- Home
- A-Z Publications
- Current Drug Metabolism
- Previous Issues
- Volume 25, Issue 6, 2024
Current Drug Metabolism - Volume 25, Issue 6, 2024
Volume 25, Issue 6, 2024
-
-
Hepatic Metabolic Enzyme Activity with Endogenous Substances-Current Status, Challenges and Limitations
More LessPrecision dosing is essential in improving drug efficacy and minimizing adverse reactions, especially in liver impaired patients. However, there is no objective index to directly evaluate the body's ability to metabolize specific drugs. Many factors affect the activity of enzymes, and alter the systemic exposure of substrate drugs, like genetic polymorphism, drug-drug interactions and physiological/pathological state. So, quantifying the activities of enzymes dynamically would be helpful to make precision dosing. Recently, some endogenous substrates of enzymes, such as 6β-hydroxycortisol (6β-OH-cortisol)/cortisol and 6β-hydroxycortisone, have been identified to investigate variations in drug enzymes in humans. Clinical data obtained support their performance as surrogate probes in terms of reflecting the activities of corresponding enzyme. Therefore, a group of Monitored endogenous biomarkers in multiple points can address the uncertainty in drug metabolization in the preclinical phase and have the potential to fulfill precision dosing. This review focuses on recent progress in the contribution of endogenous substances to drug precision dosing, factors that influence enzyme activities, and drug exposure in vivo.
-
-
-
Innovative Nanoscale Drug Delivery Strategies for Breast Carcinoma: A Comprehensive Exploration
Authors: Jaishree S., Kousalya Selvaraj, Prakash S. and Vineesh D.Breast cancer (BC) is one of the major causes of poor health in women and the most devastating disease after lung cancer. The term “cancer” refers to a collection of problems resulting from abnormal cell proliferation, particularly cells that can spread to other parts of the body. Surgery, followed by chemotherapy or radiotherapy, is now accepted for BC-related cancers. However, chemotherapy and radiotherapy are rarely effective in the treatment of BC due to the adverse effects of these treatments on healthy tissues and organs. Consequently, the use of NPs in targeted Drug Delivery Systems (DDSs) has emerged as a promising strategy for BC treatment. This review provides a summary of recent clinical investigations of nanoparticle-mediated DDS that offer a novel therapeutic strategy commonly used for the treatment of breast cancer.
-
-
-
Biomimetic Nanoscale Systems for Targeted Delivery in Cancer: Current Advances and Future Prospects
Authors: Dilpreet Singh and Neelam PooniaThe field of cancer therapy has witnessed a transformative shift with the emergence of biomimetic nanoscale drug delivery systems. These innovative platforms draw inspiration from nature's intricate designs and have the potential to revolutionize cancer treatment by precisely targeting tumor cells while sparing healthy tissues. In this critical appraisal, we explore the current advances in biomimetic nanosystems, examining their principles, diverse natural inspirations, benefits, and challenges. Biomimetic nanoscale systems, including liposomes, exosome-based carriers, virus-mimetic nanoparticles, and cell-membrane-coated nanoparticles, have demonstrated the ability to overcome the complexities of the tumor microenvironment. They offer enhanced target specificity, improved cellular uptake, and prolonged circulation, addressing limitations associated with conventional chemotherapy. We assess recent breakthroughs and discuss the potential impact of biomimetic nanosystems on oncology, emphasizing their versatility in encapsulating various therapeutic payloads, from small molecules to nucleic acids and immunotherapeutics. While these systems hold great promise, we also scrutinize safety concerns, scalability issues, and the necessity for rigorous clinical validation. In conclusion, biomimetic nanoscale drug delivery systems represent a promising avenue in the quest for more effective and targeted cancer therapies. This appraisal provides a comprehensive overview of the current state of the field, highlighting its potential to shape the future of cancer treatment and underscoring the importance of continued research and development efforts in this dynamic and transformative domain.
-
-
-
Effects of High-altitude Hypoxia on Drug Metabolism and Pharmacokinetics of Sedative-hypnotic Drugs and Regulatory Mechanism
Authors: Lu Tian, Guiqin Liu, Junjun Han and Xiangyang LiSedative hypnotics effectively improve sleep quality under high-altitude hypoxia by reducing central nervous system excitability. High-altitude hypoxia causes sleep disorders and modifies the metabolism and mechanisms of drug action, impacting medication therapy's effectiveness. This review aims to provide a theoretical basis for the treatment of central nervous system diseases in high-altitude areas by summarizing the progress and mechanism of sedative-hypnotics in hypoxic environments, as well as the impact of high-altitude hypoxia on sleep.
-
-
-
Effect of Salbutamol on the Disposition Kinetics of Levofloxacin in the Plasma and Lung of Rats
Authors: Murat Ali Cicekler, Halis Oguz and Orhan CorumBackgroundAntibiotics and bronchodilator drugs can be used together in respiratory distress caused by bacterial infections. Levofloxacin (LVX) and Salbutamol (SLB) can be used simultaneously in respiratory distress. However, there have been no investigations on how the concurrent use of SLB can affect the pharmacokinetics of LVX in rats.
ObjectiveThe purpose of this study was to investigate the influence of SLB on the plasma and lung pharmacokinetics of LVX in rats.
MethodsA total of 132 rats were randomly assigned to two groups: LVX (n=66) and LVX+SLB (n=66). LVX (intraperitoneal) and SLB (oral) were administered to rats at doses of 50 and 3 mg/kg, respectively. The concentrations of LVX in the plasma and lungs were determined through the utilization of high-performance liquid chromatography along with UV. Pharmacokinetic parameters were assessed by non-compartmental analysis.
ResultsThe area under the curve from 0 to 16 h (AUC0−16), terminal elimination half-life, volume of distribution, total body clearance, and peak concentration of LVX in the plasma were 42.57 h*μg/mL, 2.32 h, 3.91 L/kg, 1.17 L/h/kg, and 23.96 μg/mL, respectively. There were no alterations observed in the plasma and lung pharmacokinetic parameters of LVX when co-administered with SLB. The AUC0−16 lung/AUC0−16 plasma ratios of LVX were 1.60 and 1.39 after administration alone and co-administration with SLB, respectively.
ConclusionThe concentration of LVX in lung tissue was higher than that in plasma. SLB administration to rats did not affect the plasma and lung pharmacokinetics and lung penetration ratio of LVX. There is a need to reveal the change in the pharmacokinetics of LVX after multiple administration of both drugs and after administration of SLB by different routes.
-
-
-
Carboxylesterase 1-Based Drug-Drug Interaction Potential of Remimazolam: In-Vitro Studies and Literature Review
Authors: Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic and Thomas StöhrBackgroundThe ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).
ObjectiveRemimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.
MethodsPossible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible in-vivo inhibition using pharmacokinetic and Ki or IC50 values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.
ResultsIn human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 µM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC50 values ranged from 0.69 µM (simvastatin) and 57 µM (diltiazem) to > 100 µM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 µM. Remifentanil was ineffective even at 1250 µM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam via CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible in-vivo inhibitors of remimazolam metabolism.
ConclusionData and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.
-
-
-
Quality by Design-Steered Development of Stealth Liposomal Formulation of Everolimus: A Systematic Optimization and Evaluation
Authors: Simranjeet Kaur, Rajveer Singh and Dilpreet SinghBackgroundEverolimus is a drug approved for the treatment of breast cancer with HR+ and advanced breast cancer reoccurring in postmenopausal women. The oral administration of EVE has been observed to have low oral bioavailability and severe epithelial cutaneous events that include rashes and lip ulceration followed by mouth ulceration after oral administration.
AimThe present research aimed to enhance the bioavailability by loading the EVE into a stealth liposomal formulation (S-EVE-LIPO) intended for intravenous administration.
MethodsThe surface of the liposomes was modified with vitamin E TPGS, which prolongs the systemic circulation of the drug and provides additional benefits like inhibition of the P-gp efflux pump and acting synergistically with EVE.
ResultsThe formulation was prepared using the thin film hydration method and optimized using a D-optimal mixture design. ANOVA suggested the significance of the proposed mathematic model, and the optimized formulation was generated by design expert software. The optimized formulation (S-EVE-LIPO) was observed with nanometric size (99.5 ± 3.70 nm) with higher encapsulation efficacy (81.5 ± 2.86%). The S-EVE-LIPO formulation indicated a sustained release profile as 90.22% drug release was observed in 48 h, whereas the formulation without vitamin E TPGS (EVE-LIPO) released only 74.15 drugs in 24 hours. In vitro cytotoxicity study suggested that the presence of vitamin E TPGS lowers the IC50 value (54.2 ± 1.69), increases the cellular uptake of the formulation, also increases the generation of ROS, and shows better hemocompatibility.
ConclusionVitamin E TPGS could be set as a vital additive to improve therapeutic efficacy and reduce off-site toxicity and dosing frequency.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)