antimicrobial property of green tea extract and its synergistic effect on antimicrobials showing resistance in clinical isolates of a tertiary care hospital.J. Mahatma Gandhi Institute of Med. Sci.2019241333810.4103/jmgims.jmgims_56_18
    [Google Scholar]
  57. HamulkaJ. Jeruszka-BielakM. GórnickaM. DrywieńM.E. Zielinska-PukosM.A. Dietary supplements during COVID-19 outbreak. Results of Google trends analysis supported by PLifeCOVID-19 online studies.Nutrients20201315410.3390/nu1301005433375422
    [Google Scholar]
  58. GhoshR. ChakrabortyA. BiswasA. ChowdhuriS. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an in silico docking and molecular dynamics simulation study.J. Biomol. Struct. Dyn.202139124362437410.1080/07391102.2020.177981832568613
    [Google Scholar]
  59. ZhangL. LinD. SunX. CurthU. DrostenC. SauerheringL. BeckerS. RoxK. HilgenfeldR. Crystal structure of SARS- CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.Science2020368648940941210.1126/science.abb340532198291
    [Google Scholar]
  60. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. YangH. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors.Nature2020582781128929310.1038/s41586‑020‑2223‑y32272481
    [Google Scholar]
  61. ZhangZ. ZhangX. BiK. HeY. YanW. YangC.S. ZhangJ. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19.Trends Food Sci. Technol.2021114112410.1016/j.tifs.2021.05.02334054222
    [Google Scholar]
  62. MhatreS. SrivastavaT. NaikS. PatravaleV. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review.Phytomedicine20218515328610.1016/j.phymed.2020.15328632741697
    [Google Scholar]
  63. StorozhukM. COVID-19: Could green tea catechins reduce the risks?MedRxiv2021Preprint Paper.10.1101/2020.10.23.20218479
    [Google Scholar]
  64. SongJ.M. LeeK.H. SeongB.L. Antiviral effect of catechins in green tea on influenza virus.Antiviral Res.2005682667410.1016/j.antiviral.2005.06.01016137775
    [Google Scholar]
  65. MatsumotoK. YamadaH. TakumaN. NiinoH. SagesakaY.M. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: A randomized controlled trial.BMC Complement. Altern. Med.201111151510.1186/1472‑6882‑11‑1521338496
    [Google Scholar]
  66. RawangkanA. KengklaK. KanchanasurakitS. DuangjaiA. SaokaewS. Anti-influenza with green tea catechins: A systematic review and meta-analysis.Molecules20212613401410.3390/molecules2613401434209247
    [Google Scholar]
  67. KumarN.B. Pow-SangJ. SpiessP.E. ParkJ. SalupR. WilliamsC.R. ParnesH. SchellM.J. Randomized, placebo-controlled trial evaluating the safety of one-year administration of green tea catechins.Oncotarget2016743707947080210.18632/oncotarget.1222228053292
    [Google Scholar]
  68. ChowH.H. CaiY. HakimI.A. CrowellJ.A. ShahiF. BrooksC.A. DorrR.T. HaraY. AlbertsD.S. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals.Clin. Cancer Res.2003993312331912960117
    [Google Scholar]
  69. HodgsonJ.M. PuddeyI.B. BurkeV. BeilinL.J. JordanN. Effects on blood pressure of drinking green and black tea.J. Hypertens.199917445746310.1097/00004872‑199917040‑0000210404946
    [Google Scholar]
  70. PengX. ZhouR. WangB. YuX. YangX. LiuK. MiM. Effect of green tea consumption on blood pressure: A meta-analysis of 13 randomized controlled trials.Sci. Rep.20144625110.1038/srep0625125176280
    [Google Scholar]
  71. GoldenE.B. LamP.Y. KardoshA. GaffneyK.J. CadenasE. LouieS.G. PetasisN.A. ChenT.C. SchönthalA.H. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors.Blood2009113235927593710.1182/blood‑2008‑07‑17138919190249
    [Google Scholar]
  72. SeeramN.P. HenningS.M. NiuY. LeeR. ScheullerH.S. HeberD. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity.J. Agric. Food Chem.20065451599160310.1021/jf052857r16506807
    [Google Scholar]
  73. LeeL-S. KimS-H. KimY-B. KimY-C. Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity.Molecules20141979173918610.3390/molecules1907917324988187
    [Google Scholar]
/content/journals/cnt/10.2174/2665978602666211124093814
Loading
/content/journals/cnt/10.2174/2665978602666211124093814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test