Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

In particular, throughout life, women's health depends on having an ideal micronutrient level. Thus, pregnancy outcomes and the long-term health of a woman's offspring are significantly influenced by her physical and nutritional well-being during the preconception stage. Various nutrients are required in sufficient amounts to fulfill the requirements at the various phases in the life of females. Our analysis of the state of nutrition shows illnesses connected to micronutrient deficiencies, particularly anemia and its related deficiencies. Peer-reviewed publication databases and publicly available data from international and national sources were targeted in a structured literature search to sort out the direct or indirect association between the different micronutrients, their levels, sources and significance in the various stages of life of females. The goal of the current review is to identify any direct or indirect relationships between the numerous micronutrients, their sources, concentrations, and importance at different phases of female development.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855284781240202054050
2024-02-19
2024-12-27
Loading full text...

Full text loading...

References

  1. AlpertP.T. The role of vitamins and minerals on the immune system.Home Health Care Manage. Pract.201729319920210.1177/1084822317713300
    [Google Scholar]
  2. MagginiS. PierreA. CalderP. Immune function and micronutrient requirements change over the life course.Nutrients20181010153110.3390/nu1010153130336639
    [Google Scholar]
  3. TaghiabadiM. ArabA. RafieN. AskariG. Beneficial role of calcium in premenstrual syndrome: A systematic review of current literature.Int. J. Prev. Med.202011115610.4103/ijpvm.IJPVM_243_1933312465
    [Google Scholar]
  4. TeranE. HernandezI. NietoB. TavaraR. OcampoJ.E. CalleA. Coenzyme Q10 supplementation during pregnancy reduces the risk of pre‐eclampsia.Int. J. Gynaecol. Obstet.20091051434510.1016/j.ijgo.2008.11.03319154996
    [Google Scholar]
  5. KeatsE.C. OhC. ChauT. KhalifaD.S. ImdadA. BhuttaZ.A. Effects of vitamin and mineral supplementation during pregnancy on maternal, birth, child health and development outcomes in low- and middle-income countries: A systematic review.Campbell Syst. Rev.2021172e1127
    [Google Scholar]
  6. Rodríguez-CanoA.M. Calzada-MendozaC.C. Estrada-GutierrezG. Mendoza-OrtegaJ.A. Perichart-PereraO. Nutrients, mitochondrial function, and perinatal health.Nutrients2020127216610.3390/nu1207216632708345
    [Google Scholar]
  7. Darnton-HillI. Public health aspects in the prevention and control of vitamin deficiencies.Curr. Dev. Nutr.201939nzz07510.1093/cdn/nzz07531598578
    [Google Scholar]
  8. PecoraF. PersicoF. ArgentieroA. NegliaC. EspositoS. The role of micronutrients in support of the immune response against viral infections.Nutrients20201210319810.3390/nu1210319833092041
    [Google Scholar]
  9. DelvesP.J. RoittI.M. The immune system. First of two parts.N. Engl. J. Med.20003431374910.1056/NEJM20000706343010710882768
    [Google Scholar]
  10. Abu-OufN.M. JanM.M. The impact of maternal iron deficiency and iron deficiency anemia on child’s health.Saudi Med. J.201536214614910.15537/smj.2015.2.1028925719576
    [Google Scholar]
  11. GeorgieffM.K. Iron deficiency in pregnancy.Am. J. Obstet. Gynecol.2020223451652410.1016/j.ajog.2020.03.00632184147
    [Google Scholar]
  12. FisherA.L. NemethE. Iron homeostasis during pregnancy.Am. J. Clin. Nutr.20171061567S1574S10.3945/ajcn.117.15581229070542
    [Google Scholar]
  13. HegdeN. RichM.W. GayomaliC. The cardiomyopathy of iron deficiency.Tex. Heart Inst. J.200633334034417041692
    [Google Scholar]
  14. LeeG.R. Iron deficiency and iron-deficiency anemia. LeeG.R. BithellT.C. FoersterJ. AthensJ.W. LukenJ.N. Wintrobe’s Clinical Haematology.PhiladelphiaLea & Febiger1993808839
    [Google Scholar]
  15. NasiadekM. StragierowiczJ. KlimczakM. KilanowiczA. The role of zinc in selected female reproductive system disorders.Nutrients2020128246410.3390/nu1208246432824334
    [Google Scholar]
  16. GarnerT.B. HesterJ.M. CarothersA. DiazF.J. Role of zinc in female reproduction.Biol. Reprod.2021104597699410.1093/biolre/ioab02333598687
    [Google Scholar]
  17. LivingstoneC. Zinc. Nutr Clin Pract201530337138210.1177/088453361557037625681484
    [Google Scholar]
  18. SandsteadH.H. AuW. Zinc.3rd ed NorbergG.F. FowlerB.A. NorbergM. FilbergL.T. Handbook on the Toxicology of Metals.Amsterdam, The NetherlandsAcademic Press, Elsevier200792594510.1016/B978‑012369413‑3/50102‑6
    [Google Scholar]
  19. BilandžićN. SedakM. ĐokićM. Determination of zinc concentrations in foods of animal origin, fish and shellfish from Croatia and assessment of their contribution to dietary intake.J. Food Compos. Anal.2014352616610.1016/j.jfca.2014.04.006
    [Google Scholar]
  20. EatonS.B. KonnerM. Paleolithic nutrition.N. Engl. J. Med.1985312528328910.1056/NEJM1985013131205052981409
    [Google Scholar]
  21. ThappaD.M. RajeshN.G. SarithaM. GuptaD. ChandrashekarL. Acquired zinc deficiency in an adult female.Indian J. Dermatol.201257649249410.4103/0019‑5154.10307323248371
    [Google Scholar]
  22. WessellsK.R. BrownK.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting.PLoS One2012711e5056810.1371/journal.pone.005056823209782
    [Google Scholar]
  23. FiorentiniD. CappadoneC. FarruggiaG. PrataC. Magnesium: Biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency.Nutrients2021134113610.3390/nu1304113633808247
    [Google Scholar]
  24. TardyA.L. PouteauE. MarquezD. YilmazC. ScholeyA. Vitamins and minerals for energy, fatigue and cognition: A narrative review of the biochemical and clinical evidence.Nutrients202012122810.3390/nu1201022831963141
    [Google Scholar]
  25. de BaaijJ.H.F. HoenderopJ.G.J. BindelsR.J.M. Magnesium in man: Implications for health and disease.Physiol. Rev.201595114610.1152/physrev.00012.201425540137
    [Google Scholar]
  26. IsmailA A A. IsmailY. IsmailA.A. Chronic magnesium deficiency and human disease; time for reappraisal?QJM20181111175976310.1093/qjmed/hcx18629036357
    [Google Scholar]
  27. PiuriG. ZocchiM. Della PortaM. Magnesium in obesity, metabolic syndrome, and type 2 diabetes.Nutrients202113232010.3390/nu1302032033499378
    [Google Scholar]
  28. GröberU. SchmidtJ. KistersK. Magnesium in prevention and therapy.Nutrients2015798199822610.3390/nu709538826404370
    [Google Scholar]
  29. SkeaffS. Iodine deficiency in pregnancy: The effect on neurodevelopment in the child.Nutrients20113226527310.3390/nu302026522254096
    [Google Scholar]
  30. ZimmermannM.B. Iodine deficiency.Endocr. Rev.200930437640810.1210/er.2009‑001119460960
    [Google Scholar]
  31. VenturiS. DonatiF.M. VenturiA. VenturiM. GrossiL. GuidiA. Role of iodine in evolution and carcinogenesis of thyroid, breast and stomach.Adv. Clin. Path.200041111710936894
    [Google Scholar]
  32. HuJ. ZhangZ. ShenW.J. AzharS. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones.Nutr. Metab.2010714710.1186/1743‑7075‑7‑4720515451
    [Google Scholar]
  33. TurcuA.F. AuchusR.J. Adrenal steroidogenesis and congenital adrenal hyperplasia.Endocrinol. Metab. Clin. North Am.201544227529610.1016/j.ecl.2015.02.00226038201
    [Google Scholar]
  34. StuderJ.M. SchweerW.P. GablerN.K. RossJ.W. Functions of manganese in reproduction.Anim. Reprod. Sci.202223810692410.1016/j.anireprosci.2022.10692435121412
    [Google Scholar]
  35. AvilaD.S. PuntelR.L. AschnerM. Manganese in health and disease.Met. Ions Life Sci.20131319922710.1007/978‑94‑007‑7500‑8_724470093
    [Google Scholar]
  36. AschnerM. GuilarteT.R. SchneiderJ.S. ZhengW. Manganese: Recent advances in understanding its transport and neurotoxicity.Toxicol. Appl. Pharmacol.2007221213114710.1016/j.taap.2007.03.00117466353
    [Google Scholar]
  37. ArchibaldF.S. TyreeC. Manganese poisoning and the attack of trivalent manganese upon catecholamines.Arch. Biochem. Biophys.1987256263865010.1016/0003‑9861(87)90621‑73039917
    [Google Scholar]
  38. GreenbergJ.A. BellS.J. GuanY. YuY.H. Folic Acid supplementation and pregnancy: More than just neural tube defect prevention.Rev. Obstet. Gynecol.201142525922102928
    [Google Scholar]
  39. PietrzikK. BaileyL. ShaneB. Folic acid and L-5-methyltetrahydrofolate: Comparison of clinical pharmacokinetics and pharmacodynamics.Clin. Pharmacokinet.201049853554810.2165/11532990‑000000000‑0000020608755
    [Google Scholar]
  40. LyonP. StrippoliV. FangB. CimminoL. B vitamins and one-carbon metabolism: Implications in human health and disease.Nutrients2020129286710.3390/nu1209286732961717
    [Google Scholar]
  41. KernsJ.C. GutierrezJ.L. Thiamin.Adv. Nutr.20178239539710.3945/an.116.01397928298281
    [Google Scholar]
  42. RiederM.J. Prevention of neural tube defects with periconceptional folic acid.Clin. Perinatol.199421348350310.1016/S0095‑5108(18)30328‑27982331
    [Google Scholar]
  43. PitkinR.M. Folate and neural tube defects.Am. J. Clin. Nutr.2007851285S288S10.1093/ajcn/85.1.285S17209211
    [Google Scholar]
  44. CormickG. BelizánJ.M. Calcium intake and health.Nutrients2019117160610.3390/nu1107160631311164
    [Google Scholar]
  45. WillemseJ.P.M.M. MeertensL.J.E. ScheepersH.C.J. Calcium intake from diet and supplement use during early pregnancy: The Expect study I.Eur. J. Nutr.20195911830661104
    [Google Scholar]
  46. HofmeyrG.J. LawrieT.A. AtallahÁ.N. TorloniM.R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems.Cochrane Libr.2018201810CD00105910.1002/14651858.CD001059.pub530277579
    [Google Scholar]
  47. OmotayoM.O. DickinK.L. O’BrienK.O. NeufeldL.M. De RegilL.M. StoltzfusR.J. Calcium supplementation to prevent preeclampsia: Translating guidelines into practice in low-income countries.Adv. Nutr.20167227527810.3945/an.115.01073626980810
    [Google Scholar]
  48. JarjouL.M.A. SawoY. GoldbergG.R. LaskeyM.A. ColeT.J. PrenticeA. Unexpected long-term effects of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake: A follow-up study.Am. J. Clin. Nutr.201398372373010.3945/ajcn.113.06163023902782
    [Google Scholar]
  49. LönnerdalB. Calcium and iron absorption--mechanisms and public health relevance.Int. J. Vitam. Nutr. Res.2010804529329910.1024/0300‑9831/a00003621462112
    [Google Scholar]
  50. ChambialS. DwivediS. ShuklaK.K. JohnP.J. SharmaP. Vitamin C in disease prevention and cure: An overview.Indian J. Clin. Biochem.201328431432810.1007/s12291‑013‑0375‑324426232
    [Google Scholar]
  51. LiY. SchellhornH.E. New developments and novel therapeutic perspectives for vitamin C.J. Nutr.2007137102171218410.1093/jn/137.10.217117884994
    [Google Scholar]
  52. TalaricoV. AloeM. BarrecaM. GalatiM.C. RaiolaG. Do you remember scurvy?Clin. Ther.2014165525325625366945
    [Google Scholar]
  53. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.20104811812610.4103/0973‑7847.7090222228951
    [Google Scholar]
  54. AruomaO.I. Nutrition and health aspects of free radicals and antioxidants.Food Chem. Toxicol.199432767168310.1016/0278‑6915(94)90011‑68045480
    [Google Scholar]
  55. YoungI.S. WoodsideJ.V. Antioxidants in health and disease.J. Clin. Pathol.200154317618610.1136/jcp.54.3.17611253127
    [Google Scholar]
  56. RizviS. RazaS.T. AhmedF. AhmadA. AbbasS. MahdiF. The role of vitamin E in human health and some diseases.Sultan Qaboos Univ. Med. J.2014142e157e16524790736
    [Google Scholar]
  57. DrotleffA.M. TernesW. Determination of RS,E/Z-tocotrienols by HPLC.J. Chromatogr. A2001909221522310.1016/S0021‑9673(00)01110‑911269521
    [Google Scholar]
  58. NikiE. TraberM.G. A history of vitamin E.Ann. Nutr. Metab.201261320721210.1159/00034310623183290
    [Google Scholar]
  59. BurtonG.W. JoyceA. IngoldK.U. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes?Arch. Biochem. Biophys.1983221128129010.1016/0003‑9861(83)90145‑56830261
    [Google Scholar]
  60. Brigelius-FlohéR. TraberM.G. VitaminE. VitaminE. Function and metabolism.FASEB J.199913101145115510.1096/fasebj.13.10.114510385606
    [Google Scholar]
  61. LiaoS. OmageS.O. BörmelL. Vitamin E and metabolic health: Relevance of interactions with other micronutrients.Antioxidants2022119178510.3390/antiox1109178536139859
    [Google Scholar]
  62. GalliF. BonominiM. BartoliniD. Vitamin E (Alpha-Tocopherol) metabolism and nutrition in chronic kidney disease.Antioxidants202211598910.3390/antiox1105098935624853
    [Google Scholar]
  63. FidaleoM. TacconiS. SbarigiaC. Current nanocarrier strategies improve vitamin B12 pharmacokinetics, ameliorate patients’ lives, and reduce costs.Nanomaterials202111374310.3390/nano1103074333809596
    [Google Scholar]
  64. WatanabeF. BitoT. Vitamin B 12 sources and microbial interaction.Exp. Biol. Med.2018243214815810.1177/153537021774661229216732
    [Google Scholar]
  65. KräutlerB. Biochemistry of B12-cofactors in human metabolism.Subcell. Biochem.20125632334610.1007/978‑94‑007‑2199‑9_17
    [Google Scholar]
  66. FarquharsonJ. AdamsJ.F. The forms of vitamin B 12 in foods.Br. J. Nutr.197636112713610.1079/BJN19760063820366
    [Google Scholar]
  67. Brouwer-BrolsmaE. Dhonukshe-RuttenR. van WijngaardenJ. ZwaluwN. VeldeN. de GrootL. Dietary sources of vitamin B-12 and their association with vitamin B-12 status markers in healthy older adults in the B-PROOF study.Nutrients2015797781779710.3390/nu709536426389945
    [Google Scholar]
  68. LiS. XuL. QingJ. Multiple biological activities and biosynthesis mechanisms of specific conjugated linoleic acid isomers and analytical methods for prospective application.Food Chem.202340913525710.1016/j.foodchem.2022.135257
    [Google Scholar]
  69. GangidiR.R. LokeshB.R. Conjugated linoleic acid (CLA) formation in edible oils by photoisomerization: A review.J. Food Sci.2014795R781R78510.1111/1750‑3841.1244924754783
    [Google Scholar]
  70. BenjaminS. SpenerF. Conjugated linoleic acids as functional food: An insight into their health benefits.Nutr. Metab.2009613610.1186/1743‑7075‑6‑3619761624
    [Google Scholar]
  71. MehayaF.M. El-ShazlyA.I. El-DeinA.N. FaridM.A. Evaluation of nutritional and physicochemical characteristics of soy yogurt by Lactobacillus plantarum KU985432 and Saccharomyces boulardii CNCMI-745.Sci. Rep.20231311302610.1038/s41598‑023‑40207‑4
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855284781240202054050
Loading
/content/journals/cdth/10.2174/0115748855284781240202054050
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): health; illness; Micronutrients; nutrition; reproduction; women
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test