Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Cucurbitaceae family plants have been widely used as traditional medicines for the prevention and treatment of many ailments. Linnaeus also known as Colocynth, is a bitter plant commonly found growing in sandy deserts around the world, and it grows naturally in the Western Haryana region. Fruits of this plant have been utilized traditionally for various medicinal purposes, like as an appetite suppressant, hypoglycemic, diuretic, laxative, anthelmintic, and for treating renal stones.

Objective

The objective of this study is to carry out the anti-obesity investigation, pharmacognostical studies, heavy metal and pesticide residue analysis, microbial contamination, and mycotoxins evaluation of the fruits for establishing their quality, safety, efficacy, and purity standards.

Methods

Fresh fruits were collected and taxonomically authenticated. The pharmacognostical characteristics of the intact and powdered fruits were identified and qualitative and quantitative phytochemical evaluation was performed. Physicochemical evaluation, heavy metal and pesticide residue detection, microbial contamination, and mycotoxins analysis were performed as per WHO guidelines 2011. inhibition activities for pancreatic lipase and α-amylase enzymes were carried out as per standard procedures and IC values were recorded.

Results

The pharmacognostical standards macroscopy, microscopy and physicochemical parameters were laid, and the drug was declared free from microbial contamination and mycotoxins. Heavy metal analysis and pesticide residue detection revealed that their presence was below toxic levels. The Powder microscopy, microbial contamination, mycotoxin evaluation, and pesticide residue of the Colocynth fruits are novel findings. The IC values (µg/ml) for pancreatic lipase inhibition for aqueous and ethanolic extracts were found to be 21.27±1.25 and 34.35±1.86, and for α-glucosidase, the values were 271.12±2.64 and 283.21±3.06, and for α-glucosidase, the values were 295.67±2.92 and 306.15±3.44 respectively. Thus, the fruit extracts showed significant anti-obesity potential.

Conclusion

Pharmacognostical and physicochemical studies prove to be useful in reducing commercial adulteration of the crude drug by assuring their purity and identity and this could further help in improving the quality of formulations incorporating it. The results of various standardization parameters could be used for designing the monograph of the crude drug. The fruits were found to be fit for therapeutic consumption and their extracts have shown good pancreatic lipase inhibition. The anti-obesity investigation findings of the fruit extracts can further be explored for evaluating their therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230810115238
2023-09-22
2025-01-24
Loading full text...

Full text loading...

References

  1. DahiyaV. VasudevaN. SharmaS. KumarA. RowleyD. Lead anti-obesity compounds from nature.Endocr. Metab. Immune Disord. Drug Targets202020101637165310.2174/1871530320666200504092012 32364084
    [Google Scholar]
  2. WHOQuality assurance pharmaceuticals.Geneva1996
    [Google Scholar]
  3. WHOTechnical report series.Geneva1996
    [Google Scholar]
  4. MinsiZ YushuangL TaoY LiyaL ZhiyongL XiulanH Research progress on chemical constituents and pharmacological effects of Uyghur medicinal watermelon.China J Traditional Chinese Med2020450410.19540/j.cnki.cjcmm.20191104.201
    [Google Scholar]
  5. GurudeebanS. SatyavaniK. RamanathanT. Bitter apple (Citrullus colocynthis): an overview of chemical composition and Biomedical potentials.Asian J. Plant Sci.20109739440110.3923/ajps.2010.394.401
    [Google Scholar]
  6. KapoorM. KaurN. SharmaC. Citrullus colocynthis an important plant in Indian traditional system of medicine.Pharmacogn. Rev.20201427222710.5530/phrev.2020.14.4
    [Google Scholar]
  7. Tannin-SpitzT. GrossmanS. DovratS. GottliebH.E. BergmanM. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells.Biochem. Pharmacol.2007731566710.1016/j.bcp.2006.09.012 17049494
    [Google Scholar]
  8. MazherM. IshtiaqM. MushtaqW. Comprehensive review of phytochemistry and bioactivities of Citrullus Colocynthis (L.) Schrad. Open access.J. Pharm. Sci.20204411210.23880/oajpr‑16000218
    [Google Scholar]
  9. BellakhdarJ. ClaisseR. FleurentinJ. YounosC. Repertory of standard herbal drugs in the Moroccan pharmacopoea.J. Ethnopharmacol.199135212314310.1016/0378‑8741(91)90064‑k 1809818
    [Google Scholar]
  10. WasfiI.A. BashirA.K. AbdallaA.A. BannaN.R. TaniraM.O.M. Antiinflammatory activity of some medicinal plants of the United Arab Emirates.Int. J. Pharmacol.199533212412810.3109/13880209509055211
    [Google Scholar]
  11. YadavN.D. SinghP.M. Tumba and mateera cultivation in the Indian arid zone. In: CAZRI Jodhpur publication19923
    [Google Scholar]
  12. PareD. HilouA. OuedraogoN. GuenneS. Ethnobotanical study of medicinal plants used as anti-obesity remedies in the nomad and hunter communities of burkina faso.Medicines201632910.3390/medicines3020009 28930119
    [Google Scholar]
  13. MeybodiMSK A review on pharmacological activities of citrullus colocynthis (L.) Schrad.Asian J Adv Res Rep endocrinology2020312534
    [Google Scholar]
  14. BatanounyK.H. Wild medicinal plants in egypt—an inventory to support conservation and sustainable use. In: Egypt: The Palm Press199942
    [Google Scholar]
  15. BaquarS.R. TasnifM. Medicinal plants of Southern West Pakistan, PeriodicalVivekVihar.DelhiExpert Book Agency1984
    [Google Scholar]
  16. KirtikarK.R. BasuB.D. Indian medicinal plants. In: Dehradun: Bishen Singh Mahendra Pal Singh1984
    [Google Scholar]
  17. QureshiR. Raza BhattiG. Ethnobotany of plants used by the Thari people of Nara Desert, Pakistan.Fitoterapia200879646847310.1016/j.fitote.2008.03.010 18538950
    [Google Scholar]
  18. AbbasD. SimonG. KosariA.R. Flavone c-glycosides and cucurbitacin glycosides from citrullus colocynthis.Daru2006143109114
    [Google Scholar]
  19. Al-GhaithiF. El-RidiM.R. AdeghateE. AmiriM.H. Biochemical effects of citrullus colocynthis in normal and diabetic rats.Mol. Cell. Biochem.20042611-214314910.1023/B:MCBI.0000028749.63101.cc 15362497
    [Google Scholar]
  20. KrishnarajuaA.V. RaoT.V.N. SundararajuaD. VanisreeM. TsayH.S. SubbarajuG.V. Assessment of bioactivity of indian medicinal plants using brine shrimp (artemia salina) lethality assay.Int J of Applied Sci and Engineering20053212513410.1023/b:mcbi.0000028749.63101.cc
    [Google Scholar]
  21. AdamS.E.I. Al-YahyaM.A. Al-FarhanA.H. Response of najdi sheep to oral administration of citrullus colocynthis fruits, nerium oleander leaves or their mixture.Small Rumin. Res.200140323924410.1016/s0921‑4488(01)00184‑5 11323208
    [Google Scholar]
  22. GoelA. GargA. KumarA. Effect of Capparis spinose Linn extract on lipopolysaccharide- induced cognitive impairment in rats.IndiaNISCAIR-CSIR2016
    [Google Scholar]
  23. AgarwalS.S. Antifertility activity of methanolic bark extract of Aegle marmelos (L.) in male wistar rats.Daru2012201110 23226110
    [Google Scholar]
  24. RajasreeR. SibiP. FrancisF. WilliamH. Phytochemicals of cucurbitaceae family: A review.IJPPR20168113123
    [Google Scholar]
  25. SegerC. SturmS. MairM.E. EllmererE.P. StuppnerH. 1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae).Magn. Reson. Chem.200543648949110.1002/mrc.1570 15772995
    [Google Scholar]
  26. Abdel-HassanI.A. Abdel-BarryJ.A. Tariq MohammedaS. The hypoglycaemic and antihyperglycaemic effect of citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits.J. Ethnopharmacol.2000711-232533010.1016/s0378‑8741(99)00215‑9 10904181
    [Google Scholar]
  27. KhandelwalKR Practical Pharmacognosy IndiaNirali Publication Pragati books private limited2008
    [Google Scholar]
  28. EvansW.C. Trease and evans pharmacognosy. In: India: Elsevier2009
    [Google Scholar]
  29. WHOQuality control methods for herbal material, Geneva Organisation Mondiale De Sante2011986
    [Google Scholar]
  30. KokateCK Practical pharmacognosy200021850
    [Google Scholar]
  31. GeethaS.S. RajeswariS. A preliminary study on phytochemical screening, proximate analysis and anti-bacterial activities of andrographis paniculata seed extract.Res J Pharm Technol20191252083208810.5958/0974‑360X.2019.00345.7
    [Google Scholar]
  32. TaloleB. SalveP. WajeM. Phytochemical screening and determination of total phenolic content of citrullus colocynthis linn.Int J Pharma Phytopharmacol Res201734445
    [Google Scholar]
  33. ChekrounE. BenaribaN. AdidaH. BechiriA. AzziR. DjaziriR. Antioxidant activity and phytochemical screening of two cucurbitaceae: Citrullus colocynthis fruits and bryonia dioica roots.Asian Pac. J. Trop. Dis.2015563263710.1016/S2222‑1808(15)60903‑3
    [Google Scholar]
  34. KimH.Y. KwonS.H. ChoE.J. Phytochemical constituents of bitter melon (Momordica charantia).Nat. Prod. Sci.201319286289
    [Google Scholar]
  35. NeelammaG. SwamyB.D. DhamodaranP. Phytochemical and pharmacological overview of cucurbita maxima and future perspective as potential phytotherapeutic agent.Eur. J. Pharm. Med. Res.20163277287
    [Google Scholar]
  36. NoraN.B. HamidK. SnouciM. BoumedieneM. AbdellahM. Phytochemical and antibacterial screening of Citrullus colocynthis of South-west Algeria.J. Chem. Pharm. Res.2015713441348
    [Google Scholar]
  37. OyetayoF. OyetayoV. AjewoleV. Phytochemical profile and antibacterial properties of the seed and leaf of the Luffa plant (Luffa cylindrica).J Pharmacol Toxicol2007258658910.3923/jpt.2007.586.589
    [Google Scholar]
  38. RitaW.S. SwantaraI.M.D. AsihI.R.A. SinarsihN.K. SutejaI.K.P. Total flavonoid and phenolic contents of n-butanol extract of Samanea saman leaf and the antibacterial activity towards Escherichia coli and Staphylococcus aureus. In: In AIP Conference Proceedings.AIP Publishing2016
    [Google Scholar]
  39. RudrojuS. TalariS. MarkaR. PenchalaS. SwamyR. Phytochemical analysis of trichosanthes cucumerina L.Indo Am J Pharma Res201334335337
    [Google Scholar]
  40. SinghJ SinghV Shukla RaiA. Phenolic content and antioxidant capacity of selected Cucurbit fruits Extracted with Different Solvents.J Nutr Food Sci201666a10.4172/2155‑9600.1000565
    [Google Scholar]
  41. TanES AbdullahA KassimNK Extraction of steroidal glycoside from small-typed bitter gourd (Momordica charantia L.)J Chem Pharma Res20157870878
    [Google Scholar]
  42. UgbajaC.C. FawibeO.O. OyelakinA.S. FadimuI.O. AjiboyeA.A. AgboolaD.A. Comparative phytochemical and nutritional composition of Trichosanthes cucumerina (L.) and some Solanum lycopersicum (L.) cultivars in Nigeria.Am. J. Plant Sci.201782910.4236/ajps.2017.82021
    [Google Scholar]
  43. XuY. ChenG. LuX. Chemical constituents from Trichosanthes kirilowii Maxim.Biochem. Syst. Ecol.201243114116
    [Google Scholar]
  44. NajafiS. SanadgolN. NejadB.S. BeiragiM.A. SanadgolE. Phytochemical screening and antibacterial activity of Citrullus colocynthis (Linn.) Schrad against Staphylococcus aureus.J. Med. Plants Res.2010423212325
    [Google Scholar]
  45. AlebiosuC. YusufA. Phytochemical screening, thin-layer chromatographic studies and uv analysis of extracts of citrullus lanatus.J of Pharma Chem and Biol Sci20153214220
    [Google Scholar]
  46. KokateC.K. PurohitA.P. GokhaleS.B. Pharmacognsoy. In: Pune: Nirali Prakashan2022
    [Google Scholar]
  47. KunleO.F. EgharevbaH.O. AhmaduP.O. Standardisation of herbal medicines: A review.Int. J. Biodivers. Conserv.2012410111210.5897/IJBC11.163
    [Google Scholar]
  48. DasS. VasudevaN. SharmaS. Chemical composition of ethanol extract of Macrotyloma uniflorum (Lam.) Verdc. using GC-MS spectroscopy.Org. Med. Chem. Lett.2014411310.1186/s13588‑014‑0013‑y 26548989
    [Google Scholar]
  49. StankovicM.S. Total phenolic content, flavanoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac.J. Sci.2011336372
    [Google Scholar]
  50. DjeridaneA. YousfiM. NadjemiB. BoutassounaD. stocker P, Vidal N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds.Food Chem.200697465466010.1016/j.foodchem.2005.04.028
    [Google Scholar]
  51. HanL.K. KimuraY. OkudaH. Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet.Int. J. Obes.1999232174179 10078853
    [Google Scholar]
  52. RaniN SharmaSK VasudevaN Assessment of antiobesity potential of achyranthes aspera linn. seed.eCAM.2012; 2012: 17
    [Google Scholar]
  53. Moradi AfrapoliF Asgharib SaeidniaS In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polyganum hyrcanicum.Daru201220371610.1186/2008‑2231‑20‑37
    [Google Scholar]
  54. UmaC. SekarK.G. Phytochemical analysis of a folklore medicinal plant citrullus colocynthis L (bitter apple).J. Pharmacogn. Phytochem.201426195202
    [Google Scholar]
  55. GunjanM. SarangdevotY.S. VyasB. Pharmacognostical study, and pharmacological review of coccinia indica fruit and zea mays leaves.J Pharm Sci and Res2021136335339
    [Google Scholar]
  56. DohareyV. KumarM. UpadhyayS.K. SinghR. KumariB. Pharmacognostical, physicochemical and pharmaceutical paradigm of ash gourd, Benincasa hispida (thunb.) Fruit.Plant Arch.202121S1249252
    [Google Scholar]
  57. NigamP. GidwaniB. DhongdeH. GuptaA. KaurC.D. A review on pharmacognostical and pharmacological activities of lagenaria siceraria species.Int J Pharmacol Phytochem Ethnomed20151556410.18052/www.scipress.com/IJPPE.1.55
    [Google Scholar]
  58. KorfaliS.I. HawiT. MrouehM. Evaluation of heavy metals content in dietary supplements in Lebanon.Chem. Cent. J.2013711010.1186/1752‑153X‑7‑10 23331553
    [Google Scholar]
  59. KorfaliS.I. MrouehM. Al-ZeinM. SalemR. Metal concentration in commonly used medicinal herbs and infusion by Lebanese population: Health impact.J. Food Res.201327080
    [Google Scholar]
  60. SinghR. GautamN. MishraA. GuptaR. Heavy metals and living systems: An overview.Indian J. Pharmacol.201143324625310.4103/0253‑7613.81505 21713085
    [Google Scholar]
  61. WHO. Guidelines for assessing quality of herbal medicines with reference to contaminants and residues. In: Geneva, Switzerland: Press2007
    [Google Scholar]
  62. WHO.Traditional Medicine StrategyGeneva, Switzerland2002
    [Google Scholar]
  63. Agência Nacional de Vigilância Sanitária - ANVISA [Brazil]. Farmacopeia Brasileira. Brasília Anvisa 5th.20101546
    [Google Scholar]
  64. ZankS. HanazakiN. The coexistence of traditional medicine and biomedicine: A study with local health experts in two Brazilian regions.PLoS One2017124e017473110.1371/journal.pone.0174731 28414735
    [Google Scholar]
  65. RustomI.Y.S. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods.Food Chem.199759576710.1016/S0308‑8146(96)00096‑9
    [Google Scholar]
  66. SweeneyM.J. DobsonA.D.W. Mycotoxin production by aspergillus, fusarium and penicillium species.Int. J. Food Microbiol.199843314115810.5094/APR.2012.012 9801191
    [Google Scholar]
  67. SoobratteeM.A. NeergheenV.S. Luximon-RammaA. AruomaO.I. BahorunT. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions.Mutat. Res.20055791-220021310.1016/j.mrfmmm.2005.03.023 16126236
    [Google Scholar]
  68. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e47 28620474
    [Google Scholar]
  69. MongkolsilpS. PongbupakitI. Sae-LeeN. SitthihawormW. ArticleO. Radical scavenging activity and total phenolic content of medicinal plants used in primary health care savitree mongkolsilp, isara pongbupakit, nittaya sae-lee and worapan sitthithaworn.Swu J Pharm Sci200493235
    [Google Scholar]
  70. IswaldiI. Gómez-CaravacaA.M. Lozano-SánchezJ. Arráez-RománD. Segura-CarreteroA. Fernández-GutiérrezA. Profiling of phenolic and other polar compounds in zucchini (cucurbita pepo l.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.Food Res. Int.2013507784
    [Google Scholar]
  71. YangR.Y. LinS. KuoG. Content and distribution of flavonoids among 91 edible plant species.Asia Pac. J. Clin. Nutr.200817S1275279 18296355
    [Google Scholar]
  72. SumiyoshiM. KimuraY. Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice.J. Pharm. Pharmacol.2006582201207 16451748
    [Google Scholar]
  73. UnuofinJ.O. OtunolaG.A. AfolayanA.J. In vitro α-amylase, α-glucosidase, lipase inhibitory and cytotoxic activities of tuber extracts of Kedrostis Africana (L.).Cogn Heliyon201849e00810
    [Google Scholar]
  74. KumarB.D. MitraA. ManjunathaM. A comparative study of alpha-amylase inhibitory activities of common antidiabetic plants of kharagpur.Int J Green Pharm201041115121
    [Google Scholar]
  75. KarthicK. KirthiramK.S. SadasivamS. ThayumanavanB. PalvannanT. Identification of α amylase inhibitors from Syzygium cumini Linn seeds.Indian J. Exp. Biol.2008469677680 18949899
    [Google Scholar]
  76. Alonso-CastroA.J. DomínguezF. Zapata-MoralesJ.R. Carranza-ÁlvarezC. Plants used in the traditional medicine of Mesoamerica (Mexico and Central America) and the Caribbean for the treatment of obesity.J. Ethnopharmacol.2015175335345 26410815
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230810115238
Loading
/content/journals/cff/10.2174/2666862901666230810115238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test