Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Osteoporosis (OP) remains a significant global health challenge, marked by high prevalence and considerable economic burden, yet effective therapeutic options remain limited. Central to the pathogenesis of OP is mitochondrial dysfunction, which adversely impacts bone formation and resorption. This review provides an in-depth analysis of the complex relationship between mitochondrial function and OP, elucidating critical molecular mechanisms and identifying promising therapeutic agents. Among these, zoledronic acid and resveratrol stand out, demonstrating significant efficacy in enhancing mitochondrial functions and enhancing bone density in both preclinical models and clinical trials. Moreover, innovative drug delivery systems, such as mitochondrial-targeted nanodelivery systems and localized delivery methods, have been developed to ensure precise targeting and reduce systemic side effects, thereby enhancing bioavailability and therapeutic outcomes. By delving into these advancements, this review seeks to facilitate the translation of mitochondrial-targeted therapies from preclinical research to clinical application, ultimately advancing OP management and improving patient outcomes.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855342971240816120237
2024-09-02
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cdth/20/1/CDTH-20-1-09.html?itemId=/content/journals/cdth/10.2174/0115748855342971240816120237&mimeType=html&fmt=ahah

References

  1. KanisJ.A. JohnellO. OdenA. SernboI. Redlund-JohnellI. DawsonA. De LaetC. JonssonB. Long-term risk of osteoporotic fracture in Malmö.Osteoporos. Int.200011866967410.1007/s00198007006411095169
    [Google Scholar]
  2. MeltonL.J. AtkinsonE.J. O’ConnorM.K. O’FallonW.M. RiggsB.L. Bone density and fracture risk in men.J. Bone Miner. Res.199813121915192310.1359/jbmr.1998.13.12.19159844110
    [Google Scholar]
  3. MeltonL.J. ChrischillesE.A. CooperC. LaneA.W. RiggsB.L. Perspective. How many women have osteoporosis?J. Bone Miner. Res.1992791005101010.1002/jbmr.56500709021414493
    [Google Scholar]
  4. CurtisE.M. van der VeldeR. MoonR.J. van den BerghJ.P.W. GeusensP. de VriesF. van StaaT.P. CooperC. HarveyN.C. Epidemiology of fractures in the United Kingdom 1988–2012: Variation with age, sex, geography, ethnicity and socioeconomic status.Bone201687192610.1016/j.bone.2016.03.00626968752
    [Google Scholar]
  5. BorgströmF. KarlssonL. OrtsäterG. NortonN. HalboutP. CooperC. LorentzonM. McCloskeyE.V. HarveyN.C. JavaidM.K. KanisJ.A. Fragility fractures in Europe: burden, management and opportunities.Arch. Osteoporos.20201515910.1007/s11657‑020‑0706‑y32306163
    [Google Scholar]
  6. Aibar-AlmazánA. Voltes-MartínezA. Castellote-CaballeroY. Afanador-RestrepoD.F. Carcelén-FraileM.C. López-RuizE. Current status of the diagnosis and management of osteoporosis.Int. J. Mol. Sci.20222316946510.3390/ijms2316946536012730
    [Google Scholar]
  7. KimJ. KimB.Y. LeeJ.S. JeongY.M. ChoH.J. ParkE. KimD. KimS.S. KimB.T. ChoiY.J. WonY.Y. JinH.S. ChungY.S. JeongS.Y. UBAP2 plays a role in bone homeostasis through the regulation of osteoblastogenesis and osteoclastogenesis.Nat. Commun.2023141366810.1038/s41467‑023‑39448‑837339951
    [Google Scholar]
  8. ZhangY. LiuH. ZhangC. ZhangT. ZhangB. LiL. ChenG. FuD. WangK. Endochondral ossification pathway genes and postmenopausal osteoporosis: Association and specific allele related serum bone sialoprotein levels in Han Chinese.Sci. Rep.2015511678310.1038/srep1678326568273
    [Google Scholar]
  9. MartemucciG. PortincasaP. Di CiaulaA. MarianoM. CentonzeV. D’AlessandroA.G. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview.Mech. Ageing Dev.202220611170710.1016/j.mad.2022.11170735839856
    [Google Scholar]
  10. ChandraA. RajawatJ. Skeletal aging and osteoporosis: mechanisms and therapeutics.Int. J. Mol. Sci.2021227355310.3390/ijms2207355333805567
    [Google Scholar]
  11. ChenW. ZhaoH. LiY. Mitochondrial dynamics in health and disease: mechanisms and potential targets.Signal Transduct. Target. Ther.20238133310.1038/s41392‑023‑01547‑937669960
    [Google Scholar]
  12. LiuJ. GaoZ. LiuX. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis.Front. Endocrinol. (Lausanne)202415132531710.3389/fendo.2024.132531738370357
    [Google Scholar]
  13. LiS. KimM.J. LeeS.H. JinL. CongW. JeongH.G. LeeK.Y. Metallothionein 3 promotes osteoblast differentiation in C2C12 cells via reduction of oxidative stress.Int. J. Mol. Sci.2021229431210.3390/ijms2209431233919218
    [Google Scholar]
  14. SrinivasanS. KoenigsteinA. JosephJ. SunL. KalyanaramanB. ZaidiM. AvadhaniN.G. Role of mitochondrial reactive oxygen species in osteoclast differentiation.Ann. N. Y. Acad. Sci.20101192124525210.1111/j.1749‑6632.2009.05377.x20392243
    [Google Scholar]
  15. WangY. ZhaoX. LotzM. TerkeltaubR. Liu-BryanR. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α.Arthritis Rheumatol.20156782141215310.1002/art.3918225940958
    [Google Scholar]
  16. GanX. HuangS. YuQ. YuH. YanS.S. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction.Biochem. Biophys. Res. Commun.2015468471972510.1016/j.bbrc.2015.11.02226577411
    [Google Scholar]
  17. CaiW.J. ChenY. ShiL.X. ChengH.R. BandaI. JiY.H. WangY.T. LiX.M. MaoY.X. ZhangD.F. DaiP.P. SunX.Y. NingX.H. HuangS.B. MaJ.F. ZhaoS.F. AKT-GSK3β signaling pathway regulates mitochondrial dysfunction-associated OPA1 cleavage contributing to osteoblast apoptosis: preventative effects of hydroxytyrosol.Oxid. Med. Cell. Longev.2019201912010.1155/2019/410173831281574
    [Google Scholar]
  18. ZhangF. PengW. ZhangJ. DongW. WuJ. WangT. XieZ. P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head.Cell Death Dis.20201114210.1038/s41419‑020‑2238‑131959744
    [Google Scholar]
  19. YangX. JiangT. WangY. GuoL. The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats.Sci. Rep.2019911842410.1038/s41598‑019‑44766‑331804494
    [Google Scholar]
  20. ChenH. HanZ. WangY. SuJ. LinY. ChengX. LiuW. HeJ. FanY. ChenL. ZuoH. Targeting ferroptosis in bone-related diseases: facts and perspectives.J. Inflamm. Res.2023164661467710.2147/JIR.S43211137872954
    [Google Scholar]
  21. CathelineS.E. KaiserE. EliseevR.A. Mitochondrial genetics and function as determinants of bone phenotype and aging.Curr. Osteoporos. Rep.202321554055110.1007/s11914‑023‑00816‑437542684
    [Google Scholar]
  22. RenL. ChenX. ChenX. LiJ. ChengB. XiaJ. Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stem cells.Front. Cell Dev. Biol.2020858007010.3389/fcell.2020.58007033178694
    [Google Scholar]
  23. YanC. ShiY. YuanL. LvD. SunB. WangJ. LiuX. AnF. Mitochondrial quality control and its role in osteoporosis.Front. Endocrinol. (Lausanne)202314107705810.3389/fendo.2023.107705836793284
    [Google Scholar]
  24. LiQ. HuangY. Mitochondrial targeted strategies and their application for cancer and other diseases treatment.J. Pharm. Investig.202050327129310.1007/s40005‑020‑00481‑0
    [Google Scholar]
  25. BețiuA.M. NoveanuL. HâncuI.M. LascuA. PetrescuL. MaackC. ElmérE. MunteanD.M. Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed.Int. J. Mol. Sci.202223211365310.3390/ijms23211365336362438
    [Google Scholar]
  26. ChindamoG. SapinoS. PeiraE. ChirioD. GonzalezM.C. GallarateM. Bone diseases: current approach and future perspectives in drug delivery systems for bone targeted therapeutics.Nanomaterials (Basel)202010587510.3390/nano1005087532370009
    [Google Scholar]
  27. AraiM. ShibataY. PugdeeK. AbikoY. OgataY. Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3‐E1 cells.IUBMB Life2007591273310.1080/1521654060115618817365177
    [Google Scholar]
  28. ChenM. WangD. LiM. HeY. HeT. ChenM. HuY. LuoZ. CaiK. Nanocatalytic biofunctional MOF coating on titanium implants promotes osteoporotic bone regeneration through cooperative pro-osteoblastogenesis MSC reprogramming.ACS Nano2022169153971541210.1021/acsnano.2c0720036106984
    [Google Scholar]
  29. JinW. ZhuX. YaoF. XuX. ChenX. LuoZ. ZhaoD. LiX. LengX. SunL. Cytoprotective effect of Fufang Lurong Jiangu capsule against hydrogen peroxide-induced oxidative stress in bone marrow stromal cell-derived osteoblasts through the Nrf2/HO-1 signaling pathway.Biomed. Pharmacother.202012110967610.1016/j.biopha.2019.10967631810119
    [Google Scholar]
  30. ZhangX. ZhangD. ZhaoH. QinJ. QiH. ZuF. ZhouY. ZhangY. gCTRP3 inhibits oophorectomy‑induced osteoporosis by activating the AMPK/SIRT1/Nrf2 signaling pathway in mice.Mol. Med. Rep.202430213310.3892/mmr.2024.1325738818814
    [Google Scholar]
  31. FraserJ.H.E. HelfrichM.H. WallaceH.M. RalstonS.H. Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae.Bone199619322322610.1016/8756‑3282(96)00177‑98873962
    [Google Scholar]
  32. IshiiK. FumotoT. IwaiK. TakeshitaS. ItoM. ShimohataN. AburataniH. TaketaniS. LelliottC.J. Vidal-PuigA. IkedaK. Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation.Nat. Med.200915325926610.1038/nm.191019252502
    [Google Scholar]
  33. KimJ.M. JeongD. KangH.K. JungS.Y. KangS.S. MinB.M. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation.Cell. Physiol. Biochem.200720693594610.1159/00011045417982276
    [Google Scholar]
  34. RichardsonK.K. LingW. KragerK. FuQ. ByrumS.D. PathakR. Aykin-BurnsN. KimH.N. Ionizing radiation activates mitochondrial function in osteoclasts and causes bone loss in young adult male mice.Int. J. Mol. Sci.202223267510.3390/ijms2302067535054859
    [Google Scholar]
  35. HoL. WangL. RothT.M. PanY. VerdinE.M. HsiaoE.C. NissensonR.A. Sirtuin-3 promotes adipogenesis, osteoclastogenesis, and bone loss in aging male mice.Endocrinology201715892741275310.1210/en.2016‑173928911171
    [Google Scholar]
  36. KimH.N. HanL. IyerS. de CaboR. ZhaoH. O’BrienC.A. ManolagasS.C. AlmeidaM. Sirtuin1 suppresses osteoclastogenesis by seacetylating FoxOs.Mol. Endocrinol.201529101498150910.1210/me.2015‑113326287518
    [Google Scholar]
  37. FengJ. LiuS. MaS. ZhaoJ. ZhangW. QiW. CaoP. WangZ. LeiW. Protective effects of resveratrol on postmenopausal osteoporosis: regulation of SIRT1-NF-κB signaling pathway.Acta Biochim. Biophys. Sin. (Shanghai)201446121024103310.1093/abbs/gmu10325377437
    [Google Scholar]
  38. QuB. GongK. YangH. LiY. JiangT. ZengZ. CaoZ. PanX. SIRT1 suppresses high glucose and palmitate-induced osteoclast differentiation via deacetylating p66Shc.Mol. Cell. Endocrinol.20184749710410.1016/j.mce.2018.02.01529486220
    [Google Scholar]
  39. KlingeC.M. Estrogens regulate life and death in mitochondria.J. Bioenerg. Biomembr.201749430732410.1007/s10863‑017‑9704‑128401437
    [Google Scholar]
  40. PopovL.D. Mitochondrial biogenesis: An update.J. Cell. Mol. Med.20202494892489910.1111/jcmm.1519432279443
    [Google Scholar]
  41. Ventura-ClapierR. GarnierA. VekslerV. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1.Cardiovasc. Res.200879220821710.1093/cvr/cvn09818430751
    [Google Scholar]
  42. BuccolieroC. DicarloM. PignataroP. GaccioneF. ColucciS. ColaianniG. GranoM. The Novel role of PGC1α in bone metabolism.Int. J. Mol. Sci.2021229467010.3390/ijms2209467033925111
    [Google Scholar]
  43. ColaianniG. LippoL. SanesiL. BrunettiG. CeliM. CirulliN. PasseriG. ReselandJ. SchipaniE. FaienzaM.F. TarantinoU. ColucciS. GranoM. Deletion of the transcription factor PGC-1α in mice negatively regulates bone mass.Calcif. Tissue Int.2018103663865210.1007/s00223‑018‑0459‑430094757
    [Google Scholar]
  44. TangX. MaS. LiY. SunY. ZhangK. ZhouQ. YuR. Evaluating the activity of sodium butyrate to prevent osteoporosis in rats by promoting osteal GSK-3β/Nrf2 signaling and mitochondrial function.J. Agric. Food Chem.202068246588660310.1021/acs.jafc.0c0182032459091
    [Google Scholar]
  45. ZhangT. ChiY. KangY. LuH. NiuH. LiuW. LiY. Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC‐1α mediated attenuation of mitochondrial oxidative stress.J. Cell. Physiol.201923445033504310.1002/jcp.2730630187480
    [Google Scholar]
  46. LosónO.C. SongZ. ChenH. ChanD.C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission.Mol. Biol. Cell201324565966710.1091/mbc.e12‑10‑072123283981
    [Google Scholar]
  47. SongJ. HerrmannJ.M. BeckerT. Quality control of the mitochondrial proteome.Nat. Rev. Mol. Cell Biol.2021221547010.1038/s41580‑020‑00300‑233093673
    [Google Scholar]
  48. MaoY.X. CaiW.J. SunX.Y. DaiP.P. LiX.M. WangQ. HuangX.L. HeB. WangP.P. WuG. MaJ.F. HuangS.B. RAGE-dependent mitochondria pathway: a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products.Cell Death Dis.20189667410.1038/s41419‑018‑0718‑329867140
    [Google Scholar]
  49. PicklesS. VigiéP. YouleR.J. Mitophagy and quality control mechanisms in mitochondrial maintenance.Curr. Biol.2018284R170R18510.1016/j.cub.2018.01.00429462587
    [Google Scholar]
  50. BaderV. WinklhoferK.F. PINK1 and Parkin: team players in stress-induced mitophagy.Biol. Chem.20204016-789189910.1515/hsz‑2020‑013532297878
    [Google Scholar]
  51. GuoY. JiaX. CuiY. SongY. WangS. GengY. LiR. GaoW. FuD. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis.Redox Biol.20214110191510.1016/j.redox.2021.10191533662874
    [Google Scholar]
  52. ChenL. ShiX. WengS.J. XieJ. TangJ.H. YanD.Y. WangB.Z. XieZ.J. WuZ.Y. YangL. Vitamin K2 can rescue the dexamethasone-induced downregulation of osteoblast autophagy and mitophagy thereby restoring osteoblast function in vitro and in vivo.Front. Pharmacol.202011120910.3389/fphar.2020.0120932848799
    [Google Scholar]
  53. LeeSY AnHJ KimJM SungMJ KimDK KimHK OhJ JeongHY LeeYH YangT KimJH LimHJ LeeS PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis.Stem Cell Res Ther202112158910.3390/cells1111172435681421
    [Google Scholar]
  54. SunX. YangX. ZhaoY. LiY. GuoL. Effects of 17β-estradiol on mitophagy in the murine MC3T3-E1 osteoblast cell line is mediated via G protein-coupled estrogen receptor and the ERK1/2 signaling pathway.Med. Sci. Monit.20182490391110.12659/MSM.90870529438359
    [Google Scholar]
  55. LingW. KragerK. RichardsonK.K. WarrenA.D. PonteF. Aykin-BurnsN. ManolagasS.C. AlmeidaM. KimH.N. Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency.JCI Insight2021610e14672810.1172/jci.insight.14672833878033
    [Google Scholar]
  56. XieX. HuL. MiB. XueH. HuY. PanayiA.C. EndoY. ChenL. YanC. LinZ. LiH. ZhouW. LiuG. Metformin alleviates bone loss in ovariectomized mice through inhibition of autophagy of osteoclast precursors mediated by E2F1.Cell Commun. Signal.202220116510.1186/s12964‑022‑00966‑536284303
    [Google Scholar]
  57. KumeS. UzuT. HoriikeK. Chin-KanasakiM. IsshikiK. ArakiS. SugimotoT. HanedaM. KashiwagiA. KoyaD. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney.J. Clin. Invest.201012041043105510.1172/JCI4137620335657
    [Google Scholar]
  58. TsengA.H.H. ShiehS.S. WangD.L. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage.Free Radic. Biol. Med.20136322223410.1016/j.freeradbiomed.2013.05.00223665396
    [Google Scholar]
  59. WangY. LiX. ZhouS. LiJ. ZhuY. WangQ. ZhaoF. MCU Inhibitor ruthenium red alleviates the osteoclastogenesis and ovariectomized osteoporosis via suppressing RANKL-induced ROS production and NFATc1 activation through P38 MAPK signaling pathway.Oxid. Med. Cell. Longev.2022202212710.1155/2022/772700636148414
    [Google Scholar]
  60. ZhangD.D. Mechanistic studies of the Nrf2-Keap1 signaling pathway.Drug Metab. Rev.200638476978910.1080/0360253060097197417145701
    [Google Scholar]
  61. DodsonM. Castro-PortuguezR. ZhangD.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol.20192310110710.1016/j.redox.2019.10110730692038
    [Google Scholar]
  62. SongX. LongD. Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases.Front. Neurosci.20201426710.3389/fnins.2020.0026732372896
    [Google Scholar]
  63. KimB.J. LeeS.H. KohJ.M. KimG.S. The association between higher serum ferritin level and lower bone mineral density is prominent in women ≥45 years of age (KNHANES 2008–2010).Osteoporos. Int.201324102627263710.1007/s00198‑013‑2363‑023592044
    [Google Scholar]
  64. KimB.J. AhnS.H. BaeS.J. KimE.H. LeeS.H. KimH.K. ChoeJ.W. KohJ.M. KimG.S. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: A 3-year retrospective longitudinal study.J. Bone Miner. Res.201227112279229010.1002/jbmr.169222729843
    [Google Scholar]
  65. XiaoL. AndemariamB. TaxelP. AdamsD.J. ZempskyW.T. DorcelusV. HurleyM.M. Loss of Bone in Sickle Cell Trait and Sickle Cell Disease Female Mice Is Associated With Reduced IGF-1 in Bone and Serum.Endocrinology201615783036304610.1210/en.2015‑200127171384
    [Google Scholar]
  66. ValanezhadA. OdatsuT. AbeS. WatanabeI. Bone formation ability and cell viability enhancement of MC3T3-E1 cells by ferrostatin-1 a ferroptosis inhibitor of cancer cells.Int. J. Mol. Sci.202122221225910.3390/ijms22221225934830144
    [Google Scholar]
  67. LiY. BaiB. ZhangY. Bone abnormalities in young male rats with iron intervention and possible mechanisms.Chem. Biol. Interact.2018279212610.1016/j.cbi.2017.11.00529122540
    [Google Scholar]
  68. XiaoW. BeibeiF. GuangsiS. YuJ. WenZ. XiH. YoujiaX. Iron overload increases osteoclastogenesis and aggravates the effects of ovariectomy on bone mass.J. Endocrinol.2015226312113410.1530/JOE‑14‑065726116610
    [Google Scholar]
  69. DingG. ZhaoJ. JiangD. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells.Exp. Ther. Med.20161162553256010.3892/etm.2016.317927284348
    [Google Scholar]
  70. CaoF. YangK. QiuS. LiJ. JiangW. TaoL. ZhuY. Metformin reverses oxidative stress‑induced mitochondrial dysfunction in pre‑osteoblasts via the EGFR/GSK‑3β/calcium pathway.Int. J. Mol. Med.20235143610.3892/ijmm.2023.523936999607
    [Google Scholar]
  71. ZhaoL. WangY. WangZ. XuZ. ZhangQ. YinM. Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character.J. Nutr. Biochem.201526111174118210.1016/j.jnutbio.2015.05.00926239832
    [Google Scholar]
  72. PalS. SinghM. PorwalK. RajakS. DasN. RajputS. TrivediA.K. MauryaR. SinhaR.A. SiddiqiM.I. SanyalS. ChattopadhyayN. Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: Discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function.Eur. J. Pharmacol.202191317463410.1016/j.ejphar.2021.17463434785210
    [Google Scholar]
  73. ZhuF.B. WangJ.Y. ZhangY.L. QuanR.F. YueZ.S. ZengL.R. ZhengW.J. HouQ. YanS.G. HuY.G. Curculigoside regulates proliferation, differentiation, and pro-inflammatory cytokines levels in dexamethasone-induced rat calvarial osteoblasts.Int. J. Clin. Exp. Med.201588123371234626550143
    [Google Scholar]
  74. SarkarJ. DasM. HowladerM.S.I. PrateekshaP. BarthelsD. DasH. Epigallocatechin-3-gallate inhibits osteoclastic differentiation by modulating mitophagy and mitochondrial functions.Cell Death Dis.2022131090810.1038/s41419‑022‑05343‑136307395
    [Google Scholar]
  75. LiX. LinH. ZhangX. JaspersR.T. YuQ. JiY. ForouzanfarT. WangD. HuangS. WuG. Notoginsenoside R1 attenuates oxidative stress‐induced osteoblast dysfunction through JNK signalling pathway.J. Cell. Mol. Med.20212524112781128910.1111/jcmm.1705434786818
    [Google Scholar]
  76. ParkC. LeeH. HanM.H. JeongJ.W. KimS.O. JeongS.J. LeeB.J. KimG.Y. ParkE.K. JeonY.J. ChoiY.H. Cytoprotective effects of fermented oyster extracts against oxidative stress-induced DNA damage and apoptosis through activation of the Nrf2/HO-1 signaling pathway in MC3T3-E1 osteoblasts.EXCLI J.2020191102111933013267
    [Google Scholar]
  77. MerckenE.M. MitchellS.J. Martin-MontalvoA. MinorR.K. AlmeidaM. GomesA.P. Scheibye-KnudsenM. PalaciosH.H. LicataJ.J. ZhangY. BeckerK.G. KhraiweshH. González-ReyesJ.A. VillalbaJ.M. BaurJ.A. ElliottP. WestphalC. VlasukG.P. EllisJ.L. SinclairD.A. BernierM. CaboR. SRT 2104 extends survival of male mice on a standard diet and preserves bone and muscle mass.Aging Cell201413578779610.1111/acel.1222024931715
    [Google Scholar]
  78. SmithJ.J. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo.BMC Sys Bio.20093131
    [Google Scholar]
  79. FunkJ.A. OdejinmiS. SchnellmannR.G. SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells.J. Pharmacol. Exp. Ther.2010333259360110.1124/jpet.109.16199220103585
    [Google Scholar]
  80. LiW. JiangW.S. SuY.R. TuK.W. ZouL. LiaoC.R. WuQ. WangZ.H. ZhongZ.M. ChenJ.T. ZhuS.Y. PINK1/Parkin-mediated mitophagy inhibits osteoblast apoptosis induced by advanced oxidation protein products.Cell Death Dis.20231428810.1038/s41419‑023‑05595‑536750550
    [Google Scholar]
  81. MaityJ. BarthelsD. SarkarJ. PrateekshaP. DebM. RolphD. DasH. Ferutinin induces osteoblast differentiation of DPSCs via induction of KLF2 and autophagy/mitophagy.Cell Death Dis.202213545210.1038/s41419‑022‑04903‑935552354
    [Google Scholar]
  82. ChenT. GaoF. LuoD. WangS. ZhaoY. LiuS. HuangJ. LinY. ZhangZ. HuangH. WanL. Cistanoside A promotes osteogenesis of primary osteoblasts by alleviating apoptosis and activating autophagy through involvement of the Wnt/β-catenin signal pathway.Ann. Transl. Med.2022102646410.21037/atm‑21‑674235282110
    [Google Scholar]
  83. JinZ.H. WangS.F. LiaoW. Zoledronic acid accelerates osteogenesis of bone marrow mesenchymal stem cells by attenuating oxidative stress via the SIRT3/SOD2 pathway and thus alleviates osteoporosis.Eur. Rev. Med. Pharmacol. Sci.20202442095210132141579
    [Google Scholar]
  84. JingX. DuT. ChenK. GuoJ. XiangW. YaoX. SunK. YeY. GuoF. Icariin protects against iron overload‐induced bone loss via suppressing oxidative stress.J. Cell. Physiol.20192347101231013710.1002/jcp.2767830387158
    [Google Scholar]
  85. HuangQ. GaoB. WangL. HuY.Q. LuW.G. YangL. LuoZ.J. LiuJ. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines.Toxicol. Appl. Pharmacol.2014280355056010.1016/j.taap.2014.08.00425130202
    [Google Scholar]
  86. ZhangJ. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: A review of in vivo and in vitro studies.Environ. Toxicol. Pharmacol.20207610335810.1016/j.etap.2020.10335832143118
    [Google Scholar]
  87. NiS. YuanY. QianZ. ZhongZ. LvT. KuangY. YuB. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis.Free Radic. Biol. Med.202116927128210.1016/j.freeradbiomed.2021.04.02733895289
    [Google Scholar]
  88. DingM. ChoE. ChenZ. ParkS.W. LeeT.H. (S)-2-(Cyclobutylamino)-N-(3-(3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)isonicotinamide attenuates RANKL-induced osteoclast differentiation by inhibiting NF-κB nuclear translocation.Int. J. Mol. Sci.2023245432710.3390/ijms2405432736901758
    [Google Scholar]
  89. KimE.N. TrangN.M. KangH. KimK.H. JeongG.S. Phytol suppresses osteoclast differentiation and oxidative stress through Nrf2/HO-1 regulation in RANKL-induced RAW264.7 cells.Cells20221122359610.3390/cells1122359636429027
    [Google Scholar]
  90. CheJ. YangJ. ZhaoB. ZhangG. WangL. PengS. ShangP. The effect of abnormal iron metabolism on osteoporosis.Biol. Trace Elem. Res.2020195235336510.1007/s12011‑019‑01867‑431473898
    [Google Scholar]
  91. ChungJ-H. KimY-S. NohK. LeeY-M. ChangS-W. KimE-C. Deferoxamine promotes osteoblastic differentiation in human periodontal ligament cells via the nuclear factor erythroid 2‐related factor‐mediated antioxidant signaling pathway.J. Periodontal Res.201449556357310.1111/jre.1213624111577
    [Google Scholar]
  92. MaH. WangX. ZhangW. LiH. ZhaoW. SunJ. YangM. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in Type 2 diabetic osteoporosis.Oxid. Med. Cell. Longev.2020202011810.1155/2020/906761033343809
    [Google Scholar]
  93. WangL. LuW.G. ShiJ. ZhangH.Y. XuX.L. GaoB. HuangQ. LiX.J. HuY.Q. JieQ. LuoZ.J. YangL. Anti-osteoporotic effects of tetramethylpyrazine via promoting osteogenic differentiation and inhibiting osteoclast formation.Mol. Med. Rep.20171668307831410.3892/mmr.2017.761028983593
    [Google Scholar]
  94. BallardA. ZengR. ZareiA. ShaoC. CoxL. YanH. FrancoA. DornG.W.II FaccioR. VeisD.J. The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca2+–NFATc1 axis.J. Biol. Chem.2020295196629664010.1074/jbc.RA119.01202332165499
    [Google Scholar]
  95. ZhangW. RongH. LiangJ. MaoC. LiZ. DaiZ. LiD. GuoW. ChenS. WangZ. WeiJ. Chitosan modified with PAP as a promising delivery system for melatonin in the treatment of osteoporosis: targeting the divalent metal transporter 1.J. Biol. Eng.20241812710.1186/s13036‑024‑00422‑738622739
    [Google Scholar]
  96. ChenL. ShiX. XieJ. WengS.J. XieZ.J. TangJ.H. YanD.Y. WangB.Z. FangK.H. HongC.X. WuZ.Y. YangL. Apelin-13 induces mitophagy in bone marrow mesenchymal stem cells to suppress intracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway.Free Radic. Biol. Med.202116335636810.1016/j.freeradbiomed.2020.12.23533385540
    [Google Scholar]
  97. FazilM. AliA. BabootaS. SahniJ.K. AliJ. Exploring drug delivery systems for treating osteoporosis.Expert Opin. Drug Deliv.20131081123113610.1517/17425247.2013.78551823537096
    [Google Scholar]
  98. ZhengZ. YuC. WeiH. Injectable hydrogels as three-dimensional network reservoirs for osteoporosis treatment.Tissue Eng. Part B Rev.202127543045410.1089/ten.teb.2020.016833086984
    [Google Scholar]
  99. WenC. XuX. ZhangY. XiaJ. LiangY. XuL. Bone targeting nanoparticles for the treatment of osteoporosis.Int. J. Nanomedicine2024191363138310.2147/IJN.S44434738371454
    [Google Scholar]
  100. KotakD.J. DevarajanP.V. Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for sublingual osteoporosis therapy (SLOT).Nanomedicine20202410215310.1016/j.nano.2020.10215331988038
    [Google Scholar]
  101. ShiS. DuanH. OuX. Targeted delivery of anti-osteoporosis therapy: Bisphosphonate-modified nanosystems and composites.Biomed. Pharmacother.202417511669910.1016/j.biopha.2024.11669938705129
    [Google Scholar]
  102. XiY. WangW. MaL. XuN. ShiC. XuG. HeH. PanW. Alendronate modified mPEG-PLGA nano-micelle drug delivery system loaded with astragaloside has anti-osteoporotic effect in rats.Drug Deliv.20222912386240210.1080/10717544.2022.208694235869674
    [Google Scholar]
  103. SunY. YeX. CaiM. LiuX. XiaoJ. ZhangC. WangY. YangL. LiuJ. LiS. KangC. ZhangB. ZhangQ. WangZ. HongA. WangX. Osteoblast-targeting-peptide modified nanoparticle for siRNA/microRNA delivery.ACS Nano20161065759576810.1021/acsnano.5b0782827176123
    [Google Scholar]
  104. GaoX. LiL. CaiX. HuangQ. XiaoJ. ChengY. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges.Biomaterials202126512040410.1016/j.biomaterials.2020.12040432987273
    [Google Scholar]
  105. RosdahA.A. AbbottB.M. LangendorfC.G. DengY. TruongJ.Q. WaddellH.M.M. LingN.X.Y. SmilesW.J. DelbridgeL.M.D. LiuG.S. OakhillJ.S. LimS.Y. HolienJ.K. A novel small molecule inhibitor of human Drp1.Sci. Rep.20221212153110.1038/s41598‑022‑25464‑z36513726
    [Google Scholar]
  106. ChengH. ChawlaA. YangY. LiY. ZhangJ. JangH.L. KhademhosseiniA. Development of nanomaterials for bone-targeted drug delivery.Drug Discov. Today20172291336135010.1016/j.drudis.2017.04.02128487069
    [Google Scholar]
  107. LiL. YuM. LiY. LiQ. YangH. ZhengM. HanY. LuD. LuS. GuiL. Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration.Bioact. Mater.2021651255126610.1016/j.bioactmat.2020.10.01833210023
    [Google Scholar]
  108. PengH. QiuX. ChengM. ZhaoY. SongL. ZhuB. LiY. LiuC. RenS. MiaoL. Resveratrol-loaded nanoplatform RSV@DTPF promote alveolar bone regeneration in OVX rat through remodeling bone-immune microenvironment.Chem. Eng. J.202347614661510.1016/j.cej.2023.146615
    [Google Scholar]
  109. LiuS. FuH. LvY. JiaoJ. GuoR. YangY. DongW. MiH. WangM. LiuM. LiR. α-Hemihydrate calcium sulfate/n-hydroxyapatite combined with metformin promotes osteogenesis in vitro and in vivo. Front. Bioeng. Biotechnol.20221089915710.3389/fbioe.2022.89915736246380
    [Google Scholar]
  110. ZhangQ. XinM. YangS. WuQ. XiangX. WangT. ZhongW. HelderM.N. JaspersR.T. PathakJ.L. XiaoY. Silica nanocarrier-mediated intracellular delivery of rapamycin promotes autophagy-mediated M2 macrophage polarization to regulate bone regeneration.Mater. Today Bio20232010062310.1016/j.mtbio.2023.10062337077506
    [Google Scholar]
  111. LiangH. ChenK. XieJ. YaoL. LiuY. HuF. LiH. LeiY. WangY. LvL. ChenZ. LiuS. LiuQ. WangZ. LiJ. ChangY.N. LiJ. YuanH. XingG. XingG. A bone-penetrating precise controllable drug release system enables localized treatment of osteoporotic fracture prevention via modulating osteoblast-osteoclast communication.Small20231926220719510.1002/smll.20220719536971278
    [Google Scholar]
  112. ShimH.W. KurianA.G. LeeJ. LeeS.C. KimH.W. SinghR.K. LeeJ.H. Surface-engineered titanium with nanoceria to enhance soft tissue integration via reactive oxygen species modulation and nanotopographical sensing.ACS Appl. Mater. Interfaces20241611136221363910.1021/acsami.4c0211938466038
    [Google Scholar]
  113. SinghR.K. YoonD.S. MandakhbayarN. LiC. KurianA.G. LeeN.H. LeeJ.H. KimH.W. Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: Activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress.Biomaterials202228812173210.1016/j.biomaterials.2022.12173236031457
    [Google Scholar]
  114. KurianA.G. SinghR.K. LeeJ.H. KimH.W. Surface-Engineered Hybrid Gelatin Methacryloyl with Nanoceria as Reactive Oxygen Species Responsive Matrixes for Bone Therapeutics.ACS Appl. Bio Mater.2022531130113810.1021/acsabm.1c0118935193358
    [Google Scholar]
  115. ParkI.S. MahapatraC. ParkJ.S. DashnyamK. KimJ.W. AhnJ.C. ChungP.S. YoonD.S. MandakhbayarN. SinghR.K. LeeJ.H. LeongK.W. KimH.W. Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis.Biomaterials202024211991910.1016/j.biomaterials.2020.11991932146371
    [Google Scholar]
  116. DayanandanA.P. ChoW.J. KangH. BelloA.B. KimB.J. AraiY. LeeS.H. Emerging nano-scale delivery systems for the treatment of osteoporosis.Biomater. Res.20232716810.1186/s40824‑023‑00413‑737443121
    [Google Scholar]
  117. ThangN.H. ChienT.B. CuongD.X. Polymer-based hydrogels applied in drug delivery: an overview.Gels20239752310.3390/gels907052337504402
    [Google Scholar]
  118. FangC.H. SunC.K. LinY.W. HungM.C. LinH.Y. LiC.H. LinI.P. ChangH.C. SunJ.S. ChangJ.Z.C. Metformin-incorporated gelatin/nano-hydroxyapatite scaffolds promotes bone regeneration in critical size rat alveolar bone defect model.Int. J. Mol. Sci.202223155810.3390/ijms2301055835008984
    [Google Scholar]
  119. MonavariM. HomaeigoharS. Fuentes-ChandíaM. NawazQ. MonavariM. VenkatramanA. BoccacciniA.R. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering.Mater. Sci. Eng. C202113111247010.1016/j.msec.2021.112470
    [Google Scholar]
  120. MohammadzadehM. ZareiM. AbbasiH. WebsterT.J. BeheshtizadehN. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms.J. Biol. Eng.20241812910.1186/s13036‑024‑00425‑438649969
    [Google Scholar]
  121. JangJ.W. MinK-E. KimC. ShinJ. LeeJ. YiS. Review: scaffold characteristics, fabrication methods, and biomaterials for the bone tissue engineering.Int. J. Precis. Eng. Manuf.202324351152910.1007/s12541‑022‑00755‑7
    [Google Scholar]
  122. LuY. LiM. LiL. WeiS. HuX. WangX. ShanG. ZhangY. XiaH. YinQ. High-activity chitosan/nano hydroxyapatite/zoledronic acid scaffolds for simultaneous tumor inhibition, bone repair and infection eradication.Mater. Sci. Eng. C20188222523310.1016/j.msec.2017.08.04329025652
    [Google Scholar]
  123. ZhangX. HeJ. QiaoL. WangZ. ZhengQ. XiongC. YangH. LiK. LuC. LiS. ChenH. HuX. 3D printed PCLA scaffold with nano‐hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug‐resistant bacteria colonization.Cell Prolif.20225510e1328910.1111/cpr.1328935791492
    [Google Scholar]
  124. RanZ. WangY. LiJ. XuW. TanJ. CaoB. LuoD. DingY. WuJ. WangL. XieK. DengL. FuP. SunX. ShiL. HaoY. 3D-printed biodegradable magnesium alloy scaffolds with zoledronic acid-loaded ceramic composite coating promote osteoporotic bone defect repair.Int. J. Bioprint.20239576910.18063/ijb.76937457935
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855342971240816120237
Loading
/content/journals/cdth/10.2174/0115748855342971240816120237
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test