Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Colon cancer is responsible for increasing the death rate worldwide. Commonly used anticancer drugs have various side effects and their clinical usage must be restricted due to their toxicity.

The present research aimed to evaluate the anticancer potential of . (LS) seeds aqueous extract against azoxymethane/dextran sodium sulfate (AOM/DSS) induced-colon cancer in male albino mice.

Low (200 mg/kg) and high (400 mg/kg) doses of LS seeds extract were used to treat induced colon cancer in different stages.

The present results report that LS treatment for mice with colon cancer especially in high dose, decreases colon polyps/tumor incidence and size, tissues disorder, expression of P53 and increases apoptosis in colon tissue. Moreover, LS decreases micronucleus induction in polychromatic (PCE), increases PCE/normochromatic erythrocytes ratio and decreases the percentage of sperm abnormalities.

The present study reports anticancer potential of LS for induced colorectal cancer mice by ameliorating the inflammatory steps of colon.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999200928212236
2021-03-01
2025-01-28
Loading full text...

Full text loading...

References

  1. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Available at: http://globocan. iarc.fr/default.aspx(Accessed on May 1, 2020).
    [Google Scholar]
  2. FormanD. BrayF. BrewsterD.H. Gombe MbalawaC. KohlerB. PiñerosM. Steliarova-FoucherE. SwaminathanR. FerlayJ. Cancer incidence in five continents.IARC, 2014., 10, 126-140.
    [Google Scholar]
  3. SaltzL.B. DouillardJ.Y. PirottaN. AlaklM. GruiaG. AwadL. ElfringG.L. LockerP.K. MillerL.L. Irinotecan plus fluorouracil/leucovorin for metastatic colorectal cancer: A new survival standard.Oncologist200161819110.1634/theoncologist.6‑1‑81 11161231
    [Google Scholar]
  4. NiccolaiE. AmedeiA. Vaccine immunotherapy strategies in colorectal cancer treatment.Single Cell Biol.2012110210.4172/2168‑9431.1000102
    [Google Scholar]
  5. TimofeiovS. MarincaM. BarC. BreabănM.E. DrugV. ScripcariuV. Conversion rate to resectability in colorectal cancer liver metastases: Need for criteria adapted to current therapy.J. Surg. (Northborough)201511323336
    [Google Scholar]
  6. TurnerJ. PageM. ClarkC. KhandujaK. Sigmoid perforation during CT colonography in a patient with an inguinal hernia and concomitant finding of a right-sided colon cancer.J. Gastrointest. Dig. Syst.20166378
    [Google Scholar]
  7. LenzH.J. Van CutsemE. Khambata-FordS. MayerR.J. GoldP. StellaP. MirtschingB. CohnA.L. PippasA.W. AzarniaN. TsuchihashiZ. MauroD.J. RowinskyE.K. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines.J. Clin. Oncol.200624304914492110.1200/JCO.2006.06.7595 17050875
    [Google Scholar]
  8. GiantonioB.J. CatalanoP.J. MeropolN.J. O’DwyerP.J. MitchellE.P. AlbertsS.R. SchwartzM.A. BensonA.B. III eastern cooperative oncology group study E3200. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern cooperative oncology group study E3200.J. Clin. Oncol.200725121539154410.1200/JCO.2006.09.6305 17442997
    [Google Scholar]
  9. HochsterH.S. HartL.L. RamanathanR.K. ChildsB.H. HainsworthJ.D. CohnA.L. WongL. FehrenbacherL. AbubakrY. SaifM.W. SchwartzbergL. HedrickE. Safety and efficacy of oxaliplatin and fluoropyrimidine regimens with or without bevacizumab as first-line treatment of metastatic colorectal cancer: results of the TREE Study.J. Clin. Oncol.200826213523352910.1200/JCO.2007.15.4138 18640933
    [Google Scholar]
  10. ChengY.H. WongE.W. ChengC.Y. Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis.Spermatogenesis20111320922010.4161/spmg.1.3.17990 22319669
    [Google Scholar]
  11. FischerM. YenW.C. KapounA.M. WangM. O’YoungG. LewickiJ. GurneyA. HoeyT. Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations.Cancer Res.20117151520152510.1158/0008‑5472.CAN‑10‑2817 21193546
    [Google Scholar]
  12. ErdoganH. KemalN. Protection from side effects of anticancer drugs.OMICS GROUP conferences, 2014, 6, 1948-5956.
    [Google Scholar]
  13. SharmaS. AgrawalN. Nourishing and healing process of garden cress (Lepidium sativum Linn.)- A review.Indian J. Nat. Prod. Resour.20112292297
    [Google Scholar]
  14. MahassniS.H. Al-ReemiR.M. Apoptosis and necrosis of human breast cancer cells by an aqueous extract of garden cress (Lepidium sativum) seeds.Saudi J. Biol. Sci.201320213113910.1016/j.sjbs.2012.12.002 23961228
    [Google Scholar]
  15. MahassniS.H. Al-ReemiR.M. Cytotoxic effect of an aqueous extract of Lepidium sativum L. seeds on human breast cancer cells.Indian J. Tradit. Knowl.201312605614
    [Google Scholar]
  16. DokeS. GuhaM. Garden cress (Lepidium sativum L.) Seed - An important medicinal source: A review.J. Nat. Prod. Plant Resour.201446980
    [Google Scholar]
  17. JumaAb. The effects of Lepidium sativum seeds on fracture-induced healing in rabbits.MedGenMed2007922317955079
    [Google Scholar]
  18. YadavY.C. JainA. SrivastavaD.N. JainA. Fracture healing activity of ethanolic extract of Lepidium sativum L. seeds in internally fixed rats’ femoral osteotomy model.Int. J. Pharm. Pharm. Sci.20113193197
    [Google Scholar]
  19. ParanjapeA.N. MehtaA.A. A Study on clinical efficacy of Lepidium sativum seeds in treatment of bronchial asthma.IJPT200655559
    [Google Scholar]
  20. Al-YahyaM.A. MossaJ.S. AgeelA.M. RafatullahS. Pharmacological and safety evaluation studies on Lepidium sativum L., Seeds.Phytomedicine19941215515910.1016/S0944‑7113(11)80035‑8 23195890
    [Google Scholar]
  21. DattaP.K. DiwakarB.K. ViswanathaS. MurthyK.N. NaiduK.A. Safety evaluation studies on garden cress (Lepidium sativum L.) seeds in Wistar rats.Int. J. Appl. Res. Nat. Prod.201143742
    [Google Scholar]
  22. RaghavendraR.H. AkhilenderN.K. Eugenol and n-3 rich garden cress seed oil as modulators of platelet aggregation and eicosanoids in Wistar albino rats.Open Nutraceuticals J.2011414415010.2174/1876396001104010144
    [Google Scholar]
  23. MoserB.R. ShahS.N. Winkler-MoserJ.K. VaughnS.F. EvangelistaR.L. Composition and physical properties of cress (Lepidium sativum L.) and field pennycress (Thlaspi arvense L.) oils.Ind. Crops Prod.20093019920510.1016/j.indcrop.2009.03.007
    [Google Scholar]
  24. GokaviS.S. MalleshiN.G. GuoM. Chemical composition of garden cress (Lepidium sativum) seeds and its fractions and use of bran as a functional ingredient.Plant Foods Hum. Nutr.200459310511110.1007/s11130‑004‑4308‑4 15678716
    [Google Scholar]
  25. WilliamsD.J. CritchleyC. PunS. ChalihaM. O’HareT.J. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.Phytochemistry20097011-121401140910.1016/j.phytochem.2009.07.035 19747700
    [Google Scholar]
  26. MahassniS.H. KhudauardiE.R. A Pilot Study: The Effects of an Aqueous Extract of Lepidium sativum Seeds on Levels of Immune Cells and Body and Organs Weights in Mice.J. Ayu. Her. Integr. Med.201732732
    [Google Scholar]
  27. RaishM. AhmadA. AlkharfyK.M. AhamadS.R. MohsinK. Al-JenoobiF.I. Al-MohizeaA.M. AnsariM.A. Hepatoprotective activity of Lepidium sativum seeds against D-galactosamine/lipopolysaccharide induced hepatotoxicity in animal model.BMC Complement. Altern. Med.201616150110.1186/s12906‑016‑1483‑4 27912738
    [Google Scholar]
  28. ThakerA.I. ShakerA. RaoM.S. CiorbaM.A. Modeling colitis-associated cancer with azoxymethane (AOM) and dextran sulfate sodium (DSS).J. Vis. Exp.20121167410010.3791/4100 22990604
    [Google Scholar]
  29. AlsulamiG.A. HussienN.A. Subchronic study of sperm morphology, genotoxic and mutagenic effect of Lepidium sativum seeds aqueous extract in vivo.Recent Res. Gen. Genom.2020211410.21608/rrgg.2020.21025.1002
    [Google Scholar]
  30. OginoS. BrahmandamM. CantorM. NamgyalC. KawasakiT. KirknerG. MeyerhardtJ.A. LodaM. FuchsC.S. Distinct molecular features of colorectal carcinoma with signet ring cell component and colorectal carcinoma with mucinous component.Mod. Pathol.2006191596810.1038/modpathol.3800482 16118624
    [Google Scholar]
  31. SambrookJ. FritschE.F. ManiatisT. Molecular Cloning: A Laboratory Manual.2nd edNYCSH Cold Spring Harbor Press1989
    [Google Scholar]
  32. DaiJ.G. MinJ.X. XiaoY.B. LeiX. ShenW.H. WeiH. The absence of mitochondrial DNA diversity among common laboratory inbred mouse strains.J. Exp. Biol.2005208Pt 234445445010.1242/jeb.01920 16339865
    [Google Scholar]
  33. SchmidW. The micronucleus test.Mutat. Res.197531191510.1016/0165‑1161(75)90058‑8 48190
    [Google Scholar]
  34. WatanabeT. EndoA. Effects of selenium deficiency on sperm morphology and spermatocyte chromosomes in mice.Mutat. Res.19912622939910.1016/0165‑7992(91)90113‑I 2000100
    [Google Scholar]
  35. TanakaT. KohnoH. SuzukiR. YamadaY. SugieS. MoriH. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate.Cancer Sci.2003941196597310.1111/j.1349‑7006.2003.tb01386.x 14611673
    [Google Scholar]
  36. NeufertC. BeckerC. NeurathM.F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression.Nat. Protoc.2007281998200410.1038/nprot.2007.279 17703211
    [Google Scholar]
  37. SlivaD. LoganathanJ. JiangJ. JedinakA. LambJ.G. TerryC. BaldridgeL.A. AdamecJ. SanduskyG.E. DudhgaonkarS. Mushroom Ganoderma lucidum prevents colitis-associated carcinogenesis in mice.PLoS One2012710e4787310.1371/journal.pone.0047873 23118901
    [Google Scholar]
  38. SohnO.S. FialaE.S. RequeijoS.P. WeisburgerJ.H. GonzalezF.J. Differential effects of CYP2E1 status on the metabolic activation of the colon carcinogens azoxymethane and methylazoxymethanol.Cancer Res.200161238435844011731424
    [Google Scholar]
  39. OkayasuI. HatakeyamaS. YamadaM. OhkusaT. InagakiY. NakayaR. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice.Gastroenterology199098369470210.1016/0016‑5085(90)90290‑H 1688816
    [Google Scholar]
  40. WalyM.I. Al-RawahiA.S. Al RiyamiM. Al-KindiM.A. Al-IssaeiH.K. FarooqS.A. Al-AlawiA. RahmanM.S. Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts.BMC Complement. Altern. Med.2014146010.1186/1472‑6882‑14‑60 24533833
    [Google Scholar]
  41. De RobertisM. MassiE. PoetaM.L. CarottiS. MoriniS. CecchetelliL. SignoriE. FazioV.M. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies.J. Carcinog.201110910.4103/1477‑3163.78279 21483655
    [Google Scholar]
  42. KumarS.K. SureshS.M. KumarA. KalaiselviP. Bioactive compounds, radical scavenging, antioxidant properties and FTIR spectroscopy study of Morinda citrifolia fruit extracts.Int. J. Curr. Microbiol. Appl. Sci.201432842
    [Google Scholar]
  43. SelekS. KoyuncuI. CaglarH.G. BektasI. YilmazM.A. GonelA. AkyuzE. The evaluation of antioxidant and anticancer effects of Lepidium Sativum Subsp Spinescens L. methanol extract on cancer cells. Cell. Mol. Biol., 2018, 64(3), 72-80, 72-80.10.14715/cmb/2018.64.3.1229506633
    [Google Scholar]
  44. KassieF. RabotS. UhlM. HuberW. QinH.M. HelmaC. Schulte-HermannR. KnasmA1/4ller, S. Chemoprotective effects of garden cress (Lepidium sativum) and its constituents towards 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ)-induced genotoxic effects and colonic preneoplastic lesions.Carcinogenesis20022371155116110.1093/carcin/23.7.1155 12117773
    [Google Scholar]
  45. MorenoR.L. GoosenT. KentU.M. ChungF.L. HollenbergP.F. Differential effects of naturally occurring isothiocyanates on the activities of cytochrome P450 2E1 and the mutant P450 2E1 T303A.Arch. Biochem. Biophys.200139119911010.1006/abbi.2001.2390 11414690
    [Google Scholar]
  46. van BredaS.G. de KokT.M. van DelftJ.H. Mechanisms of colorectal and lung cancer prevention by vegetables: a genomic approach.J. Nutr. Biochem.200819313915710.1016/j.jnutbio.2007.04.002 17651960
    [Google Scholar]
  47. GreenblattM.S. BennettW.P. HollsteinM. HarrisC.C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis.Cancer Res.19945418485548788069852
    [Google Scholar]
  48. HussienN.A. Absence of p53 gene mutations in mice colon pre-cancerous stage induced by o-nitrotoluene.J. Cancer Res. Ther.20141041008101210.4103/0973‑1482.140773 25579545
    [Google Scholar]
  49. MinamotoT. BuschmannT. HabelhahH. MatusevichE. TaharaH. Boerresen-DaleA.L. HarrisC. SidranskyD. RonaiZ. Distinct pattern of p53 phosphorylation in human tumors.Oncogene200120263341334710.1038/sj.onc.1204458 11423984
    [Google Scholar]
  50. AlqahtaniF.Y. AleanizyF.S. MahmoudA.Z. FarshoriN.N. AlfarajR. Al-SheddiE.S. AlsarraI.A. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil.Saudi J. Biol. Sci.20192651089109210.1016/j.sjbs.2018.05.007 31303845
    [Google Scholar]
  51. SatI. Gr.; Yildirim, E.; Turan, M.; Demirbas, M. Antioxidant and nutritional characteristics of garden cress (Lepidium sativum).Acta Sci. Pol. Hortorum Cultus201312173179
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601999200928212236
Loading
/content/journals/cnt/10.2174/2665978601999200928212236
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test