Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

The substantial antimitotic potential of podophyllotoxin and its derivatives has attracted both synthetic and medicinal chemists to expand the chemical space for the subsequent biological evaluation of these compounds. The interest ranges from total synthesis, hemi-synthesis, one-pot synthetic approaches and structure-activity relationship studies. In the first segment of the review, we present recent development in the synthesis of podophyllotoxin and also describe its mode of action. the second section covers the synthesis and the structure-activity relationships of podophyllotoxin derivatives, along with the discussion of important structural features required by the molecule for displaying antimitotic activity. The last part describes the synthesis and biological evaluation of potent 4-aza podophyllotoxin derivatives. this review is of interest to chemists who study natural and synthetic compounds for drug discovery.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978602666211102103152
2022-02-01
2025-01-10
Loading full text...

Full text loading...

References

  1. GiriA. Lakshmi NarasuM. Production of podophyllotoxin from Podophyllum hexandrum: A potential natural product for clinically useful anticancer drugs.Cytotechnology2000341-2172610.1023/A:100813823089619003377
    [Google Scholar]
  2. BohlinL. RosenB. Podophyllotoxin derivatives: Drug discovery and development.Drug Discov. Today19961834335110.1016/1359‑6446(96)10028‑3
    [Google Scholar]
  3. CulpO. MagidM. KaplanI. Podophyllin treatment of condylomata acuminata.J. Urol.194451665566010.1016/S0022‑5347(17)70408‑9
    [Google Scholar]
  4. SackettD.L. Podophyllotoxin, steganacin and combretastatin: Natural products that bind at the colchicine site of tubulin.Pharmacol. Ther.199359216322810.1016/0163‑7258(93)90044‑E8278462
    [Google Scholar]
  5. Seidlová-MašínováV. MalinskýJ. ŠantavýF. The biological effects of some podophyllin compounds and their dependence on chemical structure.J. Natl. Cancer Inst.195718335937113406556
    [Google Scholar]
  6. GuerramM. JiangZ.-Z. ZhangL.-Y. Podophyllotoxin, a medicinal agent of plant origin: Past, present and future.Chin. J. Nat. Med.201210316116910.3724/SP.J.1009.2012.00161
    [Google Scholar]
  7. YuX. CheZ. XuH. Recent advances in the chemistry and biology of podophyllotoxins.Chemistry201723194467452610.1002/chem.20160247227726183
    [Google Scholar]
  8. LiuY.Q. TianJ. QianK. ZhaoX.B. Morris-NatschkeS.L. YangL. NanX. TianX. LeeK.H. Recent progress on C-4- modified podophyllotoxin analogs as potent antitumor agents.Med. Res. Rev.201535116210.1002/med.2131924827545
    [Google Scholar]
  9. DesbèneS. Giorgi-RenaultS. Drugs that inhibit tubulin polymerization: The particular case of podophyllotoxin and analogues.Curr. Med. Chem. Anticancer Agents200221719010.2174/156801102335435312678752
    [Google Scholar]
  10. PodwyssotzkiV. Pharmakologische studien über Podophyllum peltatum.Naunyn Schmiedebergs Arch. Pharmacol.1880131-2295210.1007/BF01833268
    [Google Scholar]
  11. BorscheW. NiemannJ. Über Podophyllin.Justus Liebigs Ann. Chem.1932494112614210.1002/jlac.19324940113
    [Google Scholar]
  12. HartwellJ. SchreckerA. The Chemistry of Podophyllum.Progress in the Chemistry of Organic Natural Products / Progress in the Chemistry of Natural Organic Substances KinghornA.D. FalkH. KobayashiJ. SpringerNew York1958Vol. 1983166
    [Google Scholar]
  13. NadkarniM. MauryP.B. HartwellJ.L. Components of podophyllin. VI. Isolation of two new compounds from Podophyllum emodi Wall.J. Am. Chem. Soc.195274128028110.1021/ja01121a527
    [Google Scholar]
  14. HartwellJ.L. Alpha-peltatin, a new compound isolated from Podophyllum peltatum.J. Am. Chem. Soc.19476911291810.1021/ja01203a51520270852
    [Google Scholar]
  15. HartwellJ.L. DettyW.E. Beta-peltatin, a new component of podophyllin.J. Am. Chem. Soc.1948708283310.1021/ja01188a52918876991
    [Google Scholar]
  16. GenslerW.J. GatsonisC.D. Synthesis of podophyllotoxin.J. Am. Chem. Soc.19628491748174910.1021/ja00868a059
    [Google Scholar]
  17. KadkadeP.G. Formation of podophyllotoxins by Podophyllum peltatum tissue cultures.Naturwissenschaften198168948148210.1007/BF010475267290217
    [Google Scholar]
  18. AndrewsR.C. TeagueS.J. MeyersA.I. Asymmetric total synthesis of (-)-podophyllotoxin.J. Am. Chem. Soc.1988110237854785810.1021/ja00231a041
    [Google Scholar]
  19. WuY. ZhangH. ZhaoY. ZhaoJ. ChenJ. LiL. A new and efficient strategy for the synthesis of podophyllotoxin and its analogues.Org. Lett.2007971199120210.1021/ol063095417326644
    [Google Scholar]
  20. WuY. ZhaoJ. ChenJ. PanC. LiL. ZhangH. Enantioselective sequential conjugate addition-allylation reactions: A concise total synthesis of (+)-podophyllotoxin.Org. Lett.200911359760010.1021/ol802620819105659
    [Google Scholar]
  21. StadlerD. BachT. Concise stereoselective synthesis of (-)-podophyllotoxin by an intermolecular iron(III)-catalyzed Friedel-Crafts alkylation.Angew. Chem. Int. Ed. Engl.200847397557755910.1002/anie.20080261118756578
    [Google Scholar]
  22. MedardeM. RamosA.C. CaballeroE. LópezJ.L. ClairacR.P-L. San FelicianoA. A new approach to the synthesis of podophyllotoxin based on epimerization reactions.Tetrahedron Lett.199637152663266610.1016/0040‑4039(96)00355‑3
    [Google Scholar]
  23. BushE.J. JonesD.W. Asymmetric total synthesis of (–)-podophyllotoxin.J. Chem. Soc. Chem. Commun.1993151200120110.1039/C39930001200
    [Google Scholar]
  24. BerkowitzD.B. ChoiS. MaengJ-H. Enzyme-assisted asymmetric total synthesis of (-)-podophyllotoxin and (-)-picropodophyllin.J. Org. Chem.200065384786010.1021/jo991582+10814019
    [Google Scholar]
  25. TingC.P. MaimoneT.J. C-H bond arylation in the synthesis of aryltetralin lignans: A short total synthesis of podophyllotoxin.Angew. Chem. Int. Ed. Engl.201453123115311910.1002/anie.20131111224519950
    [Google Scholar]
  26. KanekoT. WongH. Total synthesis of (±) podophyllotoxin.Tetrahedron Lett.198728551752010.1016/S0040‑4039(00)95770‑8
    [Google Scholar]
  27. Van der EyckenJ. De ClercqP. VandewalleM. Total synthesis of (±)-podophyllotoxin and (±)-epipodophyllotoxin.Tetrahedron Lett.198526323871387410.1016/S0040‑4039(00)89274‑6
    [Google Scholar]
  28. HajraS. GaraiS. HazraS. Catalytic enantioselective synthesis of (−)-podophyllotoxin.Org. Lett.201719246530653310.1021/acs.orglett.7b0323629210277
    [Google Scholar]
  29. TakahashiM. SuzukiN. IshikawaT. Enantioselective formal synthesis of (-)-podophyllotoxin from (2S,3R)-3-arylaziridine-2- carboxylate.J. Org. Chem.20137873250326110.1021/jo400147f23496308
    [Google Scholar]
  30. VitaleM. PrestatG. LopesD. MadecD. KammererC. PoliG. GirnitaL. New picropodophyllin analogs via palladium-catalyzed allylic alkylation-Hiyama cross-coupling sequences.J. Org. Chem.200873155795580510.1021/jo800707q18576606
    [Google Scholar]
  31. PullinR.D. SellarsJ.D. SteelP.G. Silenes in organic synthesis: A concise synthesis of (+/-) -epi-picropodophyllin.Org. Biomol. Chem.20075193201320610.1039/b710370k17878979
    [Google Scholar]
  32. LiJ. ZhangX. RenataH. Asymmetric chemoenzymatic synthesis of (-)-podophyllotoxin and related aryltetralin lignans.Angew. Chem. Int. Ed. Engl.20195834116571166010.1002/anie.20190410231241812
    [Google Scholar]
  33. TingC.P. TschanenE. JangE. MaimoneT.J. Total synthesis of podophyllotoxin and select analog designs via C–H activation.Tetrahedron201975243299330810.1016/j.tet.2019.04.052
    [Google Scholar]
  34. ter HaarE. RosenkranzH.S. HamelE. DayB.W. Computational and molecular modeling evaluation of the structural basis for tubulin polymerization inhibition by colchicine site agents.Bioorg. Med. Chem.19964101659167110.1016/0968‑0896(96)00158‑78931935
    [Google Scholar]
  35. NguyenT.L. McGrathC. HermoneA.R. BurnettJ.C. ZaharevitzD.W. DayB.W. WipfP. HamelE. GussioR. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach.J. Med. Chem.200548196107611610.1021/jm050502t16162011
    [Google Scholar]
  36. LiH. LiuT. XuanH. FangS. ZhaoC. A combination of pharmacophore modeling, virtual screening, and molecular docking studies for a diverse set of colchicine site inhibitors.Med. Chem. Res.201423114713472310.1007/s00044‑014‑1028‑7
    [Google Scholar]
  37. ZhangX. RakeshK.P. ShantharamC.S. ManukumarH.M. AsiriA.M. MarwaniH.M. QinH.-L. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs.Bioorg. Med. Chem.201826234035510.1016/j.bmc.2017.11.02629269253
    [Google Scholar]
  38. LvM. XuH. Recent advances in semisynthesis, biosynthesis, biological activities, mode of action, and structure-activity relationship of podophyllotoxins: An update (2008-2010).Mini Rev. Med. Chem.2011111090190910.2174/13895571179657546121781026
    [Google Scholar]
  39. LuY. ChenJ. XiaoM. LiW. MillerD.D. An overview of tubulin inhibitors that interact with the colchicine binding site.Pharm. Res.201229112943297110.1007/s11095‑012‑0828‑z22814904
    [Google Scholar]
  40. CanelC. MoraesR.M. DayanF.E. FerreiraD. Podophyllotoxin.Phytochemistry200054211512010.1016/S0031‑9422(00)00094‑710872202
    [Google Scholar]
  41. MarkosA.R. The successful treatment of molluscum contagiosum with podophyllotoxin (0.5%) self-application.Int. J. STD AIDS2001121283311791521
    [Google Scholar]
  42. VonK. KroghV. Podophyllotoxin for condylomata acuminata eradication: Clinical and experimental comparative studies on podophyllum lignars, colchicine and 5-fluorouracil.Acta Derm Venereol Suppl (Stockh)198198148
    [Google Scholar]
  43. Anil KumarK. Kumar SinghS. Siva KumarB. DobleM. Synthesis, anti-fungal activity evaluation and QSAR studies on podophyllotoxin derivatives.Open Chem.20075388089710.2478/s11532‑007‑0036‑6
    [Google Scholar]
  44. GuerreroE. AbadA. MontenegroG. Del OlmoE. López-PérezJ.L. San FelicianoA. Analgesic and anti-inflammatory activity of podophyllotoxin derivatives.Pharm. Biol.201351556657210.3109/13880209.2012.74992123363067
    [Google Scholar]
  45. MassanetG. PandoE. Rodriguez-LuisF. ZubiaE. Lignans: A review.Fitoterapia1989601335
    [Google Scholar]
  46. CastroM.A. GordalizaM. Del CorralJ.M.M. San FelicianoA. The distribution of lignanoids in the order Coniferae.Phytochemistry1996414995101110.1016/0031‑9422(95)00512‑9
    [Google Scholar]
  47. ArdalaniH. AvanA. Ghayour-MobarhanM. Podophyllotoxin: A novel potential natural anticancer agent.Avicenna J. Phytomed.20177428529428884079
    [Google Scholar]
  48. AyresD.C. FarrowA. CarpenterB.G. Lignans and related phenols. Part 16. The biogenesis of podophyllotoxin.J. Chem. Soc. Perkin Trans.1981I2134213610.1039/p19810002134
    [Google Scholar]
  49. KierL.B. FitzgeraldD.B. BurgettS. Isolation of podophyllotoxin from Callitrus drummondii.J. Pharm. Sci.196352550250310.1002/jps.260052052614032528
    [Google Scholar]
  50. SaitohT. KuramochiK. ImaiT. TakataK. TakeharaM. KobayashiS. SakaguchiK. SugawaraF. Podophyllotoxin directly binds a hinge domain in E2 of HPV and inhibits an E2/E7 interaction in vitro.Bioorg. Med. Chem.200816105815582510.1016/j.bmc.2008.03.05318396405
    [Google Scholar]
  51. BroomheadA.J. DewickP.M. Tumour-inhibitory aryltetralin lignans in Podophyllum versipelle, Diphylleia cymosa and Diphylleia grayi.Phytochemistry199029123831383710.1016/0031‑9422(90)85342‑D
    [Google Scholar]
  52. HokansonG. Podophyllotoxin and 4′-demethylpodophyllotoxin from Polygala polygama (Polygalaceae).Lloydia197841497498
    [Google Scholar]
  53. HoffmannJ.J. WiedhopfR.M. ColeJ.R. Cytotoxic and tumor inhibitory agent from Polygala macradenia Gray (Polygalaceae): 4′-demethyldeoxypodophyllotoxin.J. Pharm. Sci.197766458658710.1002/jps.2600660433853371
    [Google Scholar]
  54. TanoguchiM. ArimotoM. SaikaH. YamaguchiH. Studies on the constituents of the seeds of Hernandia ovigera L. VI. Isolation and structural determination of three lignans.Chem. Pharm. Bull. (Tokyo)198735104162416810.1248/cpb.35.4162
    [Google Scholar]
  55. YangT.H. LiuS.C. LinT.S. Studies on the constituents of Hernandia ovigera l.(IV) isolation of oxothalicarpine.J. Chin. Chem. Soc. (Taipei)1977242919210.1002/jccs.197700016
    [Google Scholar]
  56. ChenJ.J. ChangY.L. TengC.M. ChenI.S. Anti-platelet aggregation alkaloids and lignans from Hernandia nymphaeifolia.Planta Med.200066325125610.1055/s‑2000‑856210821052
    [Google Scholar]
  57. ErdtmanH. HarmathaJ. Phenolic and terpenoid heartwood constituents of Libocedrus yateensis.Phytochemistry19791891495150010.1016/S0031‑9422(00)98482‑6
    [Google Scholar]
  58. Donoso-FierroC. TiezziA. OvidiE. CeccarelliD. TriggianiD. MastrogiovanniF. TaddeiA.R. PérezC. BecerraJ. SilvaM. PassarellaD. Antiproliferative activity of yatein isolated from Austrocedrus chilensis against murine myeloma cells: Cytological studies and chemical investigations.Pharm. Biol.201553337838510.3109/13880209.2014.92258825420758
    [Google Scholar]
  59. Gutiérrez-GutiérrezF. Puebla-PérezA.M. González-PozosS. Hernández-HernándezJ.M. Pérez-RangelA. AlvarezL.P. Tapia-PastranaG. Castillo-RomeroA. Antigiardial activity of podophyllotoxin-type lignans from Bursera fagaroides var. fagaroides.Molecules201722579910.3390/molecules2205079928505094
    [Google Scholar]
  60. KoprowskiM. BałczewskiP. OwsianikK. Różycka-SokołowskaE. MarciniakB. Total synthesis of (±)-epithuriferic acid methyl ester via Diels-Alder reaction.Org. Biomol. Chem.20161451822183010.1039/C5OB02368H26750755
    [Google Scholar]
  61. ThurstonL.S. ImakuraY. HarunaM. LiD.H. LiuZ.C. LiuS.Y. ChengY.C. LeeK.H. Antitumor agents. 100. Inhibition of human DNA topoisomerase II by cytotoxic ether and ester derivatives of podophyllotoxin and alpha-peltatin.J. Med. Chem.198932360460810.1021/jm00123a0162537424
    [Google Scholar]
  62. KamalA. GayatriN.L. RaoN.V. Facile and improved synthesis of 4 β-aminopodophyllotoxin congeners.Bioorg. Med. Chem. Lett.19988213097310010.1016/S0960‑894X(98)00570‑89873683
    [Google Scholar]
  63. ZhuX.K. GuanJ. XiaoZ. CosentinoL.M. LeeK.H. Anti-AIDS agents. Part 61: Anti-HIV activity of new podophyllotoxin derivatives.Bioorg. Med. Chem.200412154267427310.1016/j.bmc.2004.04.04815246103
    [Google Scholar]
  64. ChenS.W. WangY.H. JinY. TianX. ZhengY.T. LuoD.Q. TuY.Q. Synthesis and anti-HIV-1 activities of novel podophyllotoxin derivatives.Bioorg. Med. Chem. Lett.20071772091209510.1016/j.bmcl.2006.11.07017317161
    [Google Scholar]
  65. ZhaoY. WangC. WuZ. FangJ. ZhuL. Synthesis and antitumor activity of novel aroylthiourea derivatives of podophyllotoxin.Invest. New Drugs2012301172410.1007/s10637‑010‑9508‑120697773
    [Google Scholar]
  66. PaganiO. ZucchettiM. SessaC. de JongJ. D’IncalciM. De FuscoM. Kaeser-FröhlichA. HanauskeA. CavalliF. Clinical and pharmacokinetic study of oral NK611, a new podophyllotoxin derivative.Cancer Chemother. Pharmacol.199638654154710.1007/s0028000505248823496
    [Google Scholar]
  67. CastroA. del CorralJ.M.M. GordalizaM. GrandeC. Gómez-ZuritaA. García-GrávalosD. San FelicianoA. Synthesis and cytotoxicity of podophyllotoxin analogues modified in the A ring.Eur. J. Med. Chem.2003381657410.1016/S0223‑5234(02)00007‑712593917
    [Google Scholar]
  68. BertounesqueE. ImbertT. MonneretC. Synthesis of podophyllotoxin A-ring pyridazine analogue.Tetrahedron19965245142351424610.1016/0040‑4020(96)00862‑9
    [Google Scholar]
  69. MacRaeW.D. TowersG.N. Biological activities of lignans.Phytochemistry19842361207122010.1016/S0031‑9422(00)80428‑8
    [Google Scholar]
  70. AlleviP. AnastasiaM. CiuffredaP. BigattiE. MacdonaldP. Stereoselective glucosidation of Podophyllum lignans. A new simple synthesis of etoposide.J. Org. Chem.199358154175417810.1021/jo00067a071
    [Google Scholar]
  71. HanauskeA. WüsterK. DepenbrockH. PeterR. BlockT. VogelsangH. RotterM. BurkK. FröhlichA. RastetterJ. Preclinical activity of NK611, a new podophyllotoxin derivative, against clonogenic tumor cells.Proc. Am. Assoc. Cancer Res.19942388
    [Google Scholar]
  72. LeeK.H. BeersS.A. MoriM. WangZ.Q. KuoY.H. LiL. LiuS.Y. ChangJ.Y. HanF.S. ChengY.C. Antitumor agents. 111. New 4-hydroxylated and 4-halogenated anilino derivatives of 4′-demethylepipodophyllotoxin as potent inhibitors of human DNA topoisomerase II.J. Med. Chem.19903351364136810.1021/jm00167a0132158562
    [Google Scholar]
  73. SaitoH. YoshikawaH. NishimuraY. KondoS. TakeuchiT. UmezawaH. Studies on lignan lactone antitumor agents. II.: Synthesis of N-alkylamino-and 2, 6-dideoxy-2-aminoglycosidic lignan variants related to podophyllotoxin.Chem. Pharm. Bull. (Tokyo)19863493741374610.1248/cpb.34.37413815596
    [Google Scholar]
  74. HitotsuyanagiY. FukuyoM. TsudaK. KobayashiM. OzekiA. ItokawaH. TakeyaK. 4-Aza-2,3-dehydro-4-deoxypodophyllotoxins: Simple aza-podophyllotoxin analogues possessing potent cytotoxicity.Bioorg. Med. Chem. Lett.200010431531710.1016/S0960‑894X(99)00693‑910714489
    [Google Scholar]
  75. BoydM.R. PaullK.D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen.Drug Dev. Res.19953429110910.1002/ddr.430340203
    [Google Scholar]
  76. JurdL. New anti-tumor agents. 1. Heterocyclic benzodioxole lactones.J. Heterocycl. Chem.19963341227123210.1002/jhet.5570330438
    [Google Scholar]
  77. McCombieS.W. TagatJ.R. MetzW.A. NazarenoD. PuarM.S. Synthesis and chemistry of thia-analogs of the anti-mitotic podophyllium lignans.Tetrahedron199349368073808610.1016/S0040‑4020(01)88028‑5
    [Google Scholar]
  78. HitotsuyanagiY. KobayashiM. TakeyaK. ItokawaH. Synthesis of 4-thia-2-azapodophyllotoxin, a new analogue of the antitumour lignan podophyllotoxin.J. Chem. Soc., Perkin Trans. 11995111387139010.1039/p19950001387
    [Google Scholar]
  79. ChernyshevaN.B. TsyganovD.V. PhilchenkovA.A. ZavelevichM.P. KiselyovA.S. SemenovR.V. SemenovaM.N. SemenovV.V. Synthesis and comparative evaluation of 4-oxa- and 4-aza-podophyllotoxins as antiproliferative microtubule destabilizing agents.Bioorg. Med. Chem. Lett.20122272590259310.1016/j.bmcl.2012.01.12822370267
    [Google Scholar]
  80. HitotsuyanagiY. IchiharaY. TakeyaK. ItokawaH. Synthesis of 4-oxa-2-azapodophyllotoxin, a novel analog of the antitumor lignan podophyllotoxin.Tetrahedron Lett.199435509401940210.1016/S0040‑4039(00)78553‑4
    [Google Scholar]
  81. SubrahmanyamD. RenukaB. RaoC.V. SagarP.S. DeeviD.S. BabuJ.M. VyasK. Novel D-ring analogues of podophyllotoxin as potent anti-cancer agents.Bioorg. Med. Chem. Lett.19988111391139610.1016/S0960‑894X(98)00232‑79871772
    [Google Scholar]
  82. GenslerW.J. MurthyC.D. TrammellM.H. Nonenolizable podophyllotoxin derivatives.J. Med. Chem.197720563564410.1021/jm00215a004853503
    [Google Scholar]
  83. HitotsuyanagiY. KobayashiM. FukuyoM. TakeyaK. ItokawaH. A facile synthesis of the 4-aza-analogs of 1-arylnaphthalene lignans chinensin, justicidin B, and taiwanin C.Tetrahedron Lett.199738488295829610.1016/S0040‑4039(97)10204‑0
    [Google Scholar]
  84. HitotsuyanagiY. KobayashiM. MoritaH. ItokawaH. TakeyaK. Synthesis of (−)-4-aza-4-deoxypodophyllotoxin from (−)-podophyllotoxin.Tetrahedron Lett.199940519107911010.1016/S0040‑4039(99)01932‑2
    [Google Scholar]
  85. TratratC. Giorgi-RenaultS. HussonH.P. A multicomponent reaction for the one-pot synthesis of 4-aza-2,3-didehydropodophyllotoxin and derivatives.Org. Lett.20024193187318910.1021/ol020090812227745
    [Google Scholar]
  86. KumarA. AlegriaA.E. Synthesis of Novel Functionalized 4-Aza-2,3-didehydropodophyllotoxin derivatives with potential antitumor activity.J. Heterocycl. Chem.20104761275128210.1002/jhet.46721197118
    [Google Scholar]
  87. KumarA. KumarV. AlegriaA.E. MalhotraS.V. N-hydroxyethyl-4-aza-didehydropodophyllotoxin derivatives as potential antitumor agents.Eur. J. Pharm. Sci.2011441-2212610.1016/j.ejps.2011.04.01321601635
    [Google Scholar]
  88. VélezC. ZayasB. KumarA. Biological activity of N-hydroxyethyl-4-aza-2, 3-didehydropodophyllotoxin derivatives upon colorectal adenocarcinoma cells.Open J. Med. Chem.20144111110.4236/ojmc.2014.4100125554737
    [Google Scholar]
  89. MagedovI.V. FrolovaL. ManpadiM. BhogaUd. TangH. EvdokimovN.M. GeorgeO. GeorgiouK.H. RennerS. GetlikM. KinnibrughT.L. FernandesM.A. Van slambrouckS. SteelantW.F. ShusterC.B. RogeljS. van OtterloW.A. KornienkoA. Anticancer properties of an important drug lead podophyllotoxin can be efficiently mimicked by diverse heterocyclic scaffolds accessible via one-step synthesis.J. Med. Chem.201154124234424610.1021/jm200410r21615090
    [Google Scholar]
  90. ShiF. ZengX-N. ZhangG. MaN. JiangB. TuS. Facile synthesis of new 4-aza-podophyllotoxin analogs via microwave-assisted multi-component reactions and evaluation of their cytotoxic activity.Bioorg. Med. Chem. Lett.201121237119712310.1016/j.bmcl.2011.09.08222004717
    [Google Scholar]
  91. LiT. LuT. YuC. YaoC. An efficient synthesis of [1,3]dioxolo[4,5-g]thieno[3,4-b]quinolin-8(5H)-ones as novel thiazapodophyllotoxin analogues with potential anticancer activity.Bioorg. Med. Chem. Lett.20152571417141910.1016/j.bmcl.2015.02.04725759030
    [Google Scholar]
  92. HattiI. SreenivasuluR. JadavS.S. JayaprakashV. KumarC.G. RajuR.R. Synthesis, cytotoxic activity and docking studies of new 4-aza-podophyllotoxin derivatives.Med. Chem. Res.20152483305331310.1007/s00044‑015‑1375‑z
    [Google Scholar]
  93. MagalhaesL.G. MarquesF.B. da FonsecaM.B. RogérioK.R. GraebinC.S. AndricopuloA.D. Discovery of a series of acridinones as mechanism-based tubulin assembly inhibitors with anticancer activity.PLoS One2016118e016084210.1371/journal.pone.016084227508497
    [Google Scholar]
  94. KandilS. WymantJ.M. KariukiB.M. JonesA.T. McGuiganC. WestwellA.D. Novel cis-selective and non-epimerisable C3 hydroxy azapodophyllotoxins targeting microtubules in cancer cells.Eur. J. Med. Chem.201611031132510.1016/j.ejmech.2015.12.03726854430
    [Google Scholar]
  95. KumarN.P. SharmaP. ReddyT.S. NekkantiS. ShankaraiahN. LalitaG. SujanakumariS. BhargavaS.K. NaiduV.G.M. KamalA. Synthesis of 2,3,6,7-tetramethoxyphenanthren-9-amine: An efficient precursor to access new 4-aza-2,3-dihydropyridophenanthrenes as apoptosis inducing agents.Eur. J. Med. Chem.201712730531710.1016/j.ejmech.2017.01.00128068602
    [Google Scholar]
  96. KumarN.P. SharmaP. ReddyT.S. ShankaraiahN. BhargavaS.K. KamalA. Microwave-assisted one-pot synthesis of new phenanthrene fused-tetrahydrodibenzo-acridinones as potential cytotoxic and apoptosis inducing agents.Eur. J. Med. Chem.201815117318510.1016/j.ejmech.2018.03.06929609122
    [Google Scholar]
/content/journals/cnt/10.2174/2665978602666211102103152
Loading
/content/journals/cnt/10.2174/2665978602666211102103152
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 4-aza podophyllotoxin; antimitotic agents; antitumor agents; Podophyllotoxin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test