Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Cancer remains a significant global health concern, and natural compounds found in fruits and vegetables have shown potential anti-cancer effects. Grapefruit () has gained attention due to its rich phytochemical composition and biological activities, including anti-cancer properties. This narrative review analyzes the literature on grapefruit-based drug development and its potential as an adjunctive or alternative therapeutic strategy for cancer treatment. Grapefruit-derived compounds have been extensively studied for their anti-cancer effects, with preclinical studies showing promising outcomes in inhibiting cancer cell growth and proliferation. Compounds made from grapefruit also have anti-cancer effects. They do this in a number of ways, such as by affecting the cell cycle, apoptosis, angiogenesis, metastasis, and key signalling pathways. Petrified grapefruit compounds have potential synergistic effects with conventional chemotherapy drugs, enhancing cytotoxic effects while reducing adverse side effects. They have shown promising results in overcoming drug resistance, a major obstacle in cancer treatment. However, challenges such as bioavailability, drug interactions, and variability in compound composition remain. Overall, grapefruit-derived compounds possess significant anti-cancer properties and warrant further investigation for clinical application.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/0126659786260551231127042822
2023-12-06
2025-01-31
Loading full text...

Full text loading...

References

  1. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021920503121211034366
    [Google Scholar]
  2. SainiR.K. RanjitA. SharmaK. PrasadP. ShangX. GowdaK.G.M. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes.Antioxidants2022112
    [Google Scholar]
  3. HungW.L. SuhJ.H. WangY. Chemistry and health effects of furanocoumarins in grapefruit.J. Food Drug Anal.20172517183 28911545
    [Google Scholar]
  4. Cuevas-CiancaS.I. Romero-CastilloC. Gálvez-RomeroJ.L. JuárezZ.N. HernándezL.R. Antioxidant and anti-inflammatory compounds from edible plants with anti-cancer activity and their potential use as drugs.Molecules2023283148810.3390/molecules28031488
    [Google Scholar]
  5. KaurM. AgarwalC. AgarwalR. Anticancer and cancer chemopreventive potential of grape seed extract and other grape-based products.J. Nutr.180613991806S
    [Google Scholar]
  6. ZughaibiT.A. SuhailM. TariqueM. TabrezS. Targeting PI3K/Akt/mTOR pathway by different flavonoids: A cancer chemopreventive approach.Int. J. Mol. Sci.20212222
    [Google Scholar]
  7. PezzaniR SalehiB VitaliniS IritiM ZuñigaFA Sharifi‐RadJ Synergistic effects of plant derivatives and conventional chemotherapeutic agents: An update on the cancer perspective.Medicina2019554
    [Google Scholar]
  8. KoJ.H. ArfusoF. SethiG. AhnK.S. Pharmacological utilization of bergamottin, derived from grapefruits, in cancer prevention and therapy.Int. J. Mol.201819124048
    [Google Scholar]
  9. AlvesC. SilvaJ. PinteusS. GasparH. AlpoimM.C. BotanaL.M. PedrosaR. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds.Front. Pharmacol.20189AUG77710.3389/fphar.2018.00777 30127738
    [Google Scholar]
  10. HashemS. AliT.A. AkhtarS. NisarS. SageenaG. AliS. Al-MannaiS. TherachiyilL. MirR. ElfakiI. MirM.M. JamalF. MasoodiT. UddinS. SinghM. HarisM. MachaM. BhatA.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents.Biomed. Pharmacother.202215011305410.1016/j.biopha.2022.113054 35658225
    [Google Scholar]
  11. Ghanbari-MovahedM. JacksonG. FarzaeiM.H. BishayeeA. A systematic review of the preventive and therapeutic effects of naringin against human malignancies.Front. Pharmacol.20211263984010.3389/fphar.2021.639840 33854437
    [Google Scholar]
  12. CirmiS. MaugeriA. FerlazzoN. GangemiS. CalapaiG. SchumacherU. Anticancer potential of citrus juices and their extracts: A systematic review of both preclinical and clinical studies.Front. Pharmacol.2017842010.3389/fphar.2017.00420
    [Google Scholar]
  13. CostaE. Ferreira-GonçalvesT. ChasqueiraG. CabritaA.S. FigueiredoI.V. ReisC.P. Experimental models as refined translational tools for breast cancer research.Sci. Pharm.20208833210.3390/scipharm88030032
    [Google Scholar]
  14. SharmaP. VishvakarmaR. GautamK. VimalA. Kumar GaurV. FarooquiA. VarjaniS. YounisK. Valorization of citrus peel waste for the sustainable production of value-added products.Bioresour. Technol.202235112706410.1016/j.biortech.2022.127064 35351555
    [Google Scholar]
  15. LinT.K. ZhongL. SantiagoJ.L. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils.Int. J. Mol. Sci.2018191
    [Google Scholar]
  16. MajnooniM.B. FakhriS. GhanadianS.M. BahramiG. MansouriK. IranpanahA. Inhibiting angiogenesis by anti-cancer saponins: From phytochemistry to cellular signaling pathways.Metabolites2023133
    [Google Scholar]
  17. SuganyaK. PoornimaA. SumathiS. ChigurupatiS. AlyamaniN.M. Ghazi FelembanS. BhatiaS. Al-HarrasiA. Sayed MoawadA. Rutin induces endoplasmic reticulum stress-associated apoptosis in human triple-negative breast carcinoma MDA-MB-231 cells – in vitro and in silico docking studies.Arab. J. Chem.202215910402110.1016/j.arabjc.2022.104021
    [Google Scholar]
  18. BaileyD.G. DresserG. ArnoldJ.M.O. Grapefruit-medication interactions: Forbidden fruit or avoidable consequences?CMAJ20131854309316
    [Google Scholar]
  19. LiuZ. RenZ. ZhangJ. ChuangC.C. KandaswamyE. Zhou, T Role of ROS and nutritional antioxidants in human diseases.Front. Physiol.201890047710.3389/fphys.2018.00477
    [Google Scholar]
  20. GangwarV. GargA. LomoreK. KorlaK. BhatS.S. RaoR.P. Immunomodulatory effects of a concoction of natural bioactive compounds-mechanistic insights.Biomed152291522
    [Google Scholar]
  21. TalibW.H. AbuawadA. ThiabS. AlshweiatA. MahmodA.I. Flavonoid-based nanomedicines to target tumor microenvironment.OpenNano2022810008110.1016/j.onano.2022.100081
    [Google Scholar]
  22. StabrauskieneJ. KopustinskieneD.M. LazauskasR. BernatonieneJ. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities.Biomedicines2022107
    [Google Scholar]
  23. WoźniakM. KrajewskiR. MakuchS. AgrawalS. Phytochemicals in gynecological cancer prevention.Int. J. Mol. Sci.202122121910.3390/ijms22031219
    [Google Scholar]
  24. AroraI. SharmaM. TollefsbolT.O. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy.Int. J. Mol. Sci.20192018456710.3390/ijms20184567
    [Google Scholar]
  25. TurnerT. BurriB.J. Potential nutritional benefits of current citrus consumption.Agric2013317018710.3390/agriculture3010170
    [Google Scholar]
  26. PizzinoG IrreraN CucinottaM PallioG ManninoF Arcoraci, V Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell Longev.20172017
    [Google Scholar]
  27. Al-KhayriJ.M. SahanaG.R. NagellaP. JosephB.V. AlessaF.M. Al-MssallemM.Q. Flavonoids as potential anti-inflammatory molecules: A review.Molecule2022279290110.3390/molecules27092901
    [Google Scholar]
  28. PfefferC.M. SinghA.T.K. Apoptosis: A target for anticancer therapy.Int. J. Mol. Sci.201819210.3390/ijms19020448
    [Google Scholar]
  29. WenW. LuJ. ZhangK. ChenS. Grape seed extract (GSE) inhibits angiogenesis via suppressing VEGFR signaling pathway.Cancer Prev. Res.200827554
    [Google Scholar]
  30. FujiokaK. GreenwayF. SheardJ. YingY. The effects of grapefruit on weight and insulin resistance: Relationship to the metabolic syndrome.J. Med. Food200691495410.1089/jmf.2006.9.49 16579728
    [Google Scholar]
  31. ChanW.J.J. AdiwidjajaJ. McLachlanA.J. BoddyA.V. HarnettJ.E. Interactions between natural products and cancer treatments: Underlying mechanisms and clinical importance.Cancer Chemother. Pharmacol.202391210311910.1007/s00280‑023‑04504‑z 36707434
    [Google Scholar]
  32. TrombettaD. CiminoF. CristaniM. MandalariG. SaijaA. GinestraG. SpecialeA. ChirafisiJ. BisignanoG. WaldronK. NarbadA. FauldsC.B. in vitro protective effects of two extracts from bergamot peels on human endothelial cells exposed to tumor necrosis factor-α (TNF-α).J. Agric. Food Chem.201058148430843610.1021/jf1008605 20578719
    [Google Scholar]
  33. Sharifi-RadJ. SuredaA. TenoreG.C. DagliaM. Sharifi-RadM. ValussiM. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Mol. A J.Synth. Chem. Nat. Prod. Chem.201722170
    [Google Scholar]
  34. UckooR.M. JayaprakashaG.K. BalasubramaniamV.M. PatilB.S. Grapefruit (Citrus paradisi Macfad) phytochemicals composition is modulated by household processing techniques.J. Food Sci.2012779C921C92610.1111/j.1750‑3841.2012.02865.x 22957912
    [Google Scholar]
  35. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527010.4161/oxim.2.5.9498
    [Google Scholar]
  36. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.201048118
    [Google Scholar]
  37. LvX. ZhaoS. NingZ. ZengH. ShuY. TaoO. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health.Chem. Cent. J.2015916810.1186/s13065‑015‑0145‑9
    [Google Scholar]
  38. WongR.S.Y. Apoptosis in cancer: From pathogenesis to treatment.J. Exp. Clin. Cancer Res.201130187
    [Google Scholar]
  39. LefrancF. TabancaN. KissR. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests.Semin. Cancer Biol.201746143210.1016/j.semcancer.2017.06.004 28602819
    [Google Scholar]
  40. HaqueA. BrazeauD. AminA.R. Perspectives for natural compounds in chemoprevention and treatment of cancer: An update with new promising compounds.Eur. J. Cancer202114916510.1016/j.ejca.2021.03.009
    [Google Scholar]
  41. HanleyM.J. CancalonP. WidmerW.W. GreenblattD.J. The effect of grapefruit juice on drug disposition.Expert Opin. Drug Metab. Toxicol.20117326710.1517/17425255.2011.553189
    [Google Scholar]
  42. AlomarM.J. Factors affecting the development of adverse drug reactions (Review article).Saudi Pharm. J.201422283
    [Google Scholar]
  43. Sousa-PimentaM. EstevinhoL.M. SzopaA. BasitM. KhanK. ArmaghanM. IbrayevaM. Sönmez GürerE. CalinaD. HanoC. Sharifi-RadJ. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: Paclitaxel, docetaxel, and cabazitaxel.Front. Pharmacol.202314115730610.3389/fphar.2023.1157306 37229270
    [Google Scholar]
  44. RussoC. MaugeriA. LombardoG.E. MusumeciL. BarrecaD. RapisardaA. The second life of citrus fruit waste: A valuable source of bioactive compounds.Molecule20212619599110.3390/molecules26195991
    [Google Scholar]
  45. KianiJ. ImamS.Z. Medicinal importance of grapefruit juice and its interaction with various drugs.Nutr. J.200763310.1186/1475‑2891‑6‑33
    [Google Scholar]
  46. KoziolekM. AlcaroS. AugustijnsP. BasitA.W. GrimmM. HensB. HoadC.L. JedamzikP. MadlaC.M. MaliepaardM. MarcianiL. MarucaA. ParrottN. PávekP. PorterC.J.H. ReppasC. van Riet-NalesD. RubbensJ. StatelovaM. TrevaskisN.L. ValentováK. VertzoniM. ČepoD.V. CorsettiM. The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group.Eur. J. Pharm. Sci.2019134315910.1016/j.ejps.2019.04.003 30974173
    [Google Scholar]
  47. VinarovZ. AbdallahM. AgundezJ.A.G. AllegaertK. BasitA.W. BraeckmansM. CeulemansJ. CorsettiM. GriffinB.T. GrimmM. KeszthelyiD. KoziolekM. MadlaC.M. MatthysC. McCoubreyL.E. MitraA. ReppasC. StappaertsJ. SteenackersN. TrevaskisN.L. VanuytselT. VertzoniM. WeitschiesW. WilsonC. AugustijnsP. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review.Eur. J. Pharm. Sci.202116210581210.1016/j.ejps.2021.105812 33753215
    [Google Scholar]
  48. LimG.E. LiT. ButtarH.S. Interactions of grapefruit juice and cardiovascular medications: A potential risk of toxicity.Exp. Clin. Cardiol.20038299
    [Google Scholar]
  49. MurtazaG. UllahN. MukhtarF. NawazishS. MuneerS. Phytotherapeutics: The emerging role of intestinal and hepatocellular transporters in drug interactions with botanical supplements.Molecule1699221699
    [Google Scholar]
  50. DiepgenT.L. DrexlerH. Occupational skin cancer.Springer201210.1007/978‑3‑642‑02035‑3_10
    [Google Scholar]
  51. SochorovaL. PrusovaB. CebovaM. JurikovaT. MlcekJ. AdamkovaA. Health effects of grape seed and skin extracts and their influence on biochemical markers.Molecule20202522531110.3390/molecules25225311
    [Google Scholar]
  52. Epidermal changes following application of 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanoylphorbol-13-acetate to human skin transplanted to nude mice studied with histological species markers.Available from: https://pubmed.ncbi.nlm.nih.gov/3079587/(Cited 2023 Jul 19)
  53. MittalA. ElmetsC.A. KatiyarS.K. Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: Relationship to decreased fat and lipid peroxidation.Carcinogenesis20032481379138810.1093/carcin/bgg095 12807737
    [Google Scholar]
  54. Syed AlwiS.S. CavellB.E. DonlevyA. PackhamG. Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent.Cell Stress Chaperones201217552910.1007/s12192‑012‑0329‑3
    [Google Scholar]
  55. JiaoD. WangJ. LuW. TangX. ChenJ. MouH. ChenQ. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer.Mol. Ther. Oncolytics201631601810.1038/mto.2016.18 27525306
    [Google Scholar]
  56. EttarhR. CullenA. CalamaiA. NSAIDs and cell proliferation in colorectal cancer.Pharmaceuticals2010372007202110.3390/ph3072007
    [Google Scholar]
  57. HudsonT.S. PerkinsS.N. HurstingS.D. YoungH.A. KimY.S. Wang, TC Inhibition of androgen-responsive LNCaP prostate cancer cell tumor xenograft growth by dietary phenethyl isothiocyanate correlates with decreased angiogenesis and inhibition of cell attachment.Int. J. Oncol.2012404111310.3892/ijo.2012.1335
    [Google Scholar]
  58. ZhangX. LiN. ZhuY. WenW. The role of mesenchymal stem cells in the occurrence, development, and therapy of hepatocellular carcinoma.Cancer Med.202211493194310.1002/cam4.4521 34981659
    [Google Scholar]
  59. JoshiV.B. Gutierrez RuizO.L. RazidloG.L. The cell biology of metastatic invasion in pancreatic cancer: Updates and mechanistic insights.Cancers2023152169
    [Google Scholar]
  60. DobbinZ.C. LandenC.N. The importance of the pi3k/akt/mtor pathway in the progression of ovarian cancer.Int. J. Mol. Sci.201314482138227
    [Google Scholar]
  61. KleffelS. PoschC. BarthelS.R. MuellerH. SchlapbachC. GuenovaE. ElcoC.P. LeeN. JunejaV.R. ZhanQ. LianC.G. ThomiR. HoetzeneckerW. CozzioA. DummerR. MihmM.C.Jr FlahertyK.T. FrankM.H. MurphyG.F. SharpeA.H. KupperT.S. SchattonT. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth.Cell201516261242125610.1016/j.cell.2015.08.052 26359984
    [Google Scholar]
  62. MichalkovaR. KelloM. CizmarikovaM. BardelcikovaA. MirossayL. MojzisJ. Chalcones and gastrointestinal cancers: Experimental evidence.Int. J. Mol. Sci.2023245964
    [Google Scholar]
  63. TagdeP. TagdeP. TagdeS. BhattacharyaT. GargV. AkterR. RahmanM.H. NajdaA. AlbadraniG.M. SayedA.A. AkhtarM.F. SaleemA. AltyarA.E. KaushikD. Abdel-DaimM.M. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme.Biomed. Pharmacother.202114111192810.1016/j.biopha.2021.111928 34323701
    [Google Scholar]
  64. ChimentoA. De LucaA. D’AmicoM. De AmicisF. PezziV. The involvement of natural polyphenols in molecular mechanisms inducing apoptosis in tumor cells: A promising adjuvant in cancer therapy.Int. J. Mol. Sci.1680241680
    [Google Scholar]
  65. JhaN.K. ArfinS. JhaS.K. KarR. DeyA. GundamarajuR. AshrafG.M. GuptaP.K. DhanasekaranS. AbomughaidM.M. DasS.S. SinghS.K. DuaK. RoychoudhuryS. KumarD. RuokolainenJ. OjhaS. KesariK.K. Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling.Semin. Cancer Biol.202286Pt 21086110410.1016/j.semcancer.2022.02.022 35218902
    [Google Scholar]
  66. ZhangM. LiangL. HeJ. HeZ. YueC. JinX. GaoM. XiaoS. ZhouY. Fra-1 inhibits cell growth and the warburg effect in cervical cancer cells via STAT1 regulation of the p53 signaling pathway.Front. Cell Dev. Biol.2020857962910.3389/fcell.2020.579629 33102485
    [Google Scholar]
  67. MorshediK. BorranS. EbrahimiM.S. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review.Phyther. Res.2021359483497
    [Google Scholar]
  68. LiZ. WeiJ. ChenB. WangY. YangS. WuK. The role of MMP-9 and MMP-9 inhibition in different types of thyroid carcinoma.Molecule20232893705
    [Google Scholar]
  69. YangC. TianY. ZhaoF. ChenZ. SuP. LiY. Bone microenvironment and osteosarcoma metastasis.Int. J. Mol. Sci.202021698510.3390/ijms21196985
    [Google Scholar]
  70. PandeyP. KhanF. UpadhyayT.K. GiriP.P. Therapeutic efficacy of caffeic acid phenethyl ester in cancer therapy: An updated review.Chem. Biol. Drug Des.2023102120121610.1111/cbdd.14233 36929632
    [Google Scholar]
  71. MartinC.E. ListK. Cell-surface anchored serine proteases in cancer progression and metastasis.Cancer Metastasis Rev.201938335710.1007/s10555‑019‑09811‑7
    [Google Scholar]
  72. DongY YangH HuaH. MicroRNA-641 inhibits endometrial cancer progression via targeting AP1G1.Evidence-based Complement Altern. Med.2022202210.1155/2022/7918596
    [Google Scholar]
  73. DiazT. NavarroA. FerrerG. GelB. GayaA. ArtellsR. Lestaurtinib inhibition of the JAK/STAT signaling pathway in hodgkin lymphoma inhibits proliferation and induces apoptosis.PLoS One20116418856
    [Google Scholar]
  74. RubioC. Romo-ParraH. GaticaF. Rodríguez-QuinteroP. MoralesZ. A molecular approach of caloric restriction and vitamins for cancer prevention.Anticancer. Agents Med. Chem.202323557158410.2174/1871520622666220819092503 35986549
    [Google Scholar]
/content/journals/cnt/10.2174/0126659786260551231127042822
Loading
/content/journals/cnt/10.2174/0126659786260551231127042822
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test