Skip to content
2000
image of Haematological and Metabolic Disturbances Induced by Chronic Unpredictable Stress in Albino Wistar Rats

Abstract

Introduction:

Chronic stress serves as a fundamental factor contributing to various health conditions, including atherosclerosis, hypertension, and cardiac dysfunction. Previous findings from our laboratory have revealed a clear link between chronic stress and increased occurrence of heart dysfunction, atherosclerosis, immune imbalance and psoriasis.

Methods:

However, the haematological and metabolic pathways involved remain unexplored. Therefore, our investigation focused on examining the haematological and metabolic profiles of rats subjected to chronic stress. Animals were divided into two groups: Group-I (Control) was left undisturbed for 56 days. Group-II (CUS) was exposed to a random stressor for 56 days, following which stress induction was verified by a significant increase in serum corticosterone level (<0.0001) and depressive-like behaviours using novelty-suppressed feeding test (NSFT) (<0.0001). Blood profile analysis of CUS animals demonstrated anaemia with decreased RBC (=0.0001) and elevated WBC count (<0.0001).

Results:

Serum electrolyte analysis of CUS rats revealed hypercalcemia, hyponatremia, and hypokalaemia. Serum lipid profile analysis showed increased triglyceride (=0.007) and VLDL (=0.007) levels. Serum proinflammatory cytokine levels were also increased in CUS rats. Moreover, metabolomics analysis of CUS animals revealed decreased concentrations of myo-inositol, threonine, glycine, glutamine, methionine, and formate, along with an increased fumarate-to-alanine and fumarate-to-glycine ratio. These metabolic alterations suggest reduced glycolysis and abnormal amino acid metabolism and are associated with inflammation, cell damage, endothelial dysfunction, hypertension, metabolic disorders, and diabetes, among other conditions.

Conclusion:

These findings reveal haematological and metabolic alterations in response to stress and may provide critical insights to lay the foundation for developing targeted therapeutic interventions to prevent stress-related diseases.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X343034241125061622
2024-12-12
2024-12-27
Loading full text...

Full text loading...

/deliver/fulltext/cis/10.2174/012210299X343034241125061622/e2210299X343034.html?itemId=/content/journals/cis/10.2174/012210299X343034241125061622&mimeType=html&fmt=ahah

References

  1. Bali A. Jaggi A.S. Clinical experimental stress studies: Methods and assessment. Rev. Neurosci. 2015 26 5 555 579 10.1515/revneuro‑2015‑0004 26020552
    [Google Scholar]
  2. McEwen B.S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev. 2007 87 3 873 904 10.1152/physrev.00041.2006 17615391
    [Google Scholar]
  3. Ravish H. Venkatesh H.N. Delphine Silvia C.R.W. Srinivas H. Molecular signature of the immune response to yoga therapy in stress-related chronic disease conditions: An insight. Int. J. Yoga 2020 13 1 9 17 10.4103/ijoy.IJOY_82_18 32030016
    [Google Scholar]
  4. Spruill T.M. Chronic psychosocial stress and hypertension. Curr. Hypertens. Rep. 2010 12 1 10 16 10.1007/s11906‑009‑0084‑8 20425153
    [Google Scholar]
  5. Mariotti A. The effects of chronic stress on health: New insights into the molecular mechanisms of brain-body communication. Future Sci. OA 2015 1 3 FSO23 10.4155/fso.15.21 28031896
    [Google Scholar]
  6. Schneiderman N. Ironson G. Siegel S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 2005 1 1 607 628 10.1146/annurev.clinpsy.1.102803.144141 17716101
    [Google Scholar]
  7. Agarwal V. Kaushik A.S. Rehman M. Chaudhary R. Jawaid T. Kamal M. Mishra V. Interleukin-6 expression and its modulation by diacerein in a rat model of chronic stress induced cardiac dysfunction. Heliyon 2021 7 12 e08522 10.1016/j.heliyon.2021.e08522 34917808
    [Google Scholar]
  8. Chaudhary R. Prasad A. Agarwal V. Rehman M. Kumar A Kaushik A.S. Srivastava S. Mishra V. Chronic stress predisposes to the aggravation of inflammation in autoimmune diseases with focus on rheumatoid arthritis and psoriasis. Int Immunopharmacol. 2023 125 111046 10.1016/j.intimp.2023.111046
    [Google Scholar]
  9. Rehman M. Chaudhary R. Rajput S. Agarwal V. Kaushik A.S. Srivastava S. Srivastava S. Singh R. Aziz I. Singh S. Mishra V. Butein ameliorates chronic stress induced atherosclerosis via targeting anti-inflammatory, anti-fibrotic and BDNF pathways. Physiol. Behav. 2023 267 114207 10.1016/j.physbeh.2023.114207 37100219
    [Google Scholar]
  10. Agarwal V. Kaushik A.S. Chaudhary R. Rehman M. Srivastava S. Mishra V. Transcutaneous vagus nerve stimulation ameliorates cardiac abnormalities in chronically stressed rats. Naunyn Schmiedebergs Arch. Pharmacol. 2023 37421431
    [Google Scholar]
  11. Liu Y.Z. Wang Y.X. Jiang C.L. Inflammation: The common pathway of stress-related diseases. Front. Hum. Neurosci. 2017 11 316 10.3389/fnhum.2017.00316
    [Google Scholar]
  12. Ménard C. Pfau M.L. Hodes G.E. Russo S.J. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology 2017 42 1 62 80 10.1038/npp.2016.90 27291462
    [Google Scholar]
  13. McDonald L.T. Lopez M.F. Helke K.L. McCrackin M.A. Cray J.J. Jr Becker H.C. LaRue A.C. Early blood profile of C57BL/6 mice exposed to chronic unpredictable stress. Front. Psychiatry 2019 10 APR 230 10.3389/fpsyt.2019.00230 31068843
    [Google Scholar]
  14. Maydych V. Claus M. Dychus N. Ebel M. Damaschke J. Diestel S. Wolf O.T. Kleinsorge T. Watzl C. Impact of chronic and acute academic stress on lymphocyte subsets and monocyte function. PLoS One 2017 12 11 e0188108 10.1371/journal.pone.0188108 29145439
    [Google Scholar]
  15. Heidt T. Sager H.B. Courties G. Dutta P. Iwamoto Y. Zaltsman A. von zur Muhlen C. Bode C. Fricchione G.L. Denninger J. Lin C.P. Vinegoni C. Libby P. Swirski F.K. Weissleder R. Nahrendorf M. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 2014 20 7 754 758 10.1038/nm.3589 24952646
    [Google Scholar]
  16. Jiang W. Li Y. Sun J. Li L. Li J. Zhang C. Huang C. Yang J. Kong G. Li Z. Spleen contributes to restraint stress induced changes in blood leukocytes distribution. Sci. Rep. 2017 7 1 6501 10.1038/s41598‑017‑06956‑9 28747688
    [Google Scholar]
  17. Perera A. Soos C. Machin K. Identification of metabolomic biomarkers of long-term stress using NMR spectroscopy in a diving duck. Metabolites 2022 12 4 353 10.3390/metabo12040353 35448540
    [Google Scholar]
  18. Xu Q. Jiang M. Gu S. Zhang X. Feng G. Ma X. Xu S. Wu E. Huang J.H. Wang F. Metabolomics changes in brain-gut axis after unpredictable chronic mild stress. Psychopharmacology (Berl.) 2022 239 3 729 743 10.1007/s00213‑021‑05958‑w 35133451
    [Google Scholar]
  19. Su Z. Ruan J. Liu X. Zheng H. Ruan J. Lu Y. Cheng B. Wu F. Wu J. Liu X. Song F. Chen Z. Song H. Liang Y. Guo H. Combining 1H-NMR-based metabonomics and network pharmacology to dissect the mechanism of antidepression effect of Milletia speciosa Champ on mouse with chronic unpredictable mild stress-induced depression. J. Pharm. Pharmacol. 2021 73 7 881 892 10.1093/jpp/rgaa010 33836071
    [Google Scholar]
  20. Yang Y. Wang Y. Zhang J. Han Z. Chen A. Pan S. Liang S. Wang S. System responses to chronic cold stress probed via 1 H NMR spectroscopy in plasma and urine matrices. Mol. Biosyst. 2015 11 5 1425 1433 10.1039/C5MB00033E 25832908
    [Google Scholar]
  21. Yang X. Wang G. Gong X. Huang C. Mao Q. Zeng L. Zheng P. Qin Y. Ye F. Lian B. Zhou C. Wang H. Zhou W. Xie P. Effects of chronic stress on intestinal amino acid pathways. Physiol. Behav. 2019 204 199 209 10.1016/j.physbeh.2019.03.001 30831184
    [Google Scholar]
  22. Liu X.J. Zhou Y.Z. Li Z.F. Cui J. Li Z.Y. Gao X.X. Sun H.F. Zhang L.Z. Du G.H. Qin X.M. Anti-depressant effects of Xiaoyaosan on rat model of chronic unpredictable mild stress: A plasma metabonomics study based on NMR spectroscopy. J. Pharm. Pharmacol. 2012 64 4 578 588 10.1111/j.2042‑7158.2011.01412.x 22420663
    [Google Scholar]
  23. Zhang W. Liu S. Li H. Cai H. Chronic unpredictable mild stress affects myocardial metabolic profiling of SD rats. J. Pharm. Biomed. Anal. 2012 70 534 538 10.1016/j.jpba.2012.04.032 22658902
    [Google Scholar]
  24. Zhou Y.Z. Zheng X.Y. Liu X.J. Li Z.Y. Gao X.X. Sun H.F. Zhang L-Z. Guo X-Q. Du G-H. Qin X-M. Metabonomic analysis of urine from chronic unpredictable mild stress rats using gas chromatography–mass spectrometry. Chromatographia 2012 75 3-4 157 164 [Internet]. 10.1007/s10337‑011‑2167‑3
    [Google Scholar]
  25. Geng C. Guo Y. Wang C. Liao D. Han W. Zhang J. Jiang P. Systematic impacts of chronic unpredictable mild stress on metabolomics in rats. Sci. Rep. 2020 10 1 700 10.1038/s41598‑020‑57566‑x 31959868
    [Google Scholar]
  26. Singh R. Trivedi P. Bawankule D.U. Ahmad A. Shanker K. HILIC quantification of Oenotheralanosterol A and B from Oenothera biennis and their suppression of IL-6 and TNF-α expression in mouse macrophages. J. Ethnopharmacol. 2012 141 1 357 362 10.1016/j.jep.2012.02.046 22414479
    [Google Scholar]
  27. Srivastava P. Mohanti S. Bawankule D.U. Khan F. Shanker K. Effect of Pluchea lanceolata bioactives in LPS-induced neuroinflammation in C6 rat glial cells. Naunyn Schmiedebergs Arch. Pharmacol. 2014 387 2 119 127 10.1007/s00210‑013‑0924‑6 24101125
    [Google Scholar]
  28. Kanthe P.S. Patil B.S. Bagali S. Deshpande A. Shaikh G.B. Aithala M. Atherogenic index as a predictor of cardiovascular risk among women with different grades of obesity. Int. J. Collab. Res. Intern. Med. Public Health 2012 4 10 1767 1774
    [Google Scholar]
  29. Janssen J.W. Helbing A.R. Arsenazo III: An improvement of the routine calcium determination in serum. Eur. J. Clin. Chem. Clin. Biochem. 1991 29 3 197 201 2070016
    [Google Scholar]
  30. Ramappa V.K. Singh V. Srivastava D. Kumar D. Verma A. Fatima E. Chaudhary P. Kumar U. Kumar D. Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties. Biotech 2023 13 2 37 10.1007/s13205‑022‑03443‑5
    [Google Scholar]
  31. Dubey D. Kumar S. Rawat A. Guleria A. Kumari R. Ahmed S. Singh R. Misra R. Kumar D. NMR-based metabolomics revealed the underlying inflammatory pathology in reactive arthritis synovial joints. J. Proteome Res. 2021 20 11 5088 5102 10.1021/acs.jproteome.1c00620 34661415
    [Google Scholar]
  32. Singh S. Tripathy S. Rawat A. Dubey D. Siddiqui S.A. Ugale R. Kumar D. Prakash A. Pre-clinical investigations of therapeutic markers associated with acute and chronic restraint stress: A nuclear magnetic resonance based contrast metabolic approach. Nanotheranostics 2023 7 1 91 101 10.7150/ntno.76294 36593795
    [Google Scholar]
  33. Adamo S.A. Baker J.L. Conserved features of chronic stress across phyla: The effects of long-term stress on behavior and the concentration of the neurohormone octopamine in the cricket, Gryllus texensis. Horm. Behav. 2011 60 5 478 483 10.1016/j.yhbeh.2011.07.015 21824475
    [Google Scholar]
  34. Gioldasi S. Karvela A. Rojas-Gil A.P. Rodi M. de Lastic A.L. Thomas I. Spiliotis B.E. Mouzaki A. Metabolic association between leptin and the corticotropin releasing hormone. Endocr. Metab. Immune Disord. Drug Targets 2019 19 4 458 466 10.2174/1871530319666190206165626 30727936
    [Google Scholar]
  35. Godoy L.D. Rossignoli M.T. Delfino-Pereira P. Garcia-Cairasco N. de Lima Umeoka E.H. A comprehensive overview on stress neurobiology: Basic concepts and clinical implications. Front. Behav. Neurosci. 2018 12 127 10.3389/fnbeh.2018.00127 30034327
    [Google Scholar]
  36. Guo S. Yang C. Jiang S. Ni Y. Zhao R. Ma W. Repeated restraint stress enhances hepatic TFR2 expression and induces hepatic iron accumulation in rats. Biol. Trace Elem. Res. 2020 196 2 590 596 10.1007/s12011‑019‑01956‑4 31707638
    [Google Scholar]
  37. Mozos I. Mechanisms linking red blood cell disorders and cardiovascular diseases. Biomed Res Int. 2015 2015 682054 10.1155/2015/682054
    [Google Scholar]
  38. Inuzuka R. Abe J. Red blood cell distribution width as a link between ineffective erythropoiesis and chronic inflammation in heart failure. Circ J. 2015 79 5 974 10.1253/circj.CJ‑15‑0254
    [Google Scholar]
  39. Lippi G. Sanchis-Gomar F. Danese E. Montagnana M. Association of red blood cell distribution width with plasma lipids in a general population of unselected outpatients. Kardiol. Pol. 2013 71 9 931 936 10.5603/KP.2013.0228 24065422
    [Google Scholar]
  40. Seo S.G. Lee M.Y. Park S.H. Han J.M. Lee K.B. Kim H. Hyun Y.Y. The association between red cell distribution width and incident hypertension in Korean adults. Hypertens. Res. 2020 43 1 55 61 10.1038/s41440‑019‑0334‑3 31551565
    [Google Scholar]
  41. Wirth M. Sevoyan M. Hofseth L. Shivappa N. Hurley T. Hebert J. The dietary inflammatory index is associated with elevated white blood cell counts in the national health and nutrition examination survey. Brain Behav. Immun. 2017 29217263
    [Google Scholar]
  42. Antoni F.A. Vasopressin as a stress hormone. Stress Neuroendocrinol Neurobiol. 2017 2 October 97 108 10.1016/B978‑0‑12‑802175‑0.00009‑7
    [Google Scholar]
  43. Babatin D.M. Lee S.S. Vasopressin antagonists and dilutional hyponatremia. Can. J. Gastroenterol. 2004 18 2 117 118 10.1155/2004/591609 14997223
    [Google Scholar]
  44. Gideon A. Sauter C. Fieres J. Berger T. Renner B. Wirtz P.H. Kinetics and interrelations of the renin aldosterone response to acute psychosocial stress: A neglected stress system. J. Clin. Endocrinol. Metab. 2020 105 3 e762 e773 10.1210/clinem/dgz190 31711229
    [Google Scholar]
  45. Pillai U. Mandakapala C. Mehta K. Resistant hyponatremia and hypokalemia treated successfully with nephrectomy. Clin. Kidney J. 2012 5 1 68 69 10.1093/ndtplus/sfr138 26069754
    [Google Scholar]
  46. Suarez-Bregua P. Guerreiro P.M. Rotllant J. Stress, glucocorticoids and bone: A review from mammals and fish. Front. Endocrinol. (Lausanne) 2018 9 526 10.3389/fendo.2018.00526
    [Google Scholar]
  47. Sadiq N.M. Naganathan S. Badireddy M. Hypercalcemia StatPearls Treasure Island, FL 2021
    [Google Scholar]
  48. Rahimi L. Rajpal A. Ismail-Beigi F. Glucocorticoid-induced fatty liver disease. Diabetes Metab. Syndr. Obes. 2020 13 1133 1145 10.2147/DMSO.S247379 32368109
    [Google Scholar]
  49. Shen G. Li Z. Zhang Y. Wu H. Feng J. 1H NMR-based metabolomics study on the physiological variations during the rat pregnancy process. Mol. Cell. Endocrinol. 2016 423 40 50 10.1016/j.mce.2016.01.003 26773731
    [Google Scholar]
  50. Croze M.L. Soulage C.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013 95 10 1811 1827 10.1016/j.biochi.2013.05.011 23764390
    [Google Scholar]
  51. López-Gambero A.J. Sanjuan C. Serrano-Castro P.J. Suárez J. Rodríguez de Fonseca F. The biomedical uses of inositols: A nutraceutical approach to metabolic dysfunction in aging and neurodegenerative diseases. Biomedicines 2020 8 9 295 10.3390/biomedicines8090295 32825356
    [Google Scholar]
  52. Lepore E. Lauretta R. Bianchini M. Mormando M. Di Lorenzo C. Unfer V. Inositols depletion and resistance: Principal mechanisms and therapeutic strategies. Int. J. Mol. Sci. 2021 22 13 6796 10.3390/ijms22136796 34202683
    [Google Scholar]
  53. Hashemi Tari S. Sohouli M.H. Lari A. Fatahi S. Rahideh S.T. The effect of inositol supplementation on blood pressure: A systematic review and meta-analysis of randomized-controlled trials. Clin. Nutr. ESPEN 2021 44 78 84 10.1016/j.clnesp.2021.06.017 34330516
    [Google Scholar]
  54. Canfield C.A. Bradshaw P.C. Amino acids in the regulation of aging and aging-related diseases. Transl. Med. Aging 2019 3 70 89 10.1016/j.tma.2019.09.001
    [Google Scholar]
  55. Yuan C. Chen H.X. Hou H.T. Wang J. Yang Q. He G.W. Protein biomarkers and risk scores in pulmonary arterial hypertension associated with ventricular septal defect: Integration of multi-omics and validation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020 319 5 L810 L822 10.1152/ajplung.00167.2020 32877226
    [Google Scholar]
  56. Alexander D. Lombardi R. Rodriguez G. Mitchell M.M. Marian A.J. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. Eur. J. Clin. Invest. 2011 41 5 527 538 10.1111/j.1365‑2362.2010.02441.x 21155767
    [Google Scholar]
  57. Müller J. Bertsch T. Volke J. Schmid A. Klingbeil R. Metodiev Y. Karaca B. Kim S.H. Lindner S. Schupp T. Kittel M. Poschet G. Akin I. Behnes M. Narrative review of metabolomics in cardiovascular disease. J. Thorac. Dis. 2021 13 4 2532 2550 10.21037/jtd‑21‑22 34012599
    [Google Scholar]
  58. Li X. Sun L. Zhang W. Li H. Wang S. Mu H. Zhou Q. Zhang Y. Tang Y. Wang Y. Chen W. Yang R. Dong J. Association of serum glycine levels with metabolic syndrome in an elderly Chinese population. Nutr. Metab. (Lond.) 2018 15 1 89 10.1186/s12986‑018‑0325‑4 30568717
    [Google Scholar]
  59. De Luca G. Calpona P.R. Caponetti A. Macaione V. Di Benedetto A. Cucinotta D. Di Giorgio R.M. Preliminary report: Amino acid profile in platelets of diabetic patients. Metabolism 2001 50 7 739 741 10.1053/meta.2001.24193 11436175
    [Google Scholar]
  60. Rom O. Villacorta L. Zhang J. Chen Y.E. Aviram M. Emerging therapeutic potential of glycine in cardiometabolic diseases: Dual benefits in lipid and glucose metabolism. Curr Opin Lipidol. 2018 29 5 428 432
    [Google Scholar]
  61. Liu Z. Huang C. Liu Y. Lin D. Zhao Y. NMR-based metabolomic analysis of the effects of alanyl-glutamine supplementation on C2C12 myoblasts injured by energy deprivation. RSC Advances 2018 8 29 16114 16125 10.1039/C8RA00819A 35542200
    [Google Scholar]
  62. Durante W. The emerging role of l-Glutamine in cardiovascular health and disease. Nutrients 2019 11 9 2092 10.3390/nu11092092 31487814
    [Google Scholar]
  63. Wang L. Hou E. Wang L. Wang Y. Yang L. Zheng X. Xie G. Sun Q. Liang M. Tian Z. Reconstruction and analysis of correlation networks based on GC–MS metabolomics data for young hypertensive men. Anal. Chim. Acta 2015 854 95 105 10.1016/j.aca.2014.11.009 25479872
    [Google Scholar]
  64. Tapia-Rojas C. Lindsay C.B. Montecinos-Oliva C. Arrazola M.S. Retamales R.M. Bunout D. Hirsch S. Inestrosa N.C. Is L-methionine a trigger factor for Alzheimer’s-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol. Neurodegener. 2015 10 1 62 10.1186/s13024‑015‑0057‑0 26590557
    [Google Scholar]
  65. Li Z. Wang F. Liang B. Su Y. Sun S. Xia S. Shao J. Zhang Z. Hong M. Zhang F. Zheng S. Methionine metabolism in chronic liver diseases: An update on molecular mechanism and therapeutic implication. Signal Transduct. Target. Ther. 2020 5 1 280 10.1038/s41392‑020‑00349‑7 33273451
    [Google Scholar]
  66. Song B. Fu M. He F. Zhao H. Wang Y. Nie Q. Wu B. Methionine deficiency affects liver and kidney health, oxidative stress, and ileum mucosal immunity in broilers. Front. Vet. Sci. 2021 8 722567 10.3389/fvets.2021.722567 34631856
    [Google Scholar]
  67. Singh H.J. Azis N.A. Saleh M. Kamal A. Mediani A. Agarwal R. Radjeni1 Z. Ismail4 N.H. Identification of Antihypertensive mechanisms o f ficus deltoidea kunstleri in spontaneously hypertensive rats using metabolomics. J. Plant Biochem Physiol 9 7 1 13
    [Google Scholar]
  68. Ameta K. Gupta A. Kumar S. Sethi R. Kumar D. Mahdi A.A. Essential hypertension: A filtered serum based metabolomics study. Sci. Rep. 2017 7 1 2153 10.1038/s41598‑017‑02289‑9 28526818
    [Google Scholar]
  69. Li Y. Nie L. Jiang H. Lin J. Zhou H. Xie J. Qu Z. Qi D. Zhang Y. Metabonomics study of essential hypertension and its chinese medicine subtypes by using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Evid. Based Complement. Alternat. Med. 2013 2013 1 9 10.1155/2013/625906 23533506
    [Google Scholar]
  70. Ouyang X. Dai Y. Wen J.L. Wang L.X. 1 H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus. Lupus 2011 20 13 1411 1420 10.1177/0961203311418707 21976403
    [Google Scholar]
  71. Tzoulaki I. Iliou A. Mikros E. Elliott P. An overview of metabolic phenotyping in blood pressure research. Curr. Hypertens. Rep. 2018 20 9 78 10.1007/s11906‑018‑0877‑8 29992526
    [Google Scholar]
  72. Holeček M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. (Lond.) 2018 15 1 33 10.1186/s12986‑018‑0271‑1 29755574
    [Google Scholar]
  73. Nie C. He T. Zhang W. Zhang G. Ma X. Branched chain amino acids: Beyond nutrition metabolism. Int. J. Mol. Sci. 2018 19 4 954 10.3390/ijms19040954 29570613
    [Google Scholar]
  74. Jennings A. MacGregor A. Pallister T. Spector T. Cassidy A. Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: A twin study. Int. J. Cardiol. 2016 223 992 998 10.1016/j.ijcard.2016.08.307 27591698
    [Google Scholar]
  75. Rawat A. Misra G. Saxena M. Tripathi S. Dubey D. Saxena S. Aggarwal A. Gupta V. Khan M.Y. Prakash A. 1H NMR based serum metabolic profiling reveals differentiating biomarkers in patients with diabetes and diabetes-related complication. Diabetes Metab. Syndr. 2019 13 1 290 298 10.1016/j.dsx.2018.09.009 30641714
    [Google Scholar]
/content/journals/cis/10.2174/012210299X343034241125061622
Loading
/content/journals/cis/10.2174/012210299X343034241125061622
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Metabolomics ; Blood profile ; Haematological changes ; Physiological changes ; Chronic stress ; NMR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test