Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Sedative hypnotics effectively improve sleep quality under high-altitude hypoxia by reducing central nervous system excitability. High-altitude hypoxia causes sleep disorders and modifies the metabolism and mechanisms of drug action, impacting medication therapy's effectiveness. This review aims to provide a theoretical basis for the treatment of central nervous system diseases in high-altitude areas by summarizing the progress and mechanism of sedative-hypnotics in hypoxic environments, as well as the impact of high-altitude hypoxia on sleep.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002318723240802100729
2024-08-06
2025-01-06
Loading full text...

Full text loading...

References

  1. RobbinsR. QuanS.F. BuysseD.J. WeaverM.D. WalkerM.P. DrakeC.L. MontenK. BargerL.K. RajaratnamS.M.W. RothT. CzeislerC.A. A nationally representative survey assessing restorative sleep in US adults.Frontiers in Sleep2022193522810.3389/frsle.2022.93522836042946
    [Google Scholar]
  2. K PavlovaM. LatreilleV. Sleep Disorders.Am. J. Med.2019132329229910.1016/j.amjmed.2018.09.02130292731
    [Google Scholar]
  3. VargheseN.E. LugoA. GhislandiS. ColomboP. PacificiR. GallusS. Sleep dissatisfaction and insufficient sleep duration in the Italian population.Sci. Rep.20201011794310.1038/s41598‑020‑72612‑433087728
    [Google Scholar]
  4. ZhouX. NianY. QiaoY. YangM. XinY. LiX. Hypoxia plays a key role in the pharmacokinetic changes of drugs at high altitude.Curr. Drug Metab.2018191196096910.2174/138920021966618052911291329807512
    [Google Scholar]
  5. FisherJ.M. WrightonS.A. WatkinsP.B. Schmiedlin-RenP. CalamiaJ.C. ShenD.D. KunzeK.L. ThummelK.E. First-pass midazolam metabolism catalyzed by 1alpha,25-dihydroxy vitamin D3-modified Caco-2 cell monolayers.J. Pharmacol. Exp. Ther.199928921134114210215697
    [Google Scholar]
  6. DenlingerC.S. LigibelJ.A. AreM. BakerK.S. Demark-WahnefriedW. FriedmanD.L. GoldmanM. JonesL. KingA. KuG.H. KvaleE. LangbaumT.S. Leonardi-WarrenK. McCabeM.S. MeliskoM. MontoyaJ.G. MooneyK. MorganM.A. MoslehiJ.J. O’ConnorT. OverholserL. PaskettE.D. RazaM. SyrjalaK.L. UrbaS.G. WakabayashiM.T. ZeeP. McMillianN. Freedman-CassD. Survivorship: Sleep disorders, version 1.2014.J. Natl. Compr. Canc. Netw.201412563064210.6004/jnccn.2014.006724812132
    [Google Scholar]
  7. GarridoE. Botella de MagliaJ. CastilloO. Acute, subacute and chronic mountain sickness.Rev. Clin. Esp. (Barc.)2021221848149010.1016/j.rceng.2019.12.00934583826
    [Google Scholar]
  8. PenaE. El AlamS. SiquesP. BritoJ. Oxidative stress and diseases associated with high-altitude exposure.Antioxidants202211226710.3390/antiox1102026735204150
    [Google Scholar]
  9. NathansenA.B. MøllerA.M. Prophylaxis and treatment of mountain sickness.Ugeskr. Laeger2023185130622042136999289
    [Google Scholar]
  10. TsengC.H. LinF.C. ChaoH.S. TsaiH.C. ShiaoG.M. ChangS.C. Impact of rapid ascent to high altitude on sleep.Sleep Breath.20151938192610.1007/s11325‑014‑1093‑7.
    [Google Scholar]
  11. Nussbaumer-OchsnerY. SchuepferN. UrsprungJ. SiebenmannC. MaggioriniM. BlochK.E. Sleep and breathing in high altitude pulmonary edema susceptible subjects at 4,559 meters.Sleep201235101413142110.5665/sleep.212623024440
    [Google Scholar]
  12. FurianM. BitosK. HartmannS.E. MuraltL. LichtblauM. BaderP.R. RawlingJ.M. UlrichS. PoulinM.J. BlochK.E. Acute high altitude exposure, acclimatization and re-exposure on nocturnal breathing.Front. Physiol.20221396502110.3389/fphys.2022.96502136134332
    [Google Scholar]
  13. LancasterG. DebevecT. MilletG.P. PousselM. WillisS.J. MramorM. GoričarK. OsredkarD. DolžanV. StefanovskaA. Relationship between cardiorespiratory phase coherence during hypoxia and genetic polymorphism in humans.J. Physiol.2020598102001201910.1113/JP27882931957891
    [Google Scholar]
  14. AnholmJ.D. PowlesA.C.P. DowneyR.III HoustonC.S. SuttonJ.R. BonnetM.H. CymermanA. Operation Everest II: Arterial oxygen saturation and sleep at extreme simulated altitude.Am. Rev. Respir. Dis.19921454_pt_181782610.1164/ajrccm/145.4_Pt_1.8171554208
    [Google Scholar]
  15. PramsohlerS. SchilzR. PatzakA. RauschL. NetzerN.C. Periodic breathing in healthy young adults in normobaric hypoxia equivalent to 3500 m, 4500 m, and 5500 m altitude.Sleep Breath.201923270370910.1007/s11325‑019‑01829‑z30972693
    [Google Scholar]
  16. KrygerM. GlasR. JacksonD. McCulloughR.E. ScogginC. GroverR.F. WeilJ.V. Impaired oxygenation during sleep in excessive polycythemia of high altitude: Improvement with respiratory stimulation.Sleep19781131710.1093/sleep/1.1.3756057
    [Google Scholar]
  17. JuJ.D. ZhangC. SgambatiF.P. LopezL.M. PhamL.V. SchwartzA.R. AccinelliR.A. Acute altitude acclimatization in young healthy volunteers: Nocturnal oxygenation increases over time, whereas periodic breathing persists.High Alt. Med. Biol.2021221142310.1089/ham.2020.000933185483
    [Google Scholar]
  18. BirdJ.D. KalkerA. RimkeA.N. ChanJ.S. ChanG. SaranG. JendzjowskyN.G. WilsonR. J.A. BrutsaertT.D. SherpaM.T. DayT.A. Severity of central sleep apnea does not affect sleeping oxygen saturation during ascent to high altitude.J Appl Physiol (1985).202113151432144310.1152/japplphysiol.00363.2021.
    [Google Scholar]
  19. BeaumontM. BatéjatD. CosteO. van BeersP. ColasA. ClèreJ.M. PiérardC. Effects of zolpidem and zaleplon on sleep, respiratory patterns and performance at a simulated altitude of 4,000 m.Neuropsychobiology200449315416210.1159/00007672315034230
    [Google Scholar]
  20. TannerJ.B. TannerS.M.E. ThapaG.B. ChangY. WatsonK.L.M. StauntonE. HowarthC. BasnyatB. HarrisN.S. A randomized trial of temazepam versus acetazolamide in high altitude sleep disturbance.High Alt. Med. Biol.201314323423910.1089/ham.2013.102324028643
    [Google Scholar]
  21. ErmanM.K. Influence of pharmacokinetic profiles on safety and efficacy of hypnotic medications. J Clin Psychiatry200667912Available from: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/469008
    [Google Scholar]
  22. WangQ. JiangT. LiC. Overview of recent literature on diazepam adverse reactions.Chinese Journal of Drug Abuse Prevention and Control.20142004233234
    [Google Scholar]
  23. LiuF. LuZ. Interpretation of the key points of the expert consensus on the clinical use of benzodiazepines.World Clinical.20183910716720
    [Google Scholar]
  24. LiW. WangL. FanZ. Catabolic kinetics of diazepam and its I and II phase metabolites in human urine.Chinese forensic impurities.2023383273276
    [Google Scholar]
  25. HofmannJ.I. SchwarzC. RudolphU. AntkowiakB. Effects of diazepam on low-frequency and high-frequency electrocortical γ-power mediated by α1- and α2-GABAA receptors.Int. J. Mol. Sci.20192014348610.3390/ijms2014348631315211
    [Google Scholar]
  26. HowlandR.H. Safety and abuse liability of Oxazepam: Is this benzodiazepine drug underutilized?J. Psychosoc. Nurs. Ment. Health Serv.2016544222510.3928/02793695‑20160322‑0127042924
    [Google Scholar]
  27. LuoT. HaoW. Research progress of oxazepam.Int. J. Psychiatry2010374244247
    [Google Scholar]
  28. DenisovI.G. GrinkovaY.V. CampT. McLeanM.A. SligarS.G. Midazolam as a probe for drug–drug interactions mediated by CYP3A4: Homotropic allosteric mechanism of site-specific hydroxylation.Biochemistry202160211670168110.1021/acs.biochem.1c0016134015213
    [Google Scholar]
  29. Venkatapura ChandrashekarD. DuBoisB. MehvarR. UPLC-MS/MS analysis of the Michaelis-Menten kinetics of CYP3A-mediated midazolam 1′- and 4-hydroxylation in rat brain microsomes.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021118012289210.1016/j.jchromb.2021.12289234388602
    [Google Scholar]
  30. SalmanS. TangE.K.Y. CheungL.C. NguyenM.N. SommerfieldD. SlevinL. LimL.Y. von Ungern SternbergB.S. A novel, palatable paediatric oral formulation of midazolam: Pharmacokinetics, tolerability, efficacy and safety.Anaesthesia201873121469147710.1111/anae.1431829984832
    [Google Scholar]
  31. HollisterL.E. Principles of therapeutic applications of benzodiazepines.J. Psychoactive Drugs1983151-2414410.1080/02791072.1983.104721206136568
    [Google Scholar]
  32. WłodarczykA. SzarmachJ. CubałaW.J. WigluszM.S. Benzodiazepines in combination with antipsychotic drugs for schizophrenia: GABA-ergic targeted therapy.Psychiatr. Danub.201729334534828953788
    [Google Scholar]
  33. ZhuJ. YangJ. NianY. LiuG. DuanY. BaiX. WangQ. ZhouY. WangX. QuN. LiX. Pharmacokinetics of acetaminophen and metformin hydrochloride in rats after exposure to simulated high altitude hypoxia.Front. Pharmacol.20211269234910.3389/fphar.2021.69234934220516
    [Google Scholar]
  34. GongW. LiuS. XuP. FanM. XueM. Simultaneous quantification of diazepam and dexamethasone in plasma by high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic comparison between normoxic and hypoxic rats.Molecules20152046901691210.3390/molecules2004690125913929
    [Google Scholar]
  35. VijA.G. KishoreK. DeyJ. Effect of intermittent hypobaric hypoxia on efficacy & clearance of drugs.Indian J. Med. Res.2012135221121622446863
    [Google Scholar]
  36. WilbrahamD. BergP.H. TsaiM. LiffickE. LooL.S. DotyE.G. SellersE. Abuse potential of Lasmiditan: A phase 1 randomized, placebo- and alprazolam-controlled crossover study.J. Clin. Pharmacol.202060449550410.1002/jcph.154331745991
    [Google Scholar]
  37. BlandH. LiX. ManginE. YeeK.L. LinesC. HerringW.J. GillespieG. Effects of bedtime dosing with suvorexant and zolpidem on balance and psychomotor performance in healthy elderly participants during the night and in the morning.J. Clin. Psychopharmacol.202141441442010.1097/JCP.000000000000143934181362
    [Google Scholar]
  38. PasupuletiB. GoneV. BaddamR. VenisettyR.K. PrasadO.P. Clinical impact of co-medication of levetiracetam and clobazam with proton pump inhibitors: A drug interaction study.Curr. Drug Metab.202021212613110.2174/138920022166620021812105032067615
    [Google Scholar]
  39. HirotaN. ItoK. IwatsuboT. GreenC.E. TysonC.A. ShimadaN. SuzukiH. SugiyamaY. In Vitro / in vivo scaling of alprazolam metabolism by CYP3A4 and CYP3A5 in humans.Biopharm. Drug Dispos.2001222537110.1002/bdd.26111745908
    [Google Scholar]
  40. WuQ. HuY. WangC. WeiW. GuiL. ZengW. LiuC. JiaW. MiaoJ. LanK. Reevaluate in vitro CYP3A Index reactions of benzodiazepines and steroids between humans and dogs.Drug Metab. Dispos.202250674174910.1124/dmd.122.00086435351776
    [Google Scholar]
  41. SendaC. KishimotoW. SakaiK. NagakuraA. IgarashiT. Identification of human cytochrome P450 isoforms involved in the metabolism of brotizolam.Xenobiotica199727991392210.1080/0049825972400829381732
    [Google Scholar]
  42. UjiieY. FukasawaT. Yasui-FurukoriN. SuzukiA. TateishiT. OtaniK. Rifampicin markedly decreases plasma concentration and hypnotic effect of brotizolam.Ther. Drug Monit.200628329930210.1097/01.ftd.0000200010.33430.0e16778710
    [Google Scholar]
  43. GiraudC. TranA. ReyE. VincentJ. TréluyerJ.M. PonsG. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: Importance of CYP2C19.Drug Metab. Dispos.200432111279128610.1124/dmd.32.11.127915483195
    [Google Scholar]
  44. TolbertD. LarsenF. A comprehensive overview of the clinical pharmacokinetics of clobazam.J. Clin. Pharmacol.201959171910.1002/jcph.131330285275
    [Google Scholar]
  45. GreenblattD.J. HarmatzJ.S. ZhangQ. ChenY. ShaderR.I. Slow accumulation and elimination of diazepam and its active metabolite with extended treatment in the elderly.J. Clin. Pharmacol.202161219320310.1002/jcph.172632856316
    [Google Scholar]
  46. ZubiaurP. Figueiredo-TorL. Villapalos-GarcíaG. Soria-ChacarteguiP. Navares-GómezM. NovalbosJ. MatasM. CallejaS. Mejía-AbrilG. RománM. OchoaD. Abad-SantosF. Association between CYP2C19 and CYP2B6 phenotypes and the pharmacokinetics and safety of diazepam.Biomed. Pharmacother.202215511374710.1016/j.biopha.2022.11374736162369
    [Google Scholar]
  47. Al BahriA.A. HamnettH.J. Etizolam and its major metabolites: A short review.J. Anal. Toxicol.202347321622610.1093/jat/bkac09636477341
    [Google Scholar]
  48. JieZ. QinS. LiuF. XuD. SunJ. QinG. HouX. XuP. ZhangW. GaoC. LuJ. Analysis on dynamic changes of etizolam and its metabolites and exploration of its development prospect using UPLC-Q-exactive-MS.J. Pharm. Biomed. Anal.202424011593610.1016/j.jpba.2023.11593638183733
    [Google Scholar]
  49. KilicarslanT. HainingR.L. RettieA.E. BustoU. TyndaleR.F. SellersE.M. Flunitrazepam metabolism by cytochrome P450S 2C19 and 3A4.Drug Metab. Dispos.2001294 Pt 146046511259331
    [Google Scholar]
  50. KatselouM. PapoutsisI. NikolaouP. SpiliopoulouC. AthanaselisS. Metabolites replace the parent drug in the drug arena. The cases of fonazepam and nifoxipam.Forensic Toxicol.201735111010.1007/s11419‑016‑0338‑528127407
    [Google Scholar]
  51. van GroenB.D. KrekelsE.H.J. MooijM.G. van DuijnE. VaesW.H.J. WindhorstA.D. van RosmalenJ. HartmanS.J.F. HendrikseN.H. KochB.C.P. AllegaertK. TibboelD. KnibbeC.A.J. de WildtS.N. The oral bioavailability and metabolism of midazolam in stable critically Ill children: A pharmacokinetic microtracing study.Clin. Pharmacol. Ther.2021109114014910.1002/cpt.189032403162
    [Google Scholar]
  52. JeongW. SunwooJ. YouY. ParkJ.S. MinJ.H. InY.N. AhnH.J. JeonS.Y. HongJ.H. SongJ.H. KangH. NguyenM.T.T. KimJ. KangC. Distribution and elimination kinetics of midazolam and metabolites after post-resuscitation care: A prospective observational study.Sci. Rep.2024141457410.1038/s41598‑024‑54968‑z38403792
    [Google Scholar]
  53. MiuraM. OhkuboT. In vitro metabolism of quazepam in human liver and intestine and assessment of drug interactions.Xenobiotica20043411-121001101110.1080/0277224040001521415801544
    [Google Scholar]
  54. ZhouJ. YamaguchiK. OhnoY. Quantitative analysis of quazepam and its metabolites in human blood, urine, and bile by liquid chromatography–tandem mass spectrometry.Forensic Sci. Int.2014241e5e1210.1016/j.forsciint.2014.04.02724856286
    [Google Scholar]
  55. LiX. WangX. LiY. ZhuJ. SuX. YaoX. FanX. DuanY. The activity, protein, and mRNA expression of CYP2E1 and CYP3A1 in rats after exposure to acute and chronic high altitude hypoxia.High Alt. Med. Biol.201415449149610.1089/ham.2014.102625330250
    [Google Scholar]
  56. LiX. WangX. LiY. YuanM. ZhuJ. SuX. YaoX. FanX. DuanY. Effect of exposure to acute and chronic high-altitude hypoxia on the activity and expression of CYP1A2, CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats.Pharmacology2014931-2768310.1159/00035812824557547
    [Google Scholar]
  57. LiW. LiJ. WangR. XieH. JiaZ. MDR1 will play a key role in pharmacokinetic changes under hypoxia at high altitude and its potential regulatory networks.Drug Metab. Rev.201547219119810.3109/03602532.2015.100701225639892
    [Google Scholar]
  58. RibeiroA.L. RibeiroV. Drug metabolism and transport under hypoxia.Curr. Drug Metab.201314996997510.2174/138920021131409000324160293
    [Google Scholar]
  59. ZhangJ. ZhangM. ZhangJ. WangR. Enhanced P-glycoprotein expression under high-altitude hypoxia contributes to increased phenytoin levels and reduced clearance in rats.Eur. J. Pharm. Sci.202015310549010.1016/j.ejps.2020.10549032721527
    [Google Scholar]
  60. TaskshitaY. RansohoffR.M. Blood-brain barrier and neurolongical diseasea.Clin. Exp. Immunol.20156351261
    [Google Scholar]
  61. GuoP. ZhouQ. LuoH. YuanY. ZhouB. Effects of sodium heptadecyl saponin on changes in blood-cerebrospinal fluid barrier permeability and its anti-leakage mechanism in rats exposed to hypoxia.J. PLA Med. Sci.2012370298103
    [Google Scholar]
  62. LiuM. AlkayedN.J. Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1alpha-linked induction of P450 2C11 epoxygenase in astrocytes.J. Cereb. Blood Flow Metab.200525893994810.1038/sj.jcbfm.960008515729289
    [Google Scholar]
  63. RonaldsonP.T. DavisT.P. Regulation of blood–brain barrier integrity by microglia in health and disease: A therapeutic opportunity.J. Cereb. Blood Flow Metab.2020401_supplS6S2410.1177/0271678X2095199532928017
    [Google Scholar]
  64. DuanY. ZhuJ. YangJ. LiuG. BaiX. QuN. WangX. LiX. Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 mediated by PXR and CAR.Front. Pharmacol.20201157417610.3389/fphar.2020.57417633041817
    [Google Scholar]
  65. YangJ. Transcriptional regulation of CYP450 by HNF1α and HNF4α under plateau hypoxia.Qinghai University2023
    [Google Scholar]
  66. PayneC.T. TabassumS. WuS. HuH. GusdonA.M. ChoiH.A. RenX.S. Role of microRNA-34a in blood–brain barrier permeability and mitochondrial function in ischemic stroke.Front. Cell. Neurosci.202317127833410.3389/fncel.2023.127833437927446
    [Google Scholar]
  67. Caballero-GarridoE. Pena-PhilippidesJ.C. LordkipanidzeT. BraginD. YangY. ErhardtE.B. RoitbakT. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke.J. Neurosci.20153536124461246410.1523/JNEUROSCI.1641‑15.201526354913
    [Google Scholar]
  68. RedellJ.B. ZhaoJ. DashP.K. Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury.J. Neurosci. Res.201189221222110.1002/jnr.2253921162128
    [Google Scholar]
  69. DuanY. ZhuJ. YangJ. GuW. BaiX. LiuG. XiangyangL. A decade’s review of miRNA: A Center of transcriptional regulation of drugmetabolizing enzymes and transporters under hypoxia.Curr. Drug Metab.202122970972510.2174/138920022266621051401131333992050
    [Google Scholar]
  70. NakanoM. NakajimaM. Pharmacology magazine.Folia pharmacologica Japonica2019Available from: https://jams.med.or.jp/journal_list/005_8e.html
    [Google Scholar]
  71. YuA.M. TianY. TuM.J. HoP.Y. JilekJ.L. MicroRNA pharmacoepigenetics: Posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy.Drug Metab. Dispos.201644330831910.1124/dmd.115.06747026566807
    [Google Scholar]
  72. RiegerJ.K. ReutterS. HofmannU. SchwabM. ZangerU.M. Inflammation-associated microRNA-130b down-regulates cytochrome P450 activities and directly targets CYP2C9.Drug Metab. Dispos.201543688488810.1124/dmd.114.06284425802328
    [Google Scholar]
  73. KuglerN. KleinK. ZangerU.M. MiR-155 and other microRNAs downregulate drug metabolizing cytochromes P450 in inflammation.Biochem. Pharmacol.202017111372510.1016/j.bcp.2019.11372531758923
    [Google Scholar]
  74. XieY. ShaoY. DengX. WangM. ChenY. MicroRNA-298 reverses multidrug resistance to antiepileptic drugs by suppressing MDR1/P-gp expression in vitro. Front. Neurosci.20181260210.3389/fnins.2018.0060230210283
    [Google Scholar]
  75. JiangW. WuY. JiangW. MicroRNA-18a decreases choroidal endothelial cell proliferation and migration by inhibiting HIF1A expression.Med. Sci. Monit.2015211642164710.12659/MSM.89306826044722
    [Google Scholar]
  76. UmezuT. TadokoroH. AzumaK. YoshizawaS. OhyashikiK. OhyashikiJ.H. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1.Blood2014124253748375710.1182/blood‑2014‑05‑57611625320245
    [Google Scholar]
  77. DaiL. LouW. ZhuJ. ZhouX. DiW. MiR-199a inhibits the angiogenic potential of endometrial stromal cells under hypoxia by targeting HIF-1α/VEGF pathway.Int. J. Clin. Exp. Pathol.2015854735474426191163
    [Google Scholar]
  78. GhoshG. SubramanianI.V. AdhikariN. ZhangX. JoshiH.P. BasiD. ChandrashekharY.S. HallJ.L. RoyS. ZengY. RamakrishnanS. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis.J. Clin. Invest.2010120114141415410.1172/JCI4298020972335
    [Google Scholar]
  79. AltamuraA.C. MoliternoD. PalettaS. MaffiniM. MauriM.C. BareggiS. Understanding the pharmacokinetics of anxiolytic drugs.Expert Opin. Drug Metab. Toxicol.20139442344010.1517/17425255.2013.75920923330992
    [Google Scholar]
  80. GriffinC.E.III KayeA.M. BuenoF.R. KayeA.D. Benzodiazepine pharmacology and central nervous system-mediated effects.Ochsner J.201313221422323789008
    [Google Scholar]
  81. NilssonG.E. LutzP.L. Role of GABA in hypoxia tolerance, metabolic depression and hibernation—Possible links to neurotransmitter evolution.Comp. Biochem. Physiol. C Comp. Pharmacol.1993105332933610.1016/0742‑8413(93)90069‑W7900957
    [Google Scholar]
  82. KaufmannW.A. HumpelC. AlheidG.F. MarksteinerJ. Compartmentation of alpha 1 and alpha 2 GABAA receptor subunits within rat extended amygdala: Implications for benzodiazepine action.Brain Res.20039641919910.1016/S0006‑8993(02)04082‑912573516
    [Google Scholar]
  83. AbbottN.J. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models.Drug Discov. Today. Technol.20041440741610.1016/j.ddtec.2004.11.01424981621
    [Google Scholar]
  84. AlavijehM.S. ChishtyM. QaiserM.Z. PalmerA.M. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery.NeuroRx20052455457110.1602/neurorx.2.4.55416489365
    [Google Scholar]
  85. KulkarniA.D. PatelH.M. SuranaS.J. BelgamwarV.S. PardeshiC.V. Brain–blood ratio: Implications in brain drug delivery.Expert Opin. Drug Deliv.2016131859210.1517/17425247.2016.109251926393289
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002318723240802100729
Loading
/content/journals/cdm/10.2174/0113892002318723240802100729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test