Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Introduction

Chronic stress serves as a fundamental factor contributing to various health conditions, including atherosclerosis, hypertension, and cardiac dysfunction. Previous findings from our laboratory have revealed a clear link between chronic stress and increased occurrence of heart dysfunction, atherosclerosis, immune imbalance and psoriasis. However, the haematological and metabolic pathways involved remain unexplored. Therefore, our investigation focused on examining the haematological and metabolic profiles of rats subjected to chronic stress.

Methods

Animals were divided into two groups: Group-I (Control) was left undisturbed for 56 days. Group-II (CUS) was exposed to a random stressor for 56 days, following which stress induction was verified by a significant increase in serum corticosterone level (<0.0001) and depressive-like behaviours using novelty-suppressed feeding test (NSFT) (<0.0001).

Results

Blood profile analysis of CUS animals demonstrated anaemia with decreased RBC (=0.0001) and elevated WBC count (<0.0001).. Serum electrolyte analysis of CUS rats revealed hypercalcemia, hyponatremia, and hypokalaemia. Serum lipid profile analysis showed increased triglyceride (=0.007) and VLDL (=0.007) levels. Serum proinflammatory cytokine levels were also increased in CUS rats. Moreover, metabolomics analysis of CUS animals revealed decreased concentrations of myo-inositol, threonine, glycine, glutamine, methionine, and formate, along with an increased fumarate to alanine and fumarate to glycine ratio. These metabolic alterations suggest reduced glycolysis and abnormal amino acid metabolism and are associated with inflammation, cell damage, endothelial dysfunction, hypertension, metabolic disorders, and diabetes, among other conditions.

Conclusion

These findings reveal haematological and metabolic alterations in response to stress and may provide critical insights to lay the foundation for developing targeted therapeutic interventions to prevent stress-related diseases.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X343034241125061622
2024-12-12
2025-06-19
The full text of this item is not currently available.

References

  1. BaliA. JaggiA.S. Clinical experimental stress studies: Methods and assessment.Rev. Neurosci.201526555557910.1515/revneuro‑2015‑000426020552
    [Google Scholar]
  2. McEwenB.S. Physiology and neurobiology of stress and adaptation: Central role of the brain.Physiol. Rev.200787387390410.1152/physrev.00041.200617615391
    [Google Scholar]
  3. RavishH. VenkateshH.N. Delphine SilviaC.R.W. SrinivasH. Molecular signature of the immune response to yoga therapy in stress-related chronic disease conditions: An insight.Int. J. Yoga202013191710.4103/ijoy.IJOY_82_1832030016
    [Google Scholar]
  4. SpruillT.M. Chronic psychosocial stress and hypertension.Curr. Hypertens. Rep.2010121101610.1007/s11906‑009‑0084‑820425153
    [Google Scholar]
  5. MariottiA. The effects of chronic stress on health: New insights into the molecular mechanisms of brain-body communication.Future Sci. OA201513FSO2310.4155/fso.15.2128031896
    [Google Scholar]
  6. SchneidermanN. IronsonG. SiegelS.D. Stress and health: Psychological, behavioral, and biological determinants.Annu. Rev. Clin. Psychol.20051160762810.1146/annurev.clinpsy.1.102803.14414117716101
    [Google Scholar]
  7. AgarwalV. KaushikA.S. RehmanM. ChaudharyR. JawaidT. KamalM. MishraV. Interleukin-6 expression and its modulation by diacerein in a rat model of chronic stress induced cardiac dysfunction.Heliyon2021712e0852210.1016/j.heliyon.2021.e0852234917808
    [Google Scholar]
  8. ChaudharyR. PrasadA. AgarwalV. RehmanM. KumarA KaushikA.S. SrivastavaS. MishraV. Chronic stress predisposes to the aggravation of inflammation in autoimmune diseases with focus on rheumatoid arthritis and psoriasis.Int Immunopharmacol.202312511104610.1016/j.intimp.2023.111046
    [Google Scholar]
  9. RehmanM. ChaudharyR. RajputS. AgarwalV. KaushikA.S. SrivastavaS. SrivastavaS. SinghR. AzizI. SinghS. MishraV. Butein ameliorates chronic stress induced atherosclerosis via targeting anti-inflammatory, anti-fibrotic and BDNF pathways.Physiol. Behav.202326711420710.1016/j.physbeh.2023.11420737100219
    [Google Scholar]
  10. AgarwalV. KaushikA.S. ChaudharyR. RehmanM. SrivastavaS. MishraV. Transcutaneous vagus nerve stimulation ameliorates cardiac abnormalities in chronically stressed rats.Naunyn Schmiedebergs Arch. Pharmacol.202337421431
    [Google Scholar]
  11. LiuY.Z. WangY.X. JiangC.L. Inflammation: The common pathway of stress-related diseases.Front. Hum. Neurosci.20171131610.3389/fnhum.2017.00316
    [Google Scholar]
  12. MénardC. PfauM.L. HodesG.E. RussoS.J. Immune and neuroendocrine mechanisms of stress vulnerability and resilience.Neuropsychopharmacology2017421628010.1038/npp.2016.9027291462
    [Google Scholar]
  13. McDonaldL.T. LopezM.F. HelkeK.L. McCrackinM.A. CrayJ.J.Jr BeckerH.C. LaRueA.C. Early blood profile of C57BL/6 mice exposed to chronic unpredictable stress.Front. Psychiatry201910APR23010.3389/fpsyt.2019.0023031068843
    [Google Scholar]
  14. MaydychV. ClausM. DychusN. EbelM. DamaschkeJ. DiestelS. WolfO.T. KleinsorgeT. WatzlC. Impact of chronic and acute academic stress on lymphocyte subsets and monocyte function.PLoS One20171211e018810810.1371/journal.pone.018810829145439
    [Google Scholar]
  15. HeidtT. SagerH.B. CourtiesG. DuttaP. IwamotoY. ZaltsmanA. von zur MuhlenC. BodeC. FricchioneG.L. DenningerJ. LinC.P. VinegoniC. LibbyP. SwirskiF.K. WeisslederR. NahrendorfM. Chronic variable stress activates hematopoietic stem cells.Nat. Med.201420775475810.1038/nm.358924952646
    [Google Scholar]
  16. JiangW. LiY. SunJ. LiL. LiJ. ZhangC. HuangC. YangJ. KongG. LiZ. Spleen contributes to restraint stress induced changes in blood leukocytes distribution.Sci. Rep.201771650110.1038/s41598‑017‑06956‑928747688
    [Google Scholar]
  17. PereraA. SoosC. MachinK. Identification of metabolomic biomarkers of long-term stress using NMR spectroscopy in a diving duck.Metabolites202212435310.3390/metabo1204035335448540
    [Google Scholar]
  18. XuQ. JiangM. GuS. ZhangX. FengG. MaX. XuS. WuE. HuangJ.H. WangF. Metabolomics changes in brain-gut axis after unpredictable chronic mild stress.Psychopharmacology (Berl.)2022239372974310.1007/s00213‑021‑05958‑w35133451
    [Google Scholar]
  19. SuZ. RuanJ. LiuX. ZhengH. RuanJ. LuY. ChengB. WuF. WuJ. LiuX. SongF. ChenZ. SongH. LiangY. GuoH. Combining 1H-NMR-based metabonomics and network pharmacology to dissect the mechanism of antidepression effect of Milletia speciosa Champ on mouse with chronic unpredictable mild stress-induced depression.J. Pharm. Pharmacol.202173788189210.1093/jpp/rgaa01033836071
    [Google Scholar]
  20. YangY. WangY. ZhangJ. HanZ. ChenA. PanS. LiangS. WangS. System responses to chronic cold stress probed via 1 H NMR spectroscopy in plasma and urine matrices.Mol. Biosyst.20151151425143310.1039/C5MB00033E25832908
    [Google Scholar]
  21. YangX. WangG. GongX. HuangC. MaoQ. ZengL. ZhengP. QinY. YeF. LianB. ZhouC. WangH. ZhouW. XieP. Effects of chronic stress on intestinal amino acid pathways.Physiol. Behav.201920419920910.1016/j.physbeh.2019.03.00130831184
    [Google Scholar]
  22. LiuX.J. ZhouY.Z. LiZ.F. CuiJ. LiZ.Y. GaoX.X. SunH.F. ZhangL.Z. DuG.H. QinX.M. Anti-depressant effects of Xiaoyaosan on rat model of chronic unpredictable mild stress: A plasma metabonomics study based on NMR spectroscopy.J. Pharm. Pharmacol.201264457858810.1111/j.2042‑7158.2011.01412.x22420663
    [Google Scholar]
  23. ZhangW. LiuS. LiH. CaiH. Chronic unpredictable mild stress affects myocardial metabolic profiling of SD rats.J. Pharm. Biomed. Anal.20127053453810.1016/j.jpba.2012.04.03222658902
    [Google Scholar]
  24. ZhouY.Z. ZhengX.Y. LiuX.J. LiZ.Y. GaoX.X. SunH.F. ZhangL-Z. GuoX-Q. DuG-H. QinX-M. Metabonomic analysis of urine from chronic unpredictable mild stress rats using gas chromatography–mass spectrometry.Chromatographia2012753-4157164[Internet].10.1007/s10337‑011‑2167‑3
    [Google Scholar]
  25. GengC. GuoY. WangC. LiaoD. HanW. ZhangJ. JiangP. Systematic impacts of chronic unpredictable mild stress on metabolomics in rats.Sci. Rep.202010170010.1038/s41598‑020‑57566‑x31959868
    [Google Scholar]
  26. SinghR. TrivediP. BawankuleD.U. AhmadA. ShankerK. HILIC quantification of Oenotheralanosterol A and B from Oenothera biennis and their suppression of IL-6 and TNF-α expression in mouse macrophages.J. Ethnopharmacol.2012141135736210.1016/j.jep.2012.02.04622414479
    [Google Scholar]
  27. SrivastavaP. MohantiS. BawankuleD.U. KhanF. ShankerK. Effect of Pluchea lanceolata bioactives in LPS-induced neuroinflammation in C6 rat glial cells.Naunyn Schmiedebergs Arch. Pharmacol.2014387211912710.1007/s00210‑013‑0924‑624101125
    [Google Scholar]
  28. KantheP.S. PatilB.S. BagaliS. DeshpandeA. ShaikhG.B. AithalaM. Atherogenic index as a predictor of cardiovascular risk among women with different grades of obesity.Int. J. Collab. Res. Intern. Med. Public Health201241017671774
    [Google Scholar]
  29. JanssenJ.W. HelbingA.R. Arsenazo III: An improvement of the routine calcium determination in serum.Eur. J. Clin. Chem. Clin. Biochem.19912931972012070016
    [Google Scholar]
  30. RamappaV.K. SinghV. SrivastavaD. KumarD. VermaA. FatimaE. ChaudharyP. KumarU. KumarD. Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties.Biotech20231323710.1007/s13205‑022‑03443‑5
    [Google Scholar]
  31. DubeyD. KumarS. RawatA. GuleriaA. KumariR. AhmedS. SinghR. MisraR. KumarD. NMR-based metabolomics revealed the underlying inflammatory pathology in reactive arthritis synovial joints.J. Proteome Res.202120115088510210.1021/acs.jproteome.1c0062034661415
    [Google Scholar]
  32. SinghS. TripathyS. RawatA. DubeyD. SiddiquiS.A. UgaleR. KumarD. PrakashA. Pre-clinical investigations of therapeutic markers associated with acute and chronic restraint stress: A nuclear magnetic resonance based contrast metabolic approach.Nanotheranostics2023719110110.7150/ntno.7629436593795
    [Google Scholar]
  33. AdamoS.A. BakerJ.L. Conserved features of chronic stress across phyla: The effects of long-term stress on behavior and the concentration of the neurohormone octopamine in the cricket, Gryllus texensis.Horm. Behav.201160547848310.1016/j.yhbeh.2011.07.01521824475
    [Google Scholar]
  34. GioldasiS. KarvelaA. Rojas-GilA.P. RodiM. de LasticA.L. ThomasI. SpiliotisB.E. MouzakiA. Metabolic association between leptin and the corticotropin releasing hormone.Endocr. Metab. Immune Disord. Drug Targets201919445846610.2174/187153031966619020616562630727936
    [Google Scholar]
  35. GodoyL.D. RossignoliM.T. Delfino-PereiraP. Garcia-CairascoN. de Lima UmeokaE.H. A comprehensive overview on stress neurobiology: Basic concepts and clinical implications.Front. Behav. Neurosci.20181212710.3389/fnbeh.2018.0012730034327
    [Google Scholar]
  36. GuoS. YangC. JiangS. NiY. ZhaoR. MaW. Repeated restraint stress enhances hepatic TFR2 expression and induces hepatic iron accumulation in rats.Biol. Trace Elem. Res.2020196259059610.1007/s12011‑019‑01956‑431707638
    [Google Scholar]
  37. MozosI. Mechanisms linking red blood cell disorders and cardiovascular diseases.Biomed Res Int.2015201568205410.1155/2015/682054
    [Google Scholar]
  38. InuzukaR. AbeJ. Red blood cell distribution width as a link between ineffective erythropoiesis and chronic inflammation in heart failure.Circ J.201579597410.1253/circj.CJ‑15‑0254
    [Google Scholar]
  39. LippiG. Sanchis-GomarF. DaneseE. MontagnanaM. Association of red blood cell distribution width with plasma lipids in a general population of unselected outpatients.Kardiol. Pol.201371993193610.5603/KP.2013.022824065422
    [Google Scholar]
  40. SeoS.G. LeeM.Y. ParkS.H. HanJ.M. LeeK.B. KimH. HyunY.Y. The association between red cell distribution width and incident hypertension in Korean adults.Hypertens. Res.2020431556110.1038/s41440‑019‑0334‑331551565
    [Google Scholar]
  41. WirthM. SevoyanM. HofsethL. ShivappaN. HurleyT. HebertJ. The dietary inflammatory index is associated with elevated white blood cell counts in the national health and nutrition examination survey.Brain Behav. Immun.201729217263
    [Google Scholar]
  42. AntoniF.A. Vasopressin as a stress hormone.Stress Neuroendocrinol Neurobiol.20172October9710810.1016/B978‑0‑12‑802175‑0.00009‑7
    [Google Scholar]
  43. BabatinD.M. LeeS.S. Vasopressin antagonists and dilutional hyponatremia.Can. J. Gastroenterol.200418211711810.1155/2004/59160914997223
    [Google Scholar]
  44. GideonA. SauterC. FieresJ. BergerT. RennerB. WirtzP.H. Kinetics and interrelations of the renin aldosterone response to acute psychosocial stress: A neglected stress system.J. Clin. Endocrinol. Metab.20201053e762e77310.1210/clinem/dgz19031711229
    [Google Scholar]
  45. PillaiU. MandakapalaC. MehtaK. Resistant hyponatremia and hypokalemia treated successfully with nephrectomy.Clin. Kidney J.201251686910.1093/ndtplus/sfr13826069754
    [Google Scholar]
  46. Suarez-BreguaP. GuerreiroP.M. RotllantJ. Stress, glucocorticoids and bone: A review from mammals and fish.Front. Endocrinol. (Lausanne)2018952610.3389/fendo.2018.00526
    [Google Scholar]
  47. SadiqN.M. NaganathanS. BadireddyM. HypercalcemiaStatPearlsTreasure Island, FL2021
    [Google Scholar]
  48. RahimiL. RajpalA. Ismail-BeigiF. Glucocorticoid-induced fatty liver disease.Diabetes Metab. Syndr. Obes.2020131133114510.2147/DMSO.S24737932368109
    [Google Scholar]
  49. ShenG. LiZ. ZhangY. WuH. FengJ. 1H NMR-based metabolomics study on the physiological variations during the rat pregnancy process.Mol. Cell. Endocrinol.2016423405010.1016/j.mce.2016.01.00326773731
    [Google Scholar]
  50. CrozeM.L. SoulageC.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases.Biochimie201395101811182710.1016/j.biochi.2013.05.01123764390
    [Google Scholar]
  51. López-GamberoA.J. SanjuanC. Serrano-CastroP.J. SuárezJ. Rodríguez de FonsecaF. The biomedical uses of inositols: A nutraceutical approach to metabolic dysfunction in aging and neurodegenerative diseases.Biomedicines20208929510.3390/biomedicines809029532825356
    [Google Scholar]
  52. LeporeE. LaurettaR. BianchiniM. MormandoM. Di LorenzoC. UnferV. Inositols depletion and resistance: Principal mechanisms and therapeutic strategies.Int. J. Mol. Sci.20212213679610.3390/ijms2213679634202683
    [Google Scholar]
  53. Hashemi TariS. SohouliM.H. LariA. FatahiS. RahidehS.T. The effect of inositol supplementation on blood pressure: A systematic review and meta-analysis of randomized-controlled trials.Clin. Nutr. ESPEN202144788410.1016/j.clnesp.2021.06.01734330516
    [Google Scholar]
  54. CanfieldC.A. BradshawP.C. Amino acids in the regulation of aging and aging-related diseases.Transl. Med. Aging20193708910.1016/j.tma.2019.09.001
    [Google Scholar]
  55. YuanC. ChenH.X. HouH.T. WangJ. YangQ. HeG.W. Protein biomarkers and risk scores in pulmonary arterial hypertension associated with ventricular septal defect: Integration of multi-omics and validation.Am. J. Physiol. Lung Cell. Mol. Physiol.20203195L810L82210.1152/ajplung.00167.202032877226
    [Google Scholar]
  56. AlexanderD. LombardiR. RodriguezG. MitchellM.M. MarianA.J. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy.Eur. J. Clin. Invest.201141552753810.1111/j.1365‑2362.2010.02441.x21155767
    [Google Scholar]
  57. MüllerJ. BertschT. VolkeJ. SchmidA. KlingbeilR. MetodievY. KaracaB. KimS.H. LindnerS. SchuppT. KittelM. PoschetG. AkinI. BehnesM. Narrative review of metabolomics in cardiovascular disease.J. Thorac. Dis.20211342532255010.21037/jtd‑21‑2234012599
    [Google Scholar]
  58. LiX. SunL. ZhangW. LiH. WangS. MuH. ZhouQ. ZhangY. TangY. WangY. ChenW. YangR. DongJ. Association of serum glycine levels with metabolic syndrome in an elderly Chinese population.Nutr. Metab. (Lond.)20181518910.1186/s12986‑018‑0325‑430568717
    [Google Scholar]
  59. De LucaG. CalponaP.R. CaponettiA. MacaioneV. Di BenedettoA. CucinottaD. Di GiorgioR.M. Preliminary report: Amino acid profile in platelets of diabetic patients.Metabolism200150773974110.1053/meta.2001.2419311436175
    [Google Scholar]
  60. RomO. VillacortaL. ZhangJ. ChenY.E. AviramM. Emerging therapeutic potential of glycine in cardiometabolic diseases: Dual benefits in lipid and glucose metabolism.Curr Opin Lipidol.2018295428432
    [Google Scholar]
  61. LiuZ. HuangC. LiuY. LinD. ZhaoY. NMR-based metabolomic analysis of the effects of alanyl-glutamine supplementation on C2C12 myoblasts injured by energy deprivation.RSC Advances2018829161141612510.1039/C8RA00819A35542200
    [Google Scholar]
  62. DuranteW. The emerging role of l-Glutamine in cardiovascular health and disease.Nutrients2019119209210.3390/nu1109209231487814
    [Google Scholar]
  63. WangL. HouE. WangL. WangY. YangL. ZhengX. XieG. SunQ. LiangM. TianZ. Reconstruction and analysis of correlation networks based on GC–MS metabolomics data for young hypertensive men.Anal. Chim. Acta20158549510510.1016/j.aca.2014.11.00925479872
    [Google Scholar]
  64. Tapia-RojasC. LindsayC.B. Montecinos-OlivaC. ArrazolaM.S. RetamalesR.M. BunoutD. HirschS. InestrosaN.C. Is L-methionine a trigger factor for Alzheimer’s-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice.Mol. Neurodegener.20151016210.1186/s13024‑015‑0057‑026590557
    [Google Scholar]
  65. LiZ. WangF. LiangB. SuY. SunS. XiaS. ShaoJ. ZhangZ. HongM. ZhangF. ZhengS. Methionine metabolism in chronic liver diseases: An update on molecular mechanism and therapeutic implication.Signal Transduct. Target. Ther.20205128010.1038/s41392‑020‑00349‑733273451
    [Google Scholar]
  66. SongB. FuM. HeF. ZhaoH. WangY. NieQ. WuB. Methionine deficiency affects liver and kidney health, oxidative stress, and ileum mucosal immunity in broilers.Front. Vet. Sci.2021872256710.3389/fvets.2021.72256734631856
    [Google Scholar]
  67. SinghH.J. AzisN.A. SalehM. KamalA. MedianiA. AgarwalR. Radjeni1Z. Ismail4N.H. Identification of Antihypertensive mechanisms o f ficus deltoidea kunstleri in spontaneously hypertensive rats using metabolomics.J. Plant Biochem Physiol97113
    [Google Scholar]
  68. AmetaK. GuptaA. KumarS. SethiR. KumarD. MahdiA.A. Essential hypertension: A filtered serum based metabolomics study.Sci. Rep.201771215310.1038/s41598‑017‑02289‑928526818
    [Google Scholar]
  69. LiY. NieL. JiangH. LinJ. ZhouH. XieJ. QuZ. QiD. ZhangY. Metabonomics study of essential hypertension and its chinese medicine subtypes by using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy.Evid. Based Complement. Alternat. Med.201320131910.1155/2013/62590623533506
    [Google Scholar]
  70. OuyangX. DaiY. WenJ.L. WangL.X. 1 H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus.Lupus201120131411142010.1177/096120331141870721976403
    [Google Scholar]
  71. TzoulakiI. IliouA. MikrosE. ElliottP. An overview of metabolic phenotyping in blood pressure research.Curr. Hypertens. Rep.20182097810.1007/s11906‑018‑0877‑829992526
    [Google Scholar]
  72. HolečekM. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements.Nutr. Metab. (Lond.)20181513310.1186/s12986‑018‑0271‑129755574
    [Google Scholar]
  73. NieC. HeT. ZhangW. ZhangG. MaX. Branched chain amino acids: Beyond nutrition metabolism.Int. J. Mol. Sci.201819495410.3390/ijms1904095429570613
    [Google Scholar]
  74. JenningsA. MacGregorA. PallisterT. SpectorT. CassidyA. Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: A twin study.Int. J. Cardiol.201622399299810.1016/j.ijcard.2016.08.30727591698
    [Google Scholar]
  75. RawatA. MisraG. SaxenaM. TripathiS. DubeyD. SaxenaS. AggarwalA. GuptaV. KhanM.Y. PrakashA. 1H NMR based serum metabolic profiling reveals differentiating biomarkers in patients with diabetes and diabetes-related complication.Diabetes Metab. Syndr.201913129029810.1016/j.dsx.2018.09.00930641714
    [Google Scholar]
/content/journals/cis/10.2174/012210299X343034241125061622
Loading
/content/journals/cis/10.2174/012210299X343034241125061622
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test