Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Introduction

Breast cancer holds the distinction of being the most frequent type of cancer among women when compared to other forms of cancer. Estrogen Receptors (ER) are intracellular transcription factors that are essential for a variety of biological functions that are regulated by estrogen in the body. With its ability to modulate gene expression, Estrogen Receptors exert significant influence over cell growth, development, reproduction, and other important biological functions. Estrogen Receptors are overexpressed in breast cancer events; dysregulation of estrogen signaling pathways caused by this overexpression results in aberrant cell growth and proliferation, which make them the hallmarks of breast cancer.

Methods

A thorough study of different molecular structures and properties was done using extensive computational analyses and simulations in order to identify compounds with the potential to inhibit ER activity. Diverse chemical libraries were subjected to docking against the target ER-α, and molecules with docking scores less than -8.00 kcal/mol were retained.

Results

Further, these virtual hits were evaluated using 3D-QSAR models for predicting activity. ADME/Tox screening was performed to retain compounds with optimal pharmacokinetic profiles. Six compounds with excellent binding potential predicted biological activity and favorable ADME/Tox profiles were chosen. Prolonged molecular dynamics simulations were conducted to assess structural stability over time.

Conclusion

The computational study on breast cancer on the target ER has yielded significant progress with the identification of six promising compounds that can be further evaluated through experimental validations.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X278016231224170444
2024-01-26
2025-01-06
Loading full text...

Full text loading...

/deliver/fulltext/cis/2/1/CIS-2-E2210299X278016.html?itemId=/content/journals/cis/10.2174/012210299X278016231224170444&mimeType=html&fmt=ahah

References

  1. SahayarayanJ.J. RajanK.S. VidhyavathiR. NachiappanM. PrabhuD. AlfarrajS. ArokiyarajS. DanielA.N. In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches.Saudi J. Biol. Sci.202128140040710.1016/j.sjbs.2020.10.02333424323
    [Google Scholar]
  2. YinW. WangJ. JiangL. James KangY. Cancer and stem cells.Exp. Biol. Med.2021246161791180110.1177/1535370221100539033820469
    [Google Scholar]
  3. MathurG. NainS. SharmaP.K. Cancer: An overview.Acad. J. Cancer Res.201581
    [Google Scholar]
  4. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  5. GuarneriV. ConteP.F. The curability of breast cancer and the treatment of advanced disease.Eur. J. Nucl. Med. Mol. Imaging2004310Suppl. 1S149S16110.1007/s00259‑004‑1538‑515107948
    [Google Scholar]
  6. RugoH.S. DelordJ.P. ImS.A. OttP.A. Piha-PaulS.A. BedardP.L. SachdevJ. TourneauC.L. van BrummelenE.M.J. VargaA. SalgadoR. LoiS. SarafS. PietrangeloD. KarantzaV. TanA.R. Safety and antitumor activity of pembrolizumab in patients with estrogen receptor–positive/human epidermal growth factor receptor 2–negative advanced breast cancer.Clin. Cancer Res.201824122804281110.1158/1078‑0432.CCR‑17‑345229559561
    [Google Scholar]
  7. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.1932330667505
    [Google Scholar]
  8. BaiZ. GustR. Breast cancer, estrogen receptor and ligands.Arch. Pharm.2009342313314910.1002/ardp.20080017419274700
    [Google Scholar]
  9. SinglaR. GuptaK.B. UpadhyayS. DhimanM. JaitakV. Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-α).Eur. J. Med. Chem.201814620621910.1016/j.ejmech.2018.01.05129407951
    [Google Scholar]
  10. SommerS FuquaSA Estrogen receptor and breast cancer.InSeminars in cancer biologyAcademic Press20011133935210.1006/scbi.2001.0389
    [Google Scholar]
  11. YueW. WangJ.P. LiY. FanP. LiuG. ZhangN. ConawayM. WangH. KorachK.S. BocchinfusoW. SantenR. Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms.Int. J. Cancer201012781748175710.1002/ijc.2520720104523
    [Google Scholar]
  12. XiongR. PatelH.K. GutgesellL.M. ZhaoJ. Delgado-RiveraL. PhamT.N.D. ZhaoH. CarlsonK. MartinT. KatzenellenbogenJ.A. MooreT.W. TonettiD.A. ThatcherG.R.J. Selective human estrogen receptor partial agonists (ShERPAs) for tamoxifen-resistant breast cancer.J. Med. Chem.201659121923710.1021/acs.jmedchem.5b0127626681208
    [Google Scholar]
  13. LuoG. LiX. ZhangG. WuC. TangZ. LiuL. YouQ. XiangH. Novel SERMs based on 3-aryl-4-aryloxy-2H-chromen-2-one skeleton - A possible way to dual ERα/VEGFR-2 ligands for treatment of breast cancer.Eur. J. Med. Chem.201714025227310.1016/j.ejmech.2017.09.01528942113
    [Google Scholar]
  14. AliS. CoombesR.C. Estrogen receptor alpha in human breast cancer: Occurrence and significance.J. Mammary Gland Biol. Neoplasia20005327128110.1023/A:100959472735814973389
    [Google Scholar]
  15. YuE. XuY. ShiY. YuQ. LiuJ. XuL. Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy.J. Mol. Model.201925927810.1007/s00894‑019‑4156‑731463793
    [Google Scholar]
  16. JohmuraY. MaedaI. SuzukiN. WuW. GodaA. MoritaM. YamaguchiK. YamamotoM. NagasawaS. KojimaY. TsugawaK. InoueN. MiyoshiY. OsakoT. AkiyamaF. MaruyamaR. InoueJ. FurukawaY. OhtaT. NakanishiM. Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer.J. Clin. Invest.2018128125603561910.1172/JCI12167930418174
    [Google Scholar]
  17. SuvannangN. PreeyanonL. MalikA.A. SchaduangratN. ShoombuatongW. WorachartcheewanA. TantimongcolwatT. NantasenamatC. Probing the origin of estrogen receptor alpha inhibition via large-scale QSAR study.RSC Advances2018821113441135610.1039/C7RA10979B35542807
    [Google Scholar]
  18. LiX. WuC. LinX. CaiX. LiuL. LuoG. YouQ. XiangH. Synthesis and biological evaluation of 3-aryl-quinolin derivatives as anti-breast cancer agents targeting ERα and VEGFR-2.Eur. J. Med. Chem.201916144545510.1016/j.ejmech.2018.10.04530384047
    [Google Scholar]
  19. CosconatiS. ForliS. PerrymanA.L. HarrisR. GoodsellD.S. OlsonA.J. Virtual screening with autodock: Theory and practice.Expert Opin. Drug Discov.20105659760710.1517/17460441.2010.48446021532931
    [Google Scholar]
  20. NiinivehmasS.P. ManivannanE. RauhamäkiS. HuuskonenJ. PentikäinenO.T. Identification of estrogen receptor α ligands with virtual screening techniques.J. Mol. Graph. Model.201664303910.1016/j.jmgm.2015.12.00626774287
    [Google Scholar]
  21. ShoichetBK Virtual screening of chemical libraries.Nature200443286286510.1038/nature03197
    [Google Scholar]
  22. GhoshS. NieA. anJ. HuangZ. Structure-based virtual screening of chemical libraries for drug discovery.Curr. Opin. Chem. Biol.200610319420210.1016/j.cbpa.2006.04.00216675286
    [Google Scholar]
  23. BoehmM. Virtual screening: Principles, challenges and practical guidelines.Drug Discovery & Development2011
    [Google Scholar]
  24. CherkasovA. MuratovE.N. FourchesD. VarnekA. BaskinI.I. CroninM. DeardenJ. GramaticaP. MartinY.C. TodeschiniR. ConsonniV. Kuz’minV.E. CramerR. BenigniR. YangC. RathmanJ. TerflothL. GasteigerJ. RichardA. TropshaA. QSAR modeling: Where have you been? Where are you going to?J. Med. Chem.201457124977501010.1021/jm400428524351051
    [Google Scholar]
  25. VermaJ. KhedkarV. CoutinhoE. 3D-QSAR in drug design--a review.Curr. Top. Med. Chem.20101019511510.2174/15680261079023226019929826
    [Google Scholar]
  26. MuratovE.N. BajorathJ. SheridanR.P. TetkoI.V. FilimonovD. PoroikovV. OpreaT.I. BaskinI.I. VarnekA. RoitbergA. IsayevO. CurtaloloS. FourchesD. CohenY. Aspuru-GuzikA. WinklerD.A. AgrafiotisD. CherkasovA. TropshaA. QSAR without borders.Chem. Soc. Rev.202049113525356410.1039/D0CS00098A32356548
    [Google Scholar]
  27. LiuX. ShiD. ZhouS. LiuH. LiuH. YaoX. Molecular dynamics simulations and novel drug discovery.Expert Opin. Drug Discov.2018131233710.1080/17460441.2018.140341929139324
    [Google Scholar]
  28. MaliwalD. PissurlenkarR.R.S. TelvekarV. Identification of novel potential anti-diabetic candidates targeting human pancreatic α-amylase and human α-glycosidase: An exhaustive structure-based screening.Can. J. Chem.2022100533835210.1139/cjc‑2021‑0238
    [Google Scholar]
  29. NandurkarY. BhoyeM.R. MaliwalD. PissurlenkarR.R.S. ChavanA. KatadeS. MhaskeP.C. Synthesis, biological screening and in silico studies of new N-phenyl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine derivatives as potential antifungal and antitubercular agents.Eur. J. Med. Chem.202325811554810.1016/j.ejmech.2023.11554837307623
    [Google Scholar]
  30. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  31. TrottO OlsonAJ AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J Comput Chem.2009312455461
    [Google Scholar]
  32. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  33. ShiauA.K. BarstadD. LoriaP.M. ChengL. KushnerP.J. AgardD.A. GreeneG.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen.Cell199895792793710.1016/S0092‑8674(00)81717‑19875847
    [Google Scholar]
  34. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein Data BankNucleic Acids Res.201762741
    [Google Scholar]
  35. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  36. BurleyS.K. BhikadiyaC. BiC. BittrichS. ChenL. CrichlowG.V. ChristieC.H. DalenbergK. Di CostanzoL. DuarteJ.M. DuttaS. FengZ. GanesanS. GoodsellD.S. GhoshS. GreenR.K. GuranovićV. GuzenkoD. HudsonB.P. LawsonC.L. LiangY. LoweR. NamkoongH. PeisachE. PersikovaI. RandleC. RoseA. RoseY. SaliA. SeguraJ. SekharanM. ShaoC. TaoY.P. VoigtM. WestbrookJ.D. YoungJ.Y. ZardeckiC. ZhuravlevaM. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences.Nucleic Acids Res.202149D1D437D45110.1093/nar/gkaa103833211854
    [Google Scholar]
  37. SinghU.C. KollmanP.A. An approach to computing electrostatic charges for molecules.J. Comput. Chem.19845212914510.1002/jcc.540050204
    [Google Scholar]
  38. GasteigerJ. MarsiliM. A new model for calculating atomic charges in molecules.Tetrahedron Lett.197819343181318410.1016/S0040‑4039(01)94977‑9
    [Google Scholar]
  39. AdasmeM.F. LinnemannK.L. BolzS.N. KaiserF. SalentinS. HauptV.J. SchroederM. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA.Nucleic Acids Res.202149W1W530W53410.1093/nar/gkab29433950214
    [Google Scholar]
  40. SalentinS. SchreiberS. HauptV.J. AdasmeM.F. SchroederM. PLIP: Fully automated protein–ligand interaction profiler.Nucleic Acids Res.201543W1W443W44710.1093/nar/gkv31525873628
    [Google Scholar]
  41. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  42. ToscoP. BalleT. Open3DQSAR: A new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields.J. Mol. Model.201117120120810.1007/s00894‑010‑0684‑x20383726
    [Google Scholar]
  43. BowersK.J. SacerdotiF.D. SalmonJ.K. ShanY. ShawD.E. ChowE. Molecular dynamics---Scalable algorithms for molecular dynamics simulations on commodity clusters.Proceedings of the 2006 ACM/IEEE conference on SupercomputingSC New York, New York, USAACM Press20068410.1145/1188455.1188544
    [Google Scholar]
  44. ReleaseS. 2022-1: Desmond Molecular Dynamics System.New York, NYD. E. Shaw Research2022
    [Google Scholar]
  45. DavidchackR.L. HandelR. TretyakovM.V. Langevin thermostat for rigid body dynamics.J. Chem. Phys.20091302323410110.1063/1.314978819548705
    [Google Scholar]
  46. JordanV.C. Tamoxifen: toxicities and drug resistance during the treatment and prevention of breast cancer.Annu. Rev. Pharmacol. Toxicol.199535119521110.1146/annurev.pa.35.040195.0012117598491
    [Google Scholar]
  47. JordanV.C. The role of tamoxifen in the treatment and prevention of breast cancer.Curr. Probl. Cancer19921631291761582240
    [Google Scholar]
  48. ZhangB. KieferJ.R. BlakeR.A. ChangJ.H. HartmanS. IngallaE.R. KleinheinzT. ModyV. NanniniM. OrtwineD.F. RanY. SambroneA. SampathD. VinogradovaM. ZhongY. NwachukwuJ.C. NettlesK.W. LaiT. LiaoJ. ZhengX. ChenH. WangX. LiangJ. Unexpected equivalent potency of a constrained chromene enantiomeric pair rationalized by co-crystal structures in complex with estrogen receptor alpha.Bioorg. Med. Chem. Lett.201929790591110.1016/j.bmcl.2019.01.03630732944
    [Google Scholar]
  49. KahramanM. GovekS.P. NagasawaJ.Y. LaiA. BonnefousC. DouglasK. SensintaffarJ. LiuN. LeeK. AparicioA. KaufmanJ. QianJ. ShaoG. PrudenteR. JosephJ.D. DarimontB. BrighamD. HeymanR. RixP.J. HagerJ.H. SmithN.D. Maximizing ER-α degradation maximizes activity in a tamoxifen-resistant breast cancer model: Identification of GDC-0927.ACS Med. Chem. Lett.2019101505510.1021/acsmedchemlett.8b0041430655946
    [Google Scholar]
  50. TriaG.S. AbramsT. BairdJ. BurksH.E. FirestoneB. GaitherL.A. HamannL.G. HeG. KirbyC.A. KimS. LombardoF. MacchiK.J. McDonnellD.P. MishinaY. NorrisJ.D. NunezJ. SpringerC. SunY. ThomsenN.M. WangC. WangJ. YuB. Tiong-YipC.L. PeukertS. Discovery of LSZ102, a potent, orally bioavailable selective estrogen receptor degrader (SERD) for the treatment of estrogen receptor positive breast cancer.J. Med. Chem.20186172837286410.1021/acs.jmedchem.7b0168229562737
    [Google Scholar]
/content/journals/cis/10.2174/012210299X278016231224170444
Loading
/content/journals/cis/10.2174/012210299X278016231224170444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test