Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Given the lack of options for treating infectious diseases, it is urgent to explore new antimicrobials. Plant food historically represents relevant sources of antimicrobial molecules.

Objective

Here, we show that green tea can eradicate biofilms and planktonic cells of clinical isolates of and

Methods

We conducted antimicrobial activity tests (MIC, MBC, MBEC). Cytotoxicity tests were conducted using BGM cells. We used UPLC and GC-MS to detect flavonoids and other relevant phytomolecules. The antioxidant potential was assessed using the ®-carotene bleaching test. The extract was combined to clinically relevant antimicrobial drugs to investigate possible synergism or antagonism.

Results

To the best of our knowledge, MIC values are among the lowest ever described for the alcoholic extract (8 μg/mL). The extract presented elevated antioxidant potential and was not toxic to BGM cells. When the extract was combined to clinically relevant antimicrobial drugs, statistically significant antagonism was frequent for the drugs used against isolates, whilst significant synergism was observed for some drugs used against isolates.

Conclusion

Our data open doors for exploring isolated molecules from green tea extract against bacterial biofilms, and for developing formulations for clinical treatments.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230419092405
2023-09-01
2025-01-24
Loading full text...

Full text loading...

References

  1. ReymanM. van HoutenM.A. WatsonR.L. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: A randomized trial.Nat. Commun.202213189310.1038/s41467‑022‑28525‑z35173154
    [Google Scholar]
  2. CoorayT. ZhangJ. ZhongH. Profiles of antibiotic resistome and microbial community in groundwater of CKDu prevalence zones in Sri Lanka.J. Hazard. Mater.202140312381610.1016/j.jhazmat.2020.12381633264913
    [Google Scholar]
  3. ZhouY. SmithD. LeongB.J. BrännströmK. AlmqvistF. ChapmanM.R. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms.J. Biol. Chem.201228742350923510310.1074/jbc.M112.38373722891247
    [Google Scholar]
  4. MirzaB. IkramH. BilgramiS. HaleemD.J. HaleemM.A. Neurochemical and behavioral effects of green tea (Camellia sinensis): A model study.Pak. J. Pharm. Sci.201326351151623625424
    [Google Scholar]
  5. HeoJ.C. RhoJ.R. KimT.H. KimS.Y. LeeS.H. An aqueous extract of green tea Camellia sinensis increases expression of Th1 cell-specific anti-asthmatic markers.Int. J. Mol. Med.200822676376719020774
    [Google Scholar]
  6. BatistaG.A. CunhaC.L. ScarteziniM. von der HeydeR. BitencourtM.G. MeloS.F. Prospective double-blind crossover study of Camellia sinensis (green tea) in dyslipidemias.Arq. Bras. Cardiol.200993212813410.1590/S0066‑782X200900080001019838489
    [Google Scholar]
  7. KangM.Y. ParkY.H. KimB.S. Preventive effects of green tea (Camellia sinensis var. assamica) on diabetic nephropathy.Yonsei Med. J.201253113814410.3349/ymj.2012.53.1.13822187244
    [Google Scholar]
  8. FilippiniT. MalavoltiM. BorrelliF. Green tea (Camellia sinensis) for the prevention of cancer.Cochrane Libr.2020202111CD00500410.1002/14651858.CD005004.pub332118296
    [Google Scholar]
  9. HarborneJ.B. Phytochemical methods: A guide to modern techniques on plant analysis.3rd edUKKluwer Academic Publishers1998299312
    [Google Scholar]
  10. Dias-SouzaM.V. dos SantosR.M. CerávoloI.P. CosenzaG. Ferreira MarçalP.H. FigueiredoF.J.B. Euterpe oleracea pulp extract: Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs.Microb. Pathog.2018114293510.1016/j.micpath.2017.11.00629146496
    [Google Scholar]
  11. Dias-SouzaM.V. AndradeS. AguiarA.P. MonteiroA.S. Evaluation of Antimicrobial and Anti-biofilm activities of Anacardium occidentale stem bark extract.J. Nat. Prod.201326198205
    [Google Scholar]
  12. Dias-SouzaM.V. CaldoncelliJ.L. MonteiroA.S. Anacardium occidentale stem bark extract can decrease the efficacy of antimicrobial drugs.J Med Biol Sci201312161165
    [Google Scholar]
  13. AdakM. GabarM.A. Green tea as a functional food for better health: A brief review.Res. J. Pharm. Biol. Chem. Sci.20112645664
    [Google Scholar]
  14. LevisonM.E. LevisonJ.H. Pharmacokinetics and pharmacodynamics of antibacterial agents.Infect. Dis. Clin. North Am.200923479181510.1016/j.idc.2009.06.008
    [Google Scholar]
  15. SharmaA. GuptaS. SarethyI.P. DangS. GabraniR. Green tea extract: Possible mechanism and antibacterial activity on skin pathogens.Food Chem.2012135267267510.1016/j.foodchem.2012.04.14322868144
    [Google Scholar]
  16. ReygaertW.C. The antimicrobial possibilities of green tea.Front. Microbiol.2014543410.3389/fmicb.2014.0043425191312
    [Google Scholar]
  17. TaylorP.W. Hamilton-MillerJ.M.T. StapletonP.D. Antimicrobial properties of green tea catechins.Food Sci. Technol. Bull.200527718110.1616/1476‑2137.1418419844590
    [Google Scholar]
  18. RadjiM. AgustamaR.A. ElyaB. TjampakasariC.R. Antimicrobial activity of green tea extract against isolates of methicillin–resistant Staphylococcus aureus and multi–drug resistant Pseudomonas aeruginosa.Asian Pac. J. Trop. Biomed.20133866366710.1016/S2221‑1691(13)60133‑123905026
    [Google Scholar]
  19. MoraA. PawaJ. ChaverriJ.M. AriasM.L. Determination of the antimicrobial capacity of green tea (Camellia sinensis) against potentially pathogenic agents Escherichia coli, Salmonella enterica, Staphylococcus aureus, Listeria monocytogenes, Candida albicans and Aspergillus niger.Arch. Latinoam. Nutr.201363324725325362825
    [Google Scholar]
  20. JeonJ. KimJ.H. LeeC.K. OhC.H. SongH.J. The Antimicrobial Activity of (-)-Epigallocatehin-3-Gallate and Green Tea Extracts against Pseudomonas aeruginosa and Escherichia coli Isolated from Skin Wounds.Ann. Dermatol.201426556456910.5021/ad.2014.26.5.56425324647
    [Google Scholar]
  21. GonzalesG.B. RaesK. CoelusS. StruijsK. SmaggheG. Van CampJ. Ultra(high)-pressure liquid chromatography–electrospray ionization-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste.J. Chromatogr. A20141323394810.1016/j.chroma.2013.10.07724280615
    [Google Scholar]
  22. MabryT.J. MarkhamK.R. ThomasM.B. The Systematic Identification of Flavonoids.Springer-Verlag197010.1007/978‑3‑642‑88458‑0
    [Google Scholar]
  23. HanK.C. WongW.C. BenzieI.F.F. Genoprotective effects of green tea (Camellia sinensis) in human subjects: Results of a controlled supplementation trial.Br. J. Nutr.2011105217117910.1017/S000711451000321120807462
    [Google Scholar]
  24. dos SantosR.M. CostaG. CerávoloI.P. Dias-SouzaM.V. Antibiofilm potential of Psidium guajava and Passiflora edulis pulp extracts against Staphylococcus aureus, cytotoxicity, and interference on the activity of antimicrobial drugs.Future Journal of Pharmaceutical Sciences2020614810.1186/s43094‑020‑00056‑8
    [Google Scholar]
  25. HuangY.S. DufourR. DavignonJ. Effect of methyl linoleate administration on phospholipid fatty acid composition and osmotic fragility of erythrocytes in essential fatty acid deficient rats.J. Am. Coll. Nutr.198321556110.1080/07315724.1983.107199096886244
    [Google Scholar]
  26. TampucciS. MontiD. BurgalassiS. Effect of 5-Oxo-2-pyrrolidinecarboxylic acid (PCA) as a new topically applied agent for dry eye syndrome treatment.Pharmaceutics201810313710.3390/pharmaceutics1003013730149648
    [Google Scholar]
  27. LeeJ.H. ShimJ.S. ChungM.S. LimS.T. KimK.H. In vitro anti-adhesive activity of green tea extract against pathogen adhesion.Phytother. Res.200923446046610.1002/ptr.260919107860
    [Google Scholar]
  28. KimS.A. RheeM.S. Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157:H7.Appl. Environ. Microbiol.201379216552656010.1128/AEM.02164‑1323956396
    [Google Scholar]
  29. SaleemR. AhmadM. NazA. SiddiquiH. AhmadS.I. FaiziS. Hypotensive and toxicological study of citric acid and other constituents from Tagetes patula roots.Arch. Pharm. Res.200427101037104210.1007/BF0297542815554261
    [Google Scholar]
  30. Gómez-MorenoG. GuardiaJ. Aguilar-SalvatierraA. Cabrera-AyalaM. Maté-Sánchez de-ValJ.E. Calvo-GuiradoJ.L. Effectiveness of malic acid 1% in patients with xerostomia induced by antihypertensive drugs.Med. Oral Patol. Oral Cir. Bucal2013181e49e5510.4317/medoral.1820622926481
    [Google Scholar]
  31. RayS. DuttaM. ChaudhuryK. DeB. GC–MS based metabolite profiling and angiotensin I-converting enzyme inhibitory property of black tea extracts.Revista Brasileira de Farmacognosia201727558058610.1016/j.bjp.2017.05.006
    [Google Scholar]
  32. YükselAK YükseM Şat IG. Determination of certain physicochemical characteristics and sensory properties of green tea powder (matcha) added ice creams and detection of their organic acid and mineral contents.Gida20174221162
    [Google Scholar]
  33. CarroM.D. LópezS. ValdésC. OvejeroF.J. Effect of dl-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC).Anim. Feed Sci. Technol.199979427928810.1016/S0377‑8401(99)00034‑6
    [Google Scholar]
  34. ColovicM.B. VasicV.M. DjuricD.M. KrsticD.Z. Sulphur-containing Amino Acids: Protective role against free radicals and heavy metals.Curr. Med. Chem.201825332433510.2174/092986732466617060907543428595554
    [Google Scholar]
  35. IsogaiE. IsogaiH. HiroseK. HayashiS. OgumaK. In vivo synergy between green tea extract and levofloxacin against enterohemorrhagic Escherichia coli O157 infection.Curr. Microbiol.200142424825110.1007/s002840335711178724
    [Google Scholar]
  36. FarooquiA. KhanA. BorghettoI. KazmiS.U. RubinoS. PagliettiB. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.PLoS One2015102e011843110.1371/journal.pone.011843125719410
    [Google Scholar]
  37. HaciogluM. DoslerS. Birteksoz TanA.S. OtukG. Antimicrobial activities of widely consumed herbal teas, alone or in combination with antibiotics: An in vitro study.PeerJ20175e346710.7717/peerj.346728761777
    [Google Scholar]
  38. Dos SantosL.D.R. Dos SantosA.E.S. CerávoloI.P. FigueiredoF.J.B. Dias-SouzaM.V. Antibiofilm activity of black tea leaf extract, its cytotoxicity and interference on the activity of antimicrobial drugs.Biointerface Res. Appl. Chem.2018835653569
    [Google Scholar]
  39. Dias-SouzaM.V. dos SantosR.M. de SiqueiraE.P. Ferreira-MarçalP.H. Antibiofilm activity of cashew juice pulp against Staphylococcus aureus, high performance liquid chromatography/diode array detection and gas chromatography-mass spectrometry analyses, and interference on antimicrobial drugs.J Food Drug Anal201725358959610.1016/j.jfda.2016.07.00928911645
    [Google Scholar]
  40. Dos SantosR.M. PimentaG. Dias-SouzaM.V. Carotenoids and flavonoids can impair the effectiveness of some antimicrobial drugs against clinical isolates of Escherichia coli and Staphylococcus aureus.Int. Food Res. J.2015517771782
    [Google Scholar]
  41. Dos SantosR.M. PimentaG. FigueiredoF.J.B. Dias-SouzaM.V. Interference of flavonoids and carotenoids on the antimicrobial activity of some drugs against clinical isolates of Pseudomonas aeruginosa.Int. Food Res. J.20162312681273
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230419092405
Loading
/content/journals/cff/10.2174/2666862901666230419092405
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antimicrobial; biofilm; flavonoids; Green tea; Pseudomonas aeruginosa; Staphylococcus aureus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test