Skip to content
2000
image of Exploring Innovations in Transdermal Drug Delivery: Microneedle Technologies and the Latest in Patent Developments

Abstract

Introduction/Objective

Microneedle technology has emerged as a promising approach for drug delivery, offering advantages such as improved patient compliance and enhanced therapeutic efficacy. This review aims to provide a comprehensive overview of recent advancements in microneedle-based drug delivery systems, emphasizing their potential to overcome limitations associated with traditional transdermal drug delivery methods. The objective is to synthesize existing knowledge, identify key trends, and highlight potential applications of microneedle technology in various medical fields.

Methods

A systematic approach was employed to select and analyse relevant studies on microneedle technology. Databases were searched for peer-reviewed articles published and patents or patent applications worldwide within the last decade, focusing on innovations in microneedle materials, design, fabrication techniques, and applications. Studies were evaluated based on their methodology, outcomes, and relevance to current trends in drug delivery. Key data were extracted and synthesized to provide an integrated perspective on the state of microneedle technology.

Results

The review highlights significant progress in microneedle technology; innovations in materials, fabrication techniques, and applications. Advancements include biodegradable microneedles, vaccine drug delivery systems, and integration with biosensors. Innovations led to improved drug bioavailability and reduced side effects. Challenges such as scalability, standardization, and regulatory considerations were also identified.

Conclusion

In conclusion, microneedle technology has evolved significantly, offering a versatile platform for controlled drug delivery and various medical applications. The diversity in design and fabrication methods allows customization for specific therapeutic or diagnostic needs, with numerous patents filed for microneedle innovations, reflecting the intense research and development in this field.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855321418240928111619
2024-10-15
2024-11-23
Loading full text...

Full text loading...

References

  1. Hao Y. Li W. Zhou X. Yang F. Qian Z. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol. 2017 13 12 1581 1597 10.1166/jbn.2017.2474 29490749
    [Google Scholar]
  2. He X. Sun J. Zhuang J. Xu H. Liu Y. Wu D. Microneedle system for transdermal drug and vaccine delivery: Devices, safety, and prospects. Dose Response 2019 17 4 10.1177/1559325819878585 31662709
    [Google Scholar]
  3. Bariya S.H. Gohel M.C. Mehta T.A. Sharma O.P. Microneedles: An emerging transdermal drug delivery system. J. Pharm. Pharmacol. 2011 64 1 11 29 10.1111/j.2042‑7158.2011.01369.x 22150668
    [Google Scholar]
  4. Waghule T. Singhvi G. Dubey S.K. Pandey M.M. Gupta G. Singh M. Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019 109 1249 1258 10.1016/j.biopha.2018.10.078 30551375
    [Google Scholar]
  5. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics 2015 7 3 90 105 10.3390/pharmaceutics7030090 26131647
    [Google Scholar]
  6. Larrañeta E. Lutton R.E.M. Woolfson A.D. Donnelly R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. Rep. 2016 104 1 32 10.1016/j.mser.2016.03.001
    [Google Scholar]
  7. Henry S. McAllister D.V. Allen M.G. Prausnitz M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 1998 87 8 922 925 10.1021/js980042+ 9687334
    [Google Scholar]
  8. Kim Y.C. Park J.H. Prausnitz M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012 64 14 1547 1568 10.1016/j.addr.2012.04.005 22575858
    [Google Scholar]
  9. Lee J.W. Prausnitz M.R. Drug delivery using microneedle patches: Not just for skin. Expert Opin. Drug Deliv. 2018 15 6 541 543 10.1080/17425247.2018.1471059 29708770
    [Google Scholar]
  10. Martin C.J. Allender C.J. Brain K.R. Morrissey A. Birchall J.C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release 2012 158 1 93 101 10.1016/j.jconrel.2011.10.024 22063007
    [Google Scholar]
  11. Gerstel M.S. Place V.A. Drug delivery device. US Patent 3964482 1976
  12. Miyano T. Tobinaga Y. Kanno T. Matsuzaki Y. Takeda H. Wakui M. Hanada K. Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices 2005 7 3 185 188 10.1007/s10544‑005‑3024‑7 16133805
    [Google Scholar]
  13. Pistor M.L.P. Device for cutaneous therapeutic treatment. US Patent 3918449 1975
  14. Luo X. Yang L. Cui Y. Microneedles: Materials, fabrication, and biomedical applications. Biomed. Microdevices 2023 25 3 20 10.1007/s10544‑023‑00658‑y 37278852
    [Google Scholar]
  15. Cai X. Yang X. Wang F. Zhang C. Sun D. Zhai G. Multifunctional pH-responsive folate receptor mediated polymer nanoparticles for drug delivery. J. Biomed. Nanotechnol. 2016 12 7 1453 1462 10.1166/jbn.2016.2287 29337470
    [Google Scholar]
  16. Lim H.J. Kim J.K. Park J.S. Complexation of apoptotic genes with polyethyleneimine (PEI)-Coated Poly-(DL)-Lactic-Co-Glycolic acid nanoparticles for cancer cell apoptosis. J. Biomed. Nanotechnol. 2015 11 2 211 225 10.1166/jbn.2015.1880 26349297
    [Google Scholar]
  17. Ribeiro N. Costa-Pinheiro P. Henrique R. Gomez-Lazaro M. Pereira M.P. Mansur A.A.P. Mansur H.S. Jerónimo C. Sousa S.R. Monteiro F.J. Comprehensive analysis of secreted protein, acidic and rich in cysteine in prostate carcinogenesis: Development of a 3D nanostructured bone-like model. J. Biomed. Nanotechnol. 2016 12 8 1667 1678 10.1166/jbn.2016.2276 29342345
    [Google Scholar]
  18. Yuan Y. Gong F. Cao Y. Chen W. Cheng D. Shuai X. Biodegradable multiamine polymeric vector for siRNA delivery. J. Biomed. Nanotechnol. 2015 11 4 668 679 10.1166/jbn.2015.1966 26310073
    [Google Scholar]
  19. Shah M.A.A. He N. Li Z. Ali Z. Zhang L. Nanoparticles for DNA vaccine delivery. J. Biomed. Nanotechnol. 2014 10 9 2332 2349 10.1166/jbn.2014.1981 25992460
    [Google Scholar]
  20. Yu H. Tang Z. Li M. Song W. Zhang D. Zhang Y. Yang Y. Sun H. Deng M. Chen X. Cisplatin loaded poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) complex nanoparticles for potential cancer therapy: Preparation, in vitro and in vivo evaluation. J. Biomed. Nanotechnol. 2016 12 1 69 78 10.1166/jbn.2016.2152 27301173
    [Google Scholar]
  21. Zhu X. Huang J. Liu J. Zhang H. Jiang J. Yu R. A dual enzyme–inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose. Nanoscale 2017 9 17 5658 5663 10.1039/C7NR00958E 28422254
    [Google Scholar]
  22. Liu X. Li X. Zhang N. Zhao Z. Wen X. Bioengineering strategies for the treatment of type I diabetes. J. Biomed. Nanotechnol. 2016 12 4 581 601 10.1166/jbn.2016.2176 27301187
    [Google Scholar]
  23. Votavova P. Tomala J. Subr V. Strohalm J. Ulbrich K. Rihova B. Kovar M. Novel IL-2-Poly (HPMA) nanoconjugate based immunotherapy. J. Biomed. Nanotechnol. 2015 11 9 1662 1673 10.1166/jbn.2015.2114 26485935
    [Google Scholar]
  24. Walsh L. Microneedling: A versatile and popular treatment option. J. Aesthet. Nurs. 2019 8 6 280 284 10.12968/joan.2019.8.6.280
    [Google Scholar]
  25. Chambers R. Microdissection studies, III. Some problems in the maturation and fertilization of the echinoderm egg. Biol. Bull. 1921 41 6 318 350 10.2307/1536756
    [Google Scholar]
  26. Reed M.L. Lye W.K. Microsystems for drug and gene delivery. Proc. IEEE 2004 92 1 56 75 10.1109/JPROC.2003.820542
    [Google Scholar]
  27. Kamel R. Transdermal drug delivery: Benefits and challenges. J. Appl. Pharm. 2016 8 1 e103 10.4172/1920‑4159.1000e103
    [Google Scholar]
  28. Dang N. Liu T.Y. Prow T.W. Chapter seventeen - Nano- and microtechnology in skin delivery of vaccines. Micro and Nanotechnology in Vaccine Development William Andrew Publishing Skwarczynski M. Toth I. 2017 327 341 10.1016/B978‑0‑323‑39981‑4.00017‑8
    [Google Scholar]
  29. Johnson A.R. Procopio A.T. Low cost additive manufacturing of microneedle masters. 3D Print. Med. 2019 5 1 2 10.1186/s41205‑019‑0039‑x 30715677
    [Google Scholar]
  30. Chen Z. Lin Y. Lee W. Ren L. Liu B. Liang L. Wang Z. Jiang L. Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 2018 10 35 29338 29346 10.1021/acsami.8b09563 30091892
    [Google Scholar]
  31. Caudill C.L. Perry J.L. Tian S. Luft J.C. DeSimone J.M. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J. Control. Release 2018 284 122 132 10.1016/j.jconrel.2018.05.042 29894710
    [Google Scholar]
  32. Krieger K.J. Bertollo N. Dangol M. Sheridan J.T. Lowery M.M. O’Cearbhaill E.D. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst. Nanoeng. 2019 5 1 42 10.1038/s41378‑019‑0088‑8 31645996
    [Google Scholar]
  33. Prausnitz M.R. Langer R. Transdermal drug delivery. Nat. Biotechnol. 2008 26 11 1261 1268 10.1038/nbt.1504 18997767
    [Google Scholar]
  34. Robinson N. Enzyme response of traumatized tissue after intracortical injection into 5 day old rat brain. J. Neurol. Neurosurg. Psychiatry 1972 35 6 865 872 10.1136/jnnp.35.6.865 4405286
    [Google Scholar]
  35. Szubinska B. “New membrane” formation in Amoeba proteus upon injury of individual cells. Electron microscope observations. J. Cell Biol. 1971 49 3 747 772 10.1083/jcb.49.3.747 4103955
    [Google Scholar]
  36. Joel D.D. Hess M.W. Cottier H. Magnitude and pattern of thymic lymphocyte migration in neonatal mice. J. Exp. Med. 1972 135 4 907 923 10.1084/jem.135.4.907 5018055
    [Google Scholar]
  37. Dossel W.E. Preparation of tungsten micro-needles for use in embryologic research. Lab. Invest. 1958 7 2 171 173 13540210
    [Google Scholar]
  38. de Jonge A.J.R. Vermeulen W. Keijzer W. Hoeijmakers J.H.J. Bootsma D. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups. Mutat. Res. 1985 150 1-2 99 105 10.1016/0027‑5107(85)90106‑X 3839045
    [Google Scholar]
  39. Edds K.T. Motility in Echinosphaerium nucleofilum. I. An analysis of particle motions in the axopodia and a direct test of the involvement of the axoneme. J. Cell Biol. 1975 66 1 145 155 10.1083/jcb.66.1.145 1141372
    [Google Scholar]
  40. Reaume S.E. The use of hydrofluoric acid in making glass microneedles. Science 1952 116 3023 641 10.1126/science.116.3023.641.a 13028236
    [Google Scholar]
  41. Poirier D. Renaud F. Dewar V. Strodiot L. Wauters F. Janimak J. Shimada T. Nomura T. Kabata K. Kuruma K. Kusano T. Sakai M. Nagasaki H. Oyamada T. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable. Biomaterials 2017 145 256 265 10.1016/j.biomaterials.2017.08.038 28915391
    [Google Scholar]
  42. Yang G. Chen Q. Wen D. Chen Z. Wang J. Chen G. Wang Z. Zhang X. Zhang Y. Hu Q. Zhang L. Gu Z. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano 2019 13 4 4354 4360 10.1021/acsnano.8b09573 30942567
    [Google Scholar]
  43. Yu J. Wang J. Zhang Y. Chen G. Mao W. Ye Y. Kahkoska A.R. Buse J.B. Langer R. Gu Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 2020 4 5 499 506 10.1038/s41551‑019‑0508‑y 32015407
    [Google Scholar]
  44. Liu T. Jiang G. Song G. Zhu J. Yang Y. Fabrication of separable microneedles with phase change coating for NIR-triggered transdermal delivery of metformin on diabetic rats. Biomed. Microdevices 2020 22 1 12 10.1007/s10544‑019‑0468‑8 31912303
    [Google Scholar]
  45. Amodwala S. Kumar P. Thakkar H.P. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis. Eur. J. Pharm. Sci. 2017 104 114 123 10.1016/j.ejps.2017.04.001 28385631
    [Google Scholar]
  46. Chen J. Huang W. Huang Z. Liu S. Ye Y. Li Q. Huang M. Fabrication of tip-dissolving microneedles for transdermal drug delivery of meloxicam. AAPS PharmSciTech 2018 19 3 1141 1151 10.1208/s12249‑017‑0926‑7 29218581
    [Google Scholar]
  47. Abla M.J. Chaturvedula A. O’Mahony C. Banga A.K. Transdermal delivery of methotrexate for pediatrics using silicon microneedles. Ther. Deliv. 2013 4 5 543 551 10.4155/tde.13.24 23647273
    [Google Scholar]
  48. Qiu Y. Li C. Zhang S. Yang G. He M. Gao Y. Systemic delivery of artemether by dissolving microneedles. Int. J. Pharm. 2016 508 1-2 1 9 10.1016/j.ijpharm.2016.05.006 27150946
    [Google Scholar]
  49. Guo T. Cheng N. Zhao J. Hou X. Zhang Y. Feng N. Novel nanostructured lipid carriers-loaded dissolving microneedles for controlled local administration of aconitine. Int. J. Pharm. 2019 572 118741 10.1016/j.ijpharm.2019.118741 31705974
    [Google Scholar]
  50. Arya J. Prausnitz M.R. Microneedle patches for vaccination in developing countries. J. Control. Release 2016 240 135 141 10.1016/j.jconrel.2015.11.019 26603347
    [Google Scholar]
  51. Li W. Tang J. Terry R.N. Li S. Brunie A. Callahan R.L. Noel R.K. Rodríguez C.A. Schwendeman S.P. Prausnitz M.R. Long-acting reversible contraception by effervescent microneedle patch. Sci. Adv. 2019 5 11 eaaw8145 10.1126/sciadv.aaw8145 31723599
    [Google Scholar]
  52. Duong H.T.T. Yin Y. Thambi T. Kim B.S. Jeong J.H. Lee D.S. Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy. J. Mater. Chem. B Mater. Biol. Med. 2020 8 6 1171 1181 10.1039/C9TB02175B 31957761
    [Google Scholar]
  53. Moreira A.F. Rodrigues C.F. Jacinto T.A. Miguel S.P. Costa E.C. Correia I.J. Poly (vinyl alcohol)/chitosan layer-by-layer microneedles for cancer chemo-photothermal therapy. Int. J. Pharm. 2020 576 118907 10.1016/j.ijpharm.2019.118907 31870955
    [Google Scholar]
  54. Dabholkar N. Gorantla S. Waghule T. Rapalli V.K. Kothuru A. Goel S. Singhvi G. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. Int. J. Biol. Macromol. 2021 170 602 621 10.1016/j.ijbiomac.2020.12.177 33387545
    [Google Scholar]
  55. Gill H.S. Prausnitz M.R. Coating formulations for microneedles. Pharm. Res. 2007 24 7 1369 1380 10.1007/s11095‑007‑9286‑4 17385011
    [Google Scholar]
  56. Nair K. Whiteside B. Grant C. Patel R. Tuinea-Bobe C. Norris K. Paradkar A. Investigation of plasma treatment on micro-injection moulded microneedle for drug delivery. Pharmaceutics 2015 7 4 471 485 10.3390/pharmaceutics7040471 26529005
    [Google Scholar]
  57. Doddaballapur S. Microneedling with dermaroller. J. Cutan. Aesthet. Surg. 2009 2 2 110 111 10.4103/0974‑2077.58529 20808602
    [Google Scholar]
  58. Leone M. Mönkäre J. Bouwstra J.A. Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm. Res. 2017 34 11 2223 2240 10.1007/s11095‑017‑2223‑2 28718050
    [Google Scholar]
  59. Lee K.J. Jeong S.S. Roh D.H. Kim D.Y. Choi H.K. Lee E.H. A practical guide to the development of microneedle systems – In clinical trials or on the market. Int. J. Pharm. 2020 573 118778 10.1016/j.ijpharm.2019.118778 31678394
    [Google Scholar]
  60. Li C.G. Lee C.Y. Lee K. Jung H. An optimized hollow microneedle for minimally invasive blood extraction. Biomed. Microdevices 2013 15 1 17 25 10.1007/s10544‑012‑9683‑2 22833155
    [Google Scholar]
  61. Cheung K. Das D.B. Microneedles for drug delivery: Trends and progress. Drug Deliv. 2016 23 7 2338 2354 10.3109/10717544.2014.986309 25533874
    [Google Scholar]
  62. Davis S.P. Martanto W. Allen M.G. Prausnitz M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 2005 52 5 909 915 10.1109/TBME.2005.845240 15887540
    [Google Scholar]
  63. van der Maaden K. Jiskoot W. Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release 2012 161 2 645 655 10.1016/j.jconrel.2012.01.042 22342643
    [Google Scholar]
  64. Zhang P. Dalton C. Jullien G.A. Design and fabrication of MEMS-based microneedle arrays for medical applications. Microsyst. Technol. 2009 15 7 1073 1082 10.1007/s00542‑009‑0883‑5
    [Google Scholar]
  65. Desai S. Bidanda B. Bártolo PJ. Emerging trends in the applications of metallic and ceramic biomaterials. Bio-Materials and Prototyping Applications in Medicine Springer Cham Bártolo PJ. Bidanda B. 2020 1 17 10.1007/978‑3‑030‑35876‑1_1
    [Google Scholar]
  66. Pignatello R. Biomaterials: Applications for Nanomedicine. InTech Rijeka, Croatia 2011 10.5772/1957
    [Google Scholar]
  67. Williams A.C. Barry B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2012 64 128 137 10.1016/j.addr.2012.09.032 15019749
    [Google Scholar]
  68. Gittard S.D. Narayan R.J. Jin C. Ovsianikov A. Chichkov B.N. Monteiro-Riviere N.A. Stafslien S. Chisholm B. Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication 2009 1 4 041001 10.1088/1758‑5082/1/4/041001 20661316
    [Google Scholar]
  69. Niinomi M. Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011 2011 1 10 10.1155/2011/836587 21765831
    [Google Scholar]
  70. Verbaan F.J. Bal S.M. van den Berg D.J. Groenink W.H.H. Verpoorten H. Lüttge R. Bouwstra J.A. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release 2007 117 2 238 245 10.1016/j.jconrel.2006.11.009 17196697
    [Google Scholar]
  71. Sharma D. Microneedles: An approach in transdermal drug delivery: A Review. Pharmatutor 2018 6 1 07 10.29161/PT.v6.i1.2018.7
    [Google Scholar]
  72. O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed. Microdevices 2014 16 3 333 343 10.1007/s10544‑014‑9836‑6 24487507
    [Google Scholar]
  73. Monteiro-Riviere NA. Toxicology of the Skin. Boca Raton CRC Press 2010 1st ed 10.3109/9781420079180
    [Google Scholar]
  74. Donnelly R.F. Morrow D.I.J. McCrudden M.T.C. Alkilani A.Z. Vicente-Pérez E.M. O’Mahony C. González-Vázquez P. McCarron P.A. Woolfson A.D. Hydrogel-forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors. Photochem. Photobiol. 2014 90 3 641 647 10.1111/php.12209 24215482
    [Google Scholar]
  75. Hong X. Wei L. Wu F. Wu Z. Chen L. Liu Z. Yuan W. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Devel. Ther. 2013 7 945 952 24039404
    [Google Scholar]
  76. Wang M. Hu L. Xu C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 2017 17 8 1373 1387 10.1039/C7LC00016B 28352876
    [Google Scholar]
  77. Han J. Zhao D. Li D. Wang X. Jin Z. Zhao K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers (Basel) 2018 10 1 31 10.3390/polym10010031 30966075
    [Google Scholar]
  78. Kulkarni D. Damiri F. Rojekar S. Zehravi M. Ramproshad S. Dhoke D. Musale S. Mulani A.A. Modak P. Paradhi R. Vitore J. Rahman M.H. Berrada M. Giram P.S. Cavalu S. Recent advancements in microneedle technology for multifaceted biomedical applications. Pharmaceutics 2022 14 5 1097 10.3390/pharmaceutics14051097 35631683
    [Google Scholar]
  79. Aldawood F.K. Andar A. Desai S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers (Basel) 2021 13 16 2815 10.3390/polym13162815 34451353
    [Google Scholar]
  80. Nejad H.R. Sadeqi A. Kiaee G. Sonkusale S. Low-cost and cleanroom-free fabrication of microneedles. Microsyst. Nanoeng. 2018 4 1 17073 10.1038/micronano.2017.73
    [Google Scholar]
  81. Martanto W. Moore J.S. Kashlan O. Kamath R. Wang P.M. O’Neal J.M. Prausnitz M.R. Microinfusion using hollow microneedles. Pharm. Res. 2006 23 1 104 113 10.1007/s11095‑005‑8498‑8 16308670
    [Google Scholar]
  82. Gill H.S. Prausnitz M.R. Coated microneedles for transdermal delivery. J. Control. Release 2007 117 2 227 237 10.1016/j.jconrel.2006.10.017 17169459
    [Google Scholar]
  83. Indermun S. Luttge R. Choonara Y.E. Kumar P. du Toit L.C. Modi G. Pillay V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release 2014 185 130 138 10.1016/j.jconrel.2014.04.052 24806483
    [Google Scholar]
  84. Olowe M. Parupelli S.K. Desai S. A review of 3D-printing of microneedles. Pharmaceutics 2022 14 12 2693 10.3390/pharmaceutics14122693 36559187
    [Google Scholar]
  85. Dabbagh S.R. Sarabi M.R. Rahbarghazi R. Sokullu E. Yetisen A.K. Tasoglu S. 3D-printed microneedles in biomedical applications. iScience 2021 24 1 102012 10.1016/j.isci.2020.102012 33506186
    [Google Scholar]
  86. Han D. Morde R.S. Mariani S. La Mattina A.A. Vignali E. Yang C. Barillaro G. Lee H. 4D printing of a bioinspired microneedle array with backward‐facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 2020 30 11 1909197 10.1002/adfm.201909197
    [Google Scholar]
  87. Choi J. Kwon OC. Jo W. Lee HJ. Moon MW. 4D printing technology: A review. 3D Print. Addit. Manuf. 2015 2 4 159 167 10.1089/3dp.2015.0039
    [Google Scholar]
  88. Tran K.T.M. Nguyen T.D. Lithography-based methods to manufacture biomaterials at small scales. J. Sci. Adv. Mater. Devices 2017 2 1 1 14 10.1016/j.jsamd.2016.12.001
    [Google Scholar]
  89. Gupta J. Gill H.S. Andrews S.N. Prausnitz M.R. Kinetics of skin resealing after insertion of microneedles in human subjects. J. Control. Release 2011 154 2 148 155 10.1016/j.jconrel.2011.05.021 21640148
    [Google Scholar]
  90. Amsden B.G. Goosen M.F.A. Transdermal delivery of peptide and protein drugs: An overview. AIChE J. 1995 41 8 1972 1997 10.1002/aic.690410814
    [Google Scholar]
  91. Giudice E. Campbell J. Needle-free vaccine delivery. Adv. Drug Deliv. Rev. 2006 58 1 68 89 10.1016/j.addr.2005.12.003 16564111
    [Google Scholar]
  92. Museau M. Butdee S. Vignat F. Design and Manufacturing of Microneedles Toward Sustainable Products. Appl. Sci. Eng. Prog. 2011 4 4 41 51
    [Google Scholar]
  93. Dangol M. Kim S. Li C.G. Fakhraei Lahiji S. Jang M. Ma Y. Huh I. Jung H. Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. J. Control. Release 2017 265 41 47 10.1016/j.jconrel.2017.03.400 28389409
    [Google Scholar]
  94. Tas C. Mansoor S. Kalluri H. Zarnitsyn V.G. Choi S.O. Banga A.K. Prausnitz M.R. Delivery of salmon calcitonin using a microneedle patch. Int. J. Pharm. 2012 423 2 257 263 10.1016/j.ijpharm.2011.11.046 22172290
    [Google Scholar]
  95. Matriano J.A. Cormier M. Johnson J. Young W.A. Buttery M. Nyam K. Daddona P.E. Macroflux microprojection array patch technology: A new and efficient approach for intracutaneous immunization. Pharm. Res. 2002 19 1 63 70 10.1023/A:1013607400040 11837701
    [Google Scholar]
  96. Donnelly R.F. Morrow D.I.J. McCarron P.A. David Woolfson A. Morrissey A. Juzenas P. Juzeniene A. Iani V. McCarthy H.O. Moan J. Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer. Photochem. Photobiol. 2009 85 1 195 204 10.1111/j.1751‑1097.2008.00417.x 18764907
    [Google Scholar]
  97. McAllister D.V. Wang P.M. Davis S.P. Park J.H. Canatella P.J. Allen M.G. Prausnitz M.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA 2003 100 24 13755 13760 10.1073/pnas.2331316100 14623977
    [Google Scholar]
  98. Stahl J. Wohlert M. Kietzmann M. Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points. BMC Pharmacol. Toxicol. 2012 13 1 5 10.1186/2050‑6511‑13‑5 22947102
    [Google Scholar]
  99. Nayak S. Suryawanshi S. Bhaskar V. Microneedle technology for transdermal drug delivery: Applications and combination with other enhancing techniques. J. Drug Deliv. Ther. 2016 6 5 65 83
    [Google Scholar]
  100. Stoeber B. Liepmann D. Fluid injection through out-of-plane microneedles. 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings Lyon, France 2000 224 228 10.1109/MMB.2000.893777
    [Google Scholar]
  101. Prausnitz M.R. Mitragotri S. Langer R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 2004 3 2 115 124 10.1038/nrd1304 15040576
    [Google Scholar]
  102. Kulkarni D. Gadade D. Chapaitkar N. Shelke S. Pekamwar S. Aher R. Ahire A. Avhale M. Badgule R. Bansode R. Bobade B. Polymeric microneedles: An emerging paradigm for advanced biomedical applications. Sci. Pharm. 2023 91 2 27 10.3390/scipharm91020027
    [Google Scholar]
  103. Chen Y. Yang Y. Xian Y. Singh P. Feng J. Cui S. Carrier A. Oakes K. Luan T. Zhang X. Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery. ACS Appl. Mater. Interfaces 2020 12 1 352 360 10.1021/acsami.9b19518 31825580
    [Google Scholar]
  104. Ali A.A. McCrudden C.M. McCaffrey J. McBride J.W. Cole G. Dunne N.J. Robson T. Kissenpfennig A. Donnelly R.F. McCarthy H.O. DNA vaccination for cervical cancer; A novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomedicine 2017 13 3 921 932 10.1016/j.nano.2016.11.019 27979747
    [Google Scholar]
  105. Mistilis M.J. Bommarius A.S. Prausnitz M.R. Development of a thermostable microneedle patch for influenza vaccination. J. Pharm. Sci. 2015 104 2 740 749 10.1002/jps.24283 25448542
    [Google Scholar]
  106. Rodgers A.M. Courtenay A.J. Donnelly R.F. Dissolving microneedles for intradermal vaccination: Manufacture, formulation, and stakeholder considerations. Expert Opin. Drug Deliv. 2018 15 11 1039 1043 10.1080/17425247.2018.1522301 30204003
    [Google Scholar]
  107. Zhu J. Zhou X. Libanori A. Sun W. Microneedle-based bioassays. Nanoscale Adv. 2020 2 10 4295 4304 10.1039/D0NA00543F 36132929
    [Google Scholar]
  108. Park Y.H. Ha S.K. Choi I. Kim K.S. Park J. Choi N. Kim B. Sung J.H. Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnol. Bioprocess Eng. 2016 21 1 110 118 10.1007/s12257‑015‑0634‑7
    [Google Scholar]
  109. Kumar A. Naguib Y.W. Shi Y.C. Cui Z. A method to improve the efficacy of topical eflornithine hydrochloride cream. Drug Deliv. 2016 23 5 1495 1501 25182303
    [Google Scholar]
  110. El-Domyati M. Barakat M. Awad S. Medhat W. El-Fakahany H. Farag H. Microneedling therapy for atrophic acne scars: An objective evaluation. J. Clin. Aesthet. Dermatol. 2015 8 7 36 42 26203319
    [Google Scholar]
  111. Sharma S. Hatware K. Bhadane P. Sindhikar S. Mishra D.K. Recent advances in microneedle composites for biomedical applications: Advanced drug delivery technologies. Mater. Sci. Eng. C 2019 103 109717 10.1016/j.msec.2019.05.002 31349403
    [Google Scholar]
  112. Pattani A. McKay P.F. Garland M.J. Curran R.M. Migalska K. Cassidy C.M. Malcolm R.K. Shattock R.J. McCarthy H.O. Donnelly R.F. Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. J. Control. Release 2012 162 3 529 537 10.1016/j.jconrel.2012.07.039 22960496
    [Google Scholar]
  113. Gou M. Li R. Preparation method of hollow microneedle patch, hollow microneedle patch and injection device. CN Patent 114344699 2022
    [Google Scholar]
  114. Gao Y. He M. Yang G. Zhang S. Sustained-release microneedle patch and preparation method thereof. CN Patent 114668712 2023
  115. Alary M. Hopson P. Liu J. Lunde E. Patel B. Morano E. Microneedle arrays and methods for making and using. US Patent 20220111189 2022
  116. Yan Q. Fang M. Yang G. Weng J. Shen S. Wang Y. Microneedle for treating psoriasis by transdermal delivery of liposome and preparation method thereof. CN Patent 114432230 2022
  117. Leng G. Lee S.G. Ma Y. Soluble microneedle and manufacturing method thereof. CN Patent 114558242 2022
  118. Qian H. He M. Li Q. Ma Y. Chen W. Huang D. Double-response double-layer cross-linked insulin controllable delivery microneedle and preparation method thereof. CN Patent 114569706 2023
  119. Aksit A. Lalwani A.K. Kysar J.W. West A. Microneedles to deliver therapeutic agent across membranes. US Patent 20220176096 2022
  120. Ahn J.Y. Jang E.H. Microneedle biosensor and manufacturing method for same. WO Patent 2022149754A1 2022
    [Google Scholar]
  121. Rhee Y.S. Song S. Lee J. Song C. Noh I. Microneedle patch system for transdermal drug delivery. WO Patent 2022177205A1 2022
  122. Tamayol A. Derakhshandeh H. Mostafalu P. Drug delivery using microneedle arrays. US Patent 20220273926 2022
  123. Kang N.G. Lee H.J. Chang Y.H. Kim T.Y. Kim K.Y. Shim W.S. Soluble microneedle containing ingredient for controlling release of neurotransmitters. US Patent 11577063 2023
  124. Mcallister D. Prausnitz M.R. Henry S. Norman J.J. Microneedle patches and methods. US Patent 11590330 2023
  125. Lim C.Y. Tey H.L. Dissolving microneedle patches comprising corticosteroid. US Patent 1159 2023
  126. Yeom J.S. Shim W.U. Hwang Y.M. Yoo S.M. Lee S.H. Kang N.G. Hyaluronic acid filler using microneedle patch. US Patent 11596592 2023
  127. D’souza M.J. System and method for microneedle delivery of microencapsulated vaccine and bioactive proteins. US 11628208 2023
  128. Liu T.J. Li W.H. Cheng H.Y. Liao Y.J. Lien W.H. Yin S.Y. Hsu Y.H. Yeh H.F. Multi-layered microneedle patch and method of manufacturing the same. US Patent 11642506 2023
  129. Lee H. Barillaro G. Morde R. Vignali E. 3D printed microneedle assemblies. US Patent 11697008 2023
  130. Prausnitz M.R. Terry R.N. Le W. Separable microneedle arrays for sustained release of drug. US Patent 11730937 2023
  131. Shim W.S. Lee S.H. Hwang Y.M. Kim J.A. Kang N.G. Soluble microneedle for delivering poorly-soluble drug. EU Patent 3281626 2023
  132. Zhang S. Yang G. Gao Y. Zhou Z. Insoluble transdermal microneedle patch, and preparation method therefor and application thereof. US Patent 11801373 2023
  133. Kaushik S. Hord A.H. Denson D.D. McAllister D.V. Smitra S. Allen M.G. Prausnitz M.R. Lack of pain associated with microfabricated microneedles. Anesth. Analg. 2001 92 2 502 504 10.1213/00000539‑200102000‑00041 11159258
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855321418240928111619
Loading
/content/journals/cdth/10.2174/0115748855321418240928111619
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: drug delivery ; 3-D printing ; micro-molding ; polymers ; Microneedle technology ; patents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test