Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Gold Nanoparticles (GNPs) have emerged as a novel technology in the field of targeted delivery systems, offering promising solutions for site-specific disease treatment. These nanoparticles possess unique physicochemical properties, such as controlled size, shape, and surface chemistry, which enable precise manipulation for enhanced therapeutic efficacy. The biocompatibility and ease of functionalization of GNPs facilitate the conjugation with various biomolecules, including drugs, peptides, and nucleic acids, thereby improving their targeted delivery capabilities. Recent advancements in nanotechnology have leveraged GNPs for the treatment of a range of diseases, particularly in oncology, cardiology, and neurology. In cancer therapy, GNPs can be engineered to target tumor cells selectively, minimizing damage to healthy tissues and reducing side effects. This is achieved through the conjugation of GNPs with tumor-specific ligands, antibodies, or aptamers, which direct the nanoparticles to malignant cells, allowing for localized drug release and improved therapeutic outcomes. Moreover, GNPs exhibit remarkable potential in diagnostic imaging and photothermal therapy. Their unique optical properties, such as surface plasmon resonance, enable their use as contrast agents in imaging techniques, providing high-resolution and real-time monitoring of disease progression. In photothermal therapy, GNPs convert light energy into heat, effectively destroying targeted cells with minimal invasiveness. The development of GNP-based delivery systems also addresses significant challenges in drug resistance and bioavailability. By overcoming biological barriers and enhancing cellular uptake, GNPs improve the pharmacokinetics and pharmacodynamics of therapeutic agents. However, despite these advancements, the clinical translation of GNPs faces challenges such as potential toxicity, long-term stability, and regulatory hurdles. In conclusion, gold nanoparticles represent a cutting-edge approach in targeted delivery systems, offering significant potential for site-specific disease treatment. Continued research and innovation are essential to overcome existing challenges and fully realize the clinical applications of GNPs, ultimately revolutionizing precision medicine.

Gold nanoparticles exhibit unique physicochemical and optical properties. The gold nanoparticles have advanced techniques to cure different chronic diseases. Today, gold nanoparticles are aided by photodynamic therapy and radiation therapy as drug carriers. Due to this, researchers now focus on medical sciences to treat various diseases and therapeutic applications. This review provides all the aspects of gold-based nanoparticles, methods, and their pharmacological benefits in different fields of medical sciences. We also discuss various preparation methods and their advantages in pharmaceutical formulations.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855314069240709091743
2024-07-18
2025-04-22
Loading full text...

Full text loading...

References

  1. CaiW. GaoT. HongH. SunJ. Applications of gold nanoparticles in cancer nanotechnology.Nanotechnol. Sci. Appl.20081173210.2147/NSA.S3788 24198458
    [Google Scholar]
  2. KawasakiE.S. PlayerA. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer.Nanomedicine20051210110910.1016/j.nano.2005.03.002 17292064
    [Google Scholar]
  3. HortonM. Medical nanotechnology in the UK: A perspective from the London Centre for nanotechnology.Nanomedicine200531257 17292115
    [Google Scholar]
  4. LiuH. LianT. LiuY. HongY. SunD. LiQ. Plant-mediated synthesis of Au nanoparticles: separation and identification of active biomolecule in the water extract of Cacumen Platycladi.Ind. Eng. Chem. Res.201756185262527010.1021/acs.iecr.7b00064
    [Google Scholar]
  5. ZhangX. Gold nanoparticles: Recent advances in the biomedical applications.Cell Biochem. Biophys.201572377177510.1007/s12013‑015‑0529‑4 25663504
    [Google Scholar]
  6. ZengS. YongK.T. RoyI. DinhX.Q. YuX. LuanF. A review on functionalized gold nanoparticles for biosensing applications.Plasmonics20116349150610.1007/s11468‑011‑9228‑1
    [Google Scholar]
  7. DeviM. AwasthiS. Gold nanoparticles in drug delivery systems: Therapeutic applications.AIP Conf. Proc.201921421120
    [Google Scholar]
  8. DeepakP. AmuthaV. KamarajC. BalasubramaniG. AiswaryaD. PerumalP. Chemical and green synthesis of nanoparticles and their efficacy on cancer cells.In: Green Synthesis, Characterization and Applications of Nanoparticles.Elsevier201936938710.1016/B978‑0‑08‑102579‑6.00016‑2
    [Google Scholar]
  9. OyelereA. MwakwariS.C. OyelereA.K. Gold nanoparticles: From nanomedicine to nanosensing.Nanotechnol. Sci. Appl.20081456610.2147/NSA.S3707 24198460
    [Google Scholar]
  10. KitchingM. ChoudharyP. InguvaS. Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles.Enzyme Microb. Technol.201695768410.1016/j.enzmictec.2016.08.007 27866629
    [Google Scholar]
  11. Pérez-OrtizM. Zapata-UrzúaC. AcostaG.A. Álvarez-LuejeA. AlbericioF. KoganM.J. Gold nanoparticles as an efficient drug delivery system for GLP-1 peptides.Colloids Surf. B Biointerfaces2017158253210.1016/j.colsurfb.2017.06.015 28662391
    [Google Scholar]
  12. ZhouY. WangC.Y. ZhuY.R. ChenZ.Y. A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature.Chem. Mater.19991192310231210.1021/cm990315h
    [Google Scholar]
  13. RiviereJ.E. Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.200911263410.1002/wnan.24 20049776
    [Google Scholar]
  14. LiS.D. HuangL. Pharmacokinetics and biodistribution of nanoparticles.Mol. Pharm.20085449650410.1021/mp800049w 18611037
    [Google Scholar]
  15. ElahiN. KamaliM. BaghersadM.H. Recent biomedical applications of gold nanoparticles: A review.Talanta201818453755610.1016/j.talanta.2018.02.088 29674080
    [Google Scholar]
  16. MieszawskaA.J. ZamboriniF.P. Gold nanorods grown directly on surfaces from microscale patterns of gold seeds.Chem. Mater.200517133415342010.1021/cm050072v
    [Google Scholar]
  17. KimF. SongJ.H. YangP. Photochemical synthesis of gold nanorods.J. Am. Chem. Soc.200212448143161431710.1021/ja028110o 12452700
    [Google Scholar]
  18. YangM. LiuY. HouW. Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer.Nanoscale20179133434010.1039/C6NR06851K 27922138
    [Google Scholar]
  19. CanizalG. AscencioJ.A. Gardea-TorresdayJ. YacamánM.J. Multiple twinned gold nanorods grown by bio-reduction techniques.J. Nanopart. Res.200135/647548110.1023/A:1012578821566
    [Google Scholar]
  20. LooC. LinA. HirschL. Nanoshell-enabled photonics-based imaging and therapy of cancer.Technol. Cancer Res. Treat.200431334010.1177/153303460400300104 14750891
    [Google Scholar]
  21. BrinsonB.E. LassiterJ.B. LevinC.S. BardhanR. MirinN. HalasN.J. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces.Langmuir20082424141661417110.1021/la802049p 19360963
    [Google Scholar]
  22. DuraiswamyS. KhanS.A. Plasmonic nanoshell synthesis in microfluidic composite foams.Nano Lett.20101093757376310.1021/nl102478q 20731386
    [Google Scholar]
  23. ChenJ. McLellanJ.M. SiekkinenA. XiongY. LiZ.Y. XiaY. Facile synthesis of gold-silver nanocages with controllable pores on the surface.J. Am. Chem. Soc.200612846147761477710.1021/ja066023g 17105266
    [Google Scholar]
  24. ChenJ. SaekiF. WileyB.J. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents.Nano Lett.20055347347710.1021/nl047950t 15755097
    [Google Scholar]
  25. WangY. BlackK.C.L. LuehmannH. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment.ACS Nano2013732068207710.1021/nn304332s 23383982
    [Google Scholar]
  26. HeringK. CiallaD. AckermannK. SERS: a versatile tool in chemical and biochemical diagnostics.Anal. Bioanal. Chem.2008390111312410.1007/s00216‑007‑1667‑3 18000657
    [Google Scholar]
  27. ShaM.Y. XuH. PennS.G. CromerR. SERS nanoparticles: A new optical detection modality for cancer diagnosis.Nanomedicine20072572573410.2217/17435889.2.5.725
    [Google Scholar]
  28. WuH.L. TsaiH.R. HungY.T. A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates.Inorg. Chem.201150178106811110.1021/ic200504n 21797229
    [Google Scholar]
  29. GiersigM. MulvaneyP. Preparation of ordered colloid monolayers by electrophoretic deposition.Langmuir19939123408341310.1021/la00036a014
    [Google Scholar]
  30. PienpinijthamP. ThammacharoenC. EkgasitS. Green synthesis of size controllable and uniform gold nanospheres using alkaline degradation intermediates of soluble starch as reducing agent and stabilizer.Macromol. Res.201220121281128810.1007/s13233‑012‑0162‑7
    [Google Scholar]
  31. ZhaoP. LiN. AstrucD. State of the art in gold nanoparticle synthesis.Coord. Chem. Rev.20132573-463866510.1016/j.ccr.2012.09.002
    [Google Scholar]
  32. JayeoyeT.J. EzeF.N. SinghS. OlatundeO.O. BenjakulS. RujiralaiT. Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications.Int. J. Biol. Macromol.202117919620510.1016/j.ijbiomac.2021.02.199 33675826
    [Google Scholar]
  33. KumarA. JayeoyeT.J. MohiteP. Sustainable and consumer-centric nanotechnology-based materials: An update on the multifaceted applications, risks and tremendous opportunities.Nano-Structures & Nano-Objects20243810114810.1016/j.nanoso.2024.101148
    [Google Scholar]
  34. KumarA. ShahS.R. JayeoyeT.J. Biogenic metallic nanoparticles: Biomedical, analytical, food preservation, and applications in other consumable products.Front Nanotechnol20235117514910.3389/fnano.2023.1175149
    [Google Scholar]
  35. HuM. ChenJ. LiZ.Y. Gold nanostructures: Engineering their plasmonic properties for biomedical applications.Chem. Soc. Rev.200635111084109410.1039/b517615h 17057837
    [Google Scholar]
  36. TurkevichJ. StevensonP.C. HillierJ. A study of the nucleation and growth processes in the synthesis of colloidal gold.Discuss. Faraday Soc.195111557510.1039/df9511100055
    [Google Scholar]
  37. FrensG. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nat. Phys. Sci1973241105202210.1038/physci241020a0
    [Google Scholar]
  38. KimlingJ. MaierM. OkenveB. KotaidisV. BallotH. PlechA. Turkevich method for gold nanoparticle synthesis revisited.J. Phys. Chem. B200611032157001570710.1021/jp061667w 16898714
    [Google Scholar]
  39. YangS. WangY. WangQ. ZhangR. DingB. UV irradiation induced formation of Au nanoparticles at room.Colloids and Surfaces A Physicochemical and Engineering Aspects20073011174183
    [Google Scholar]
  40. KumarA. MurugesanS. PushparajV. Conducting organic-metallic composite submicrometer rods based on ionic liquids.Small20073342943310.1002/smll.200600442 17262867
    [Google Scholar]
  41. LiC. LiD. WanG. XuJ. HouW. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: Temperature and pH controls.Nanoscale Res. Lett.20116144010.1186/1556‑276X‑6‑440 21733153
    [Google Scholar]
  42. Ojea-JiménezI. BastúsN.G. PuntesV. Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles.J. Phys. Chem. C201111532157521575710.1021/jp2017242
    [Google Scholar]
  43. BrustM. WalkerM. BethellD. SchiffrinD.J. WhymanR. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system.J. Chem. Soc. Chem. Commun.19940780180210.1039/C39940000801
    [Google Scholar]
  44. ReetzM.T. HelbigW. Size-selective synthesis of nanostructured transition metal clusters.J. Am. Chem. Soc.1994116167401740210.1021/ja00095a051
    [Google Scholar]
  45. ReetzM.T. HelbigW. QuaiserS.A. StimmingU. BreuerN. VogelR. Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM.Science1995267519636736910.1126/science.267.5196.367 17837485
    [Google Scholar]
  46. JanaN.R. GearheartL. MurphyC.J. Seeding growth for size control of 5− 40 nm diameter gold nanoparticles.Langmuir200117226782678610.1021/la0104323
    [Google Scholar]
  47. SitiR.M. KhairunisakA.R. AzlanA.A. NoordinR. Green synthesis of 10 nm gold nanoparticles via seeded-growth method and its conjugation properties on lateral flow immunoassay.Adv. Mat. Res.201368681210.4028/www.scientific.net/AMR.686.8
    [Google Scholar]
  48. ShankarS.S. RaiA. AnkamwarB. SinghA. AhmadA. SastryM. Biological synthesis of triangular gold nanoprisms.Nat. Mater.20043748248810.1038/nmat1152 15208703
    [Google Scholar]
  49. SinghM. KalaivaniR. ManikandanS. SangeethaN. KumaraguruA.K. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga.Appl. Nanosci.20133214515110.1007/s13204‑012‑0115‑7
    [Google Scholar]
  50. DupontJ. FonsecaG.S. UmpierreA.P. FichtnerP.F.P. TeixeiraS.R. Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions.J. Am. Chem. Soc.2002124164228422910.1021/ja025818u 11960449
    [Google Scholar]
  51. SeitkalievaM.M. SamoylenkoD.E. LotsmanK.A. RodyginK.S. AnanikovV.P. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications.Coord. Chem. Rev.202144521398210.1016/j.ccr.2021.213982
    [Google Scholar]
  52. HeZ. AlexandridisP. Nanoparticles in ionic liquids: interactions and organization.Phys. Chem. Chem. Phys.20151728182381826110.1039/C5CP01620G 26120610
    [Google Scholar]
  53. JacobD.S. BittonL. GrinblatJ. FelnerI. KoltypinY. GedankenA. Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides.Chem. Mater.200618133162316810.1021/cm060782g
    [Google Scholar]
  54. WeltonT. Room-temperature ionic liquids. Solvents for synthesis and catalysis.Chem. Rev.19999982071208410.1021/cr980032t 11849019
    [Google Scholar]
  55. MuX. MengJ. LiZ.C. KouY. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation.J. Am. Chem. Soc.2005127279694969510.1021/ja051803v 15998067
    [Google Scholar]
  56. HagenC.M. WidegrenJ.A. MaitlisP.M. FinkeR.G. Is it homogeneous or heterogeneous catalysis? Compelling evidence for both types of catalysts derived from [Rh(η5-C5Me5)Cl2]2 as a function of temperature and hydrogen pressure.J. Am. Chem. Soc.2005127124423443210.1021/ja044154g 15783225
    [Google Scholar]
  57. FechlerN. FellingerT.P. AntoniettiM. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids.Adv. Mater.2013251757910.1002/adma.201203422 23027658
    [Google Scholar]
  58. ParaknowitschJ.P. ZhangJ. SuD. ThomasA. AntoniettiM. Ionic liquids as precursors for nitrogen-doped graphitic carbon.Adv. Mater.2010221879210.1002/adma.200900965 20217703
    [Google Scholar]
  59. LeitnerW. A greener solution.Nature2003423694393093110.1038/423930a 12827183
    [Google Scholar]
  60. CassolC.C. UmpierreA.P. MachadoG. WolkeS.I. DupontJ. The role of Pd nanoparticles in ionic liquid in the Heck reaction.J. Am. Chem. Soc.2005127103298329910.1021/ja0430043 15755145
    [Google Scholar]
  61. ArceA. EarleM.J. RodríguezH. SeddonK.R. Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide ionic liquids: Effect of the alkyl-substituent length.J. Phys. Chem. B2007111184732473610.1021/jp066377u 17261060
    [Google Scholar]
  62. GaoY. VoigtA. ZhouM. SundmacherK. Synthesis of single‐crystal gold nano‐and microprisms using a solvent‐reductant‐template ionic liquid.Chemical Rev.202312373443349210.1002/ejic.200800467
    [Google Scholar]
  63. LiuL. LiS. LiuL. DengD. XiaN. Simple, sensitive and selective detection of dopamine using dithiobis(succinimidylpropionate)-modified gold nanoparticles as colorimetric probes.Analyst2012137163794379910.1039/c2an35734h 22763413
    [Google Scholar]
  64. VermaA. SimardJ.M. WorrallJ.W.E. RotelloV.M. Tunable reactivation of nanoparticle-inhibited β-galactosidase by glutathione at intracellular concentrations.J. Am. Chem. Soc.200412643139871399110.1021/ja046572r 15506760
    [Google Scholar]
  65. SchäfflerM. SousaF. WenkA. Blood protein coating of gold nanoparticles as potential tool for organ targeting.Biomaterials201435103455346610.1016/j.biomaterials.2013.12.100 24461938
    [Google Scholar]
  66. PissuwanD. NiidomeT. CortieM.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems.J. Control. Release20111491657110.1016/j.jconrel.2009.12.006 20004222
    [Google Scholar]
  67. SahaB. BhattacharyaJ. MukherjeeA. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics.Nanoscale Res. Lett.200721261462210.1007/s11671‑007‑9104‑2
    [Google Scholar]
  68. RosemaryM.J. MacLarenI. PradeepT. Investigations of the antibacterial properties of ciprofloxacin@SiO2.Langmuir20062224101251012910.1021/la061411h 17107009
    [Google Scholar]
  69. BuryginG.L. KhlebtsovB.N. ShantrokhaA.N. DykmanL.A. BogatyrevV.A. KhlebtsovN.G. On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles.Nanoscale Res. Lett.20094879480110.1007/s11671‑009‑9316‑8 20596384
    [Google Scholar]
  70. DemenevV.A. ShchinovaM.A. IvanovL.I. Vorob’evaR.N. ZdanovskaiaN.I. NebaĭkinaN.V. [Perfection of methodical approaches to designing vaccines against tick-borne encephalitis].Vopr. Virusol.1996413107110 8928501
    [Google Scholar]
  71. LiuY. ChenC. Role of nanotechnology in HIV/AIDS vaccine development.Adv. Drug Deliv. Rev.2016103768910.1016/j.addr.2016.02.010 26952542
    [Google Scholar]
  72. ComberJ.D. BamezaiA. Gold nanoparticles (AuNPs): A new frontier in vaccine delivery.J Nanomed Biother Discov20155410.4172/2155‑983X.1000e139
    [Google Scholar]
  73. SunB. XiaT. Nanomaterial-based vaccine adjuvants.J. Mater. Chem. B Mater. Biol. Med.20164335496550910.1039/C6TB01131D 30774955
    [Google Scholar]
  74. XuL. LiuY. ChenZ. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment.Nano Lett.20121242003201210.1021/nl300027p 22372996
    [Google Scholar]
  75. ShiangY.C. OuC.M. ChenS.J. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles.Nanoscale2013572756276410.1039/c3nr33403a 23429884
    [Google Scholar]
  76. IlinskayaA.N. DobrovolskaiaM.A. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future.Toxicol. Appl. Pharmacol.2016299707710.1016/j.taap.2016.01.005 26773813
    [Google Scholar]
  77. DykmanL.A. KhlebtsovN.G. Immunological properties of gold nanoparticles.Chem. Sci.2017831719173510.1039/C6SC03631G 28451297
    [Google Scholar]
  78. Marques NetoL.M. KipnisA. Junqueira-KipnisA.P. Role of metallic nanoparticles in vaccinology: implications for infectious disease vaccine development.Front. Immunol.2017823910.3389/fimmu.2017.00239 28337198
    [Google Scholar]
  79. PatraC.R. BhattacharyaR. MukhopadhyayD. MukherjeeP. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer.Adv. Drug Deliv. Rev.201062334636110.1016/j.addr.2009.11.007 19914317
    [Google Scholar]
  80. XiongH.Q. RosenbergA. LoBuglioA. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: A multicenter phase II Trial.J. Clin. Oncol.200422132610261610.1200/JCO.2004.12.040 15226328
    [Google Scholar]
  81. MendelsohnJ. The epidermal growth factor receptor as a target for cancer therapy.Endocr. Relat. Cancer2001813910.1677/erc.0.0080003 11350723
    [Google Scholar]
  82. SultanaA. GhanehP. CunninghamD. StarlingN. NeoptolemosJ.P. SmithC.T. Gemcitabine based combination chemotherapy in advanced pancreatic cancer-indirect comparison.BMC Cancer20088119210.1186/1471‑2407‑8‑192 18611273
    [Google Scholar]
  83. PereraR.M. NaritaY. FurnariF.B. Treatment of human tumor xenografts with monoclonal antibody 806 in combination with a prototypical epidermal growth factor receptor-specific antibody generates enhanced antitumor activity.Clin. Cancer Res.200511176390639910.1158/1078‑0432.CCR‑04‑2653 16144944
    [Google Scholar]
  84. FriessH. WangL. ZhuZ. Growth factor receptors are differentially expressed in cancers of the papilla of vater and pancreas.Ann. Surg.1999230676777410.1097/00000658‑199912000‑00005 10615931
    [Google Scholar]
  85. Rocha-LimaC.M. SoaresH.P. RaezL.E. SingalR. EGFR targeting of solid tumors.Cancer Contr.200714329530410.1177/107327480701400313 17615536
    [Google Scholar]
  86. SatoJ.D. KawamotoT. LeA.D. MendelsohnJ. PolikoffJ. SatoG.H. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors.Mol. Biol. Med.198315511529 6094961
    [Google Scholar]
  87. KleespiesA. JauchK. BrunsC. Tyrosine kinase inhibitors and gemcitabine: New treatment options in pancreatic cancer?Drug Resist. Updat.200691-211810.1016/j.drup.2006.02.002 16621676
    [Google Scholar]
  88. PecorelliS. PasinettiB. TisiG. OdicinoF. Optimizing gemcitabine regimens in ovarian cancer.Semin. Oncol.2006332Suppl. 6S17S2510.1053/j.seminoncol.2006.03.014
    [Google Scholar]
  89. JacobsA.D. Gemcitabine-based therapy in pancreas cancer.Cancer200295S4Suppl.92392710.1002/cncr.10756 12209672
    [Google Scholar]
  90. MackeyJ.R. YaoS.Y.M. SmithK.M. Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters.J. Natl. Cancer Inst.199991211876188110.1093/jnci/91.21.1876 10547395
    [Google Scholar]
  91. ToddR.C. LippardS.J. Inhibition of transcription by platinum antitumor compounds.Metallomics20091428029110.1039/b907567d 20046924
    [Google Scholar]
  92. WangD. LippardS.J. Cellular processing of platinum anticancer drugs.Nat. Rev. Drug Discov.20054430732010.1038/nrd1691 15789122
    [Google Scholar]
  93. MaleK.B. LachanceB. HrapovicS. SunaharaG. LuongJ.H.T. Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy.Anal. Chem.200880145487549310.1021/ac8004555 18553941
    [Google Scholar]
  94. ZhangZ. WangJ. NieX. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods.J. Am. Chem. Soc.2014136207317732610.1021/ja412735p 24773323
    [Google Scholar]
  95. YeX. GaoY. ChenJ. ReifsnyderD.C. ZhengC. MurrayC.B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures.Nano Lett.20131352163217110.1021/nl400653s 23547734
    [Google Scholar]
  96. LinJ. WangS. HuangP. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy.ACS Nano2013765320532910.1021/nn4011686 23721576
    [Google Scholar]
  97. LinD.Z. ChuangP.C. LiaoP.C. ChenJ.P. ChenY.F. Increasing the spectral shifts in LSPR biosensing using DNA-functionalized gold nanorods in a competitive assay format for the detection of interferon-γ.Biosens. Bioelectron.20168122122810.1016/j.bios.2016.02.071 26954787
    [Google Scholar]
  98. YeoE.L.L. CheahJ.U.J. NeoD.J.H. Exploiting the protein corona around gold nanorods for low-dose combined photothermal and photodynamic therapy.J. Mater. Chem. B Mater. Biol. Med.20175225426810.1039/C6TB02743A 32263544
    [Google Scholar]
  99. LiY. ZhangY. ZhaoM. A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells.Chem. Commun.201652203959396110.1039/C6CC01014H 26882343
    [Google Scholar]
  100. LiJ. LingJ. LiuD. Genetic characterization of a new subtype of Hantaan virus isolated from a hemorrhagic fever with renal syndrome (HFRS) epidemic area in Hubei Province, China.Arch. Virol.2012157101981198710.1007/s00705‑012‑1382‑z 22718221
    [Google Scholar]
  101. SchmaljohnC. HjelleB. Hantaviruses: A global disease problem.Emerg. Infect. Dis.1997329510410.3201/eid0302.970202 9204290
    [Google Scholar]
  102. HartC.A. BennettM. Hantavirus infections: Epidemiology and pathogenesis.Microbes Infect.19991141229123710.1016/S1286‑4579(99)00238‑5 10580279
    [Google Scholar]
  103. BiZ. FormentyP.B. RothC.E. Hantavirus infection: A review and global update.J. Infect. Dev. Ctries.20082132310.3855/jidc.317
    [Google Scholar]
  104. ChenL. WeiH. GuoY. CuiZ. ZhangZ. ZhangX.E. Gold nanoparticle enhanced immuno-PCR for ultrasensitive detection of Hantaan virus nucleocapsid protein.J. Immunol. Methods20093461-2647010.1016/j.jim.2009.05.007 19467237
    [Google Scholar]
  105. ElliottL.H. GoldsmithC.S. ChildsJ.E. Isolation of the causative agent of hantavirus pulmonary syndrome.Am. J. Trop. Med. Hyg.199451110210810.4269/ajtmh.1994.51.102 8059907
    [Google Scholar]
  106. LauberC. ZiebuhrJ. JunglenS. Mesoniviridae: A proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses.Arch. Virol.201215781623162810.1007/s00705‑012‑1295‑x 22527862
    [Google Scholar]
  107. NeumanB.W. AdairB.D. YoshiokaC. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy.J. Virol.200680167918792810.1128/JVI.00645‑06 16873249
    [Google Scholar]
  108. PerlmanS. NetlandJ. Coronaviruses post-SARS: Update on replication and pathogenesis.Nat. Rev. Microbiol.20097643945010.1038/nrmicro2147 19430490
    [Google Scholar]
  109. WeissS.R. Navas-MartinS. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus.Microbiol. Mol. Biol. Rev.200569463566410.1128/MMBR.69.4.635‑664.2005 16339739
    [Google Scholar]
  110. FouchierR.A. HartwigN.G. BestebroerT.M. A previously undescribed coronavirus associated with respiratory disease in humans.Proc. Natl. Acad. Sci.2004101166212621610.1073/pnas.0400762101
    [Google Scholar]
  111. van der HoekL. PyrcK. JebbinkM.F. Identification of a new human coronavirus.Nat. Med.200410436837310.1038/nm1024 15034574
    [Google Scholar]
  112. WooP.C.Y. LauS.K.P. ChuC. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia.J. Virol.200579288489510.1128/JVI.79.2.884‑895.2005 15613317
    [Google Scholar]
  113. ZlatevaK.T. CoenjaertsF.E.J. CrusioK.M. No novel coronaviruses identified in a large collection of human nasopharyngeal specimens using family-wide CODEHOP-based primers.Arch. Virol.2013158125125510.1007/s00705‑012‑1487‑4 23053517
    [Google Scholar]
  114. ZakiA.M. van BoheemenS. BestebroerT.M. OsterhausA.D.M.E. FouchierR.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.N. Engl. J. Med.2012367191814182010.1056/NEJMoa1211721 23075143
    [Google Scholar]
  115. ChanJ.F. LauS.K. ToK.K. ChengV.C. WooP.C. YuenK.Y. Gold nanoparticles in diagnostics and therapeutics for human cancer.Int. J. Mol. Sci.2018197197910.3390/ijms19071979
    [Google Scholar]
  116. LiH. RothbergL. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles.Proc. Natl. Acad. Sci.200410139140361403910.1073/pnas.0406115101 15381774
    [Google Scholar]
  117. Martínez‐ParedesG. González‐GarcíaM.B. Costa‐GarcíaA. Genosensor for SARS virus detection based on gold nanostructured screen‐printed carbon electrodes. Electroanalysis.Int J Dev Fund PractAsp Electroanaly2009213‐5379385
    [Google Scholar]
  118. ShawkyS.M. BaldD. AzzazyH.M.E. Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles.Clin. Biochem.20104313-141163116810.1016/j.clinbiochem.2010.07.001 20627095
    [Google Scholar]
  119. KingA.M. LefkowitzE. AdamsM.J. CarstensE.B. Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses.Elsevier201191327
    [Google Scholar]
  120. HardikarW. Viral hepatitis.J. Paediatr. Child Health20195591038104310.1111/jpc.14562 31317618
    [Google Scholar]
  121. YasinD. SamiN. AfzalB. Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents.Appl. Nanosci.20231364361439310.1007/s13204‑022‑02701‑5
    [Google Scholar]
  122. GaoQ. ZhangJ. GaoJ. ZhangZ. ZhuH. WangD. Gold nanoparticles in cancer theranostics.Front. Bioeng. Biotechnol.2021964790510.3389/fbioe.2021.647905 33928072
    [Google Scholar]
  123. MoldovanR. MitreaD.R. FloreaA. ChişI.C. SuciuŞ. DavidL. Effects of gold nanoparticles functionalized with bioactive compounds from cornus mas fruit on aorta ultrastructural and biochemical changes in rats on a hyperlipid diet: A preliminary study.Antioxidants20221171343
    [Google Scholar]
  124. HassanH. SharmaP. HasanM.R. SinghS. ThakurD. NarangJ. Gold nanomaterials: The golden approach from synthesis to applications.Mater. Sci. Energy Technol.2022537539010.1016/j.mset.2022.09.004
    [Google Scholar]
  125. LiuH.H. CaoX. YangY. LiuM.G. WangY.F. Array-based nano-amplification technique was applied in detection of hepatitis E virus.J. Biochem. Mol. Biol.2006393247252 16756752
    [Google Scholar]
  126. TomićS. ĐokićJ. VasilijićS. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro.PLoS One201495e9658410.1371/journal.pone.0096584 24802102
    [Google Scholar]
  127. QiuT.A. BozichJ.S. LohseS.E. Gene expression as an indicator of the molecular response and toxicity in the bacterium Shewanella oneidensis and the water flea Daphnia magna exposed to functionalized gold nanoparticles.Environ. Sci. Nano20152661562910.1039/C5EN00037H
    [Google Scholar]
  128. DickersonE.B. DreadenE.C. HuangX. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice.Cancer Lett.20082691576610.1016/j.canlet.2008.04.026 18541363
    [Google Scholar]
  129. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑5 27299311
    [Google Scholar]
  130. HühnD. KantnerK. GeidelC. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge.ACS Nano2013743253326310.1021/nn3059295 23566380
    [Google Scholar]
  131. DengJ. YaoM. GaoC. Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers.Acta Biomater.20175361061810.1016/j.actbio.2017.01.082 28213095
    [Google Scholar]
  132. LibuttiS.K. PaciottiG.F. ByrnesA.A. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine.Clin. Cancer Res.201016246139614910.1158/1078‑0432.CCR‑10‑0978 20876255
    [Google Scholar]
  133. AliM.R.K. RahmanM.A. WuY. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice.Proc. Natl. Acad. Sci.201711415E3110E311810.1073/pnas.1619302114 28356516
    [Google Scholar]
  134. AnselmoA.C. MitragotriS. Nanoparticles in the clinic.Bioeng. Transl. Med.201611102910.1002/btm2.10003 29313004
    [Google Scholar]
  135. KharlamovA.N. TyurninaA.E. VeselovaV.S. KovtunO.P. ShurV.Y. GabinskyJ.L. Silica–gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial.Nanoscale20157178003801510.1039/C5NR01050K 25864858
    [Google Scholar]
  136. SinghP. PanditS. MokkapatiV.R.S.S. GargA. RavikumarV. MijakovicI. Gold nanoparticlea in diagnostics and therapeutics for human cancer.Int. J. Mol. Sci.2018197197910.3390/ijms19071979 29986450
    [Google Scholar]
  137. MuheemA. JahangirM.A. JaiswalC.P. Recent patents, regulatory issues, and toxicity of nanoparticles in neuronal disorders.Curr. Drug Metab.202122426327910.2174/18755453MTEyjMzIn3 33305703
    [Google Scholar]
  138. Ali HazisN.U. AnejaN. RajabalayaR. DavidS.R. Systematic patent review of nanoparticles in drug delivery and cancer therapy in the last decade.Rec Adv Drug Deliv Formul2021151597410.2174/1872211314666210521105534 34602031
    [Google Scholar]
  139. TiwariP.M. VigK. DennisV.A. SinghS.R. Functionalized gold nanoparticles and their biomedical applications.Nanomaterials201111316310.3390/nano1010031 28348279
    [Google Scholar]
  140. SchröfelA. KratošováG. ŠafaříkI. ŠafaříkováM. RaškaI. ShorL.M. Applications of biosynthesized metallic nanoparticles: A review.Acta Biomater.201410104023404210.1016/j.actbio.2014.05.022 24925045
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855314069240709091743
Loading
/content/journals/cdth/10.2174/0115748855314069240709091743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test