Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

The field of cancer therapy has witnessed a transformative shift with the emergence of biomimetic nanoscale drug delivery systems. These innovative platforms draw inspiration from nature's intricate designs and have the potential to revolutionize cancer treatment by precisely targeting tumor cells while sparing healthy tissues. In this critical appraisal, we explore the current advances in biomimetic nanosystems, examining their principles, diverse natural inspirations, benefits, and challenges. Biomimetic nanoscale systems, including liposomes, exosome-based carriers, virus-mimetic nanoparticles, and cell-membrane-coated nanoparticles, have demonstrated the ability to overcome the complexities of the tumor microenvironment. They offer enhanced target specificity, improved cellular uptake, and prolonged circulation, addressing limitations associated with conventional chemotherapy. We assess recent breakthroughs and discuss the potential impact of biomimetic nanosystems on oncology, emphasizing their versatility in encapsulating various therapeutic payloads, from small molecules to nucleic acids and immunotherapeutics. While these systems hold great promise, we also scrutinize safety concerns, scalability issues, and the necessity for rigorous clinical validation. In conclusion, biomimetic nanoscale drug delivery systems represent a promising avenue in the quest for more effective and targeted cancer therapies. This appraisal provides a comprehensive overview of the current state of the field, highlighting its potential to shape the future of cancer treatment and underscoring the importance of continued research and development efforts in this dynamic and transformative domain.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002323535240830093452
2024-09-05
2025-01-05
Loading full text...

Full text loading...

References

  1. SantS. TaoS.L. FisherO.Z. XuQ. PeppasN.A. KhademhosseiniA. Microfabrication technologies for oral drug delivery.Adv. Drug Deliv. Rev.201264649650710.1016/j.addr.2011.11.01322166590
    [Google Scholar]
  2. SantV.E. From nano- to macro-scale: Nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.Nanomedicine20127710456610.1016/j.addr.2011.11.01322166590
    [Google Scholar]
  3. GareevK.G. GrouzdevD.S. KoziaevaV.V. SitkovN.O. GaoH. ZiminaT.M. ShevtsovM. Biomimetic nanomaterials: Diversity, technology, and biomedical applications.Nanomaterials (Basel)20221214248510.3390/nano1214248535889709
    [Google Scholar]
  4. LiB. WangF. GuiL. HeQ. YaoY. ChenH. The potential of biomimetic nanoparticles for tumor-targeted drug delivery.Nanomedicine (Lond.)201813162099211810.2217/nnm‑2018‑001730226404
    [Google Scholar]
  5. HiltJ.Z. Nanotechnology and biomimetic methods in therapeutics: Molecular scale control with some help from nature.Adv. Drug Deliv. Rev.200456111533153610.1016/j.addr.2004.07.00215350287
    [Google Scholar]
  6. JiangY. ChekuriS. FangR.H. ZhangL. Engineering biological interactions on the nanoscale.Curr. Opin. Biotechnol.2019581810.1016/j.copbio.2018.10.00530390535
    [Google Scholar]
  7. KorinN. Mechanoresponsive nanotherapeutic for localized drug delivery to flow obstructed blood vessels.Ther. Deliv.20156889589710.4155/TDE.15.3626271812
    [Google Scholar]
  8. PeppasN.A. KavimandanN.J. Nanoscale analysis of protein and peptide absorption: Insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles.Eur. J. Pharm. Sci.2006293-418319710.1016/j.ejps.2006.04.01416777391
    [Google Scholar]
  9. NadineS. ChungA. DiltemizS.E. YasudaB. LeeC. HosseiniV. KaramikamkarS. de BarrosN.R. MandalK. AdvaniS. ZamanianB.B. MecwanM. ZhuY. MofidfarM. ZareM.R. ManoJ. DokmeciM.R. AlambeigiF. AhadianS. Advances in microfabrication technologies in tissue engineering and regenerative medicine.Artif. Organs2022467E211E24310.1111/aor.1423235349178
    [Google Scholar]
  10. BehC.Y. PrajnamitraR.P. ChenL.L. HsiehP.C.H. Advances in biomimetic nanoparticles for targeted cancer therapy and diagnosis.Molecules20212616505210.3390/molecules2616505234443638
    [Google Scholar]
  11. ZhangY. ZhangX. LiH. LiuJ. WeiW. GaoJ. Membrane-coated biomimetic nanoparticles: A state-of-the-art multifunctional weapon for tumor immunotherapy.Membranes (Basel)202212873810.3390/membranes1208073836005653
    [Google Scholar]
  12. ParkJ.H. DehainiD. ZhouJ. HolayM. FangR.H. ZhangL. Biomimetic nanoparticle technology for cardiovascular disease detection and treatment.Nanoscale Horiz.202051254210.1039/C9NH00291J32133150
    [Google Scholar]
  13. SunZ. ChenJ. ChenG. ZhangC. LiC. Recent advances of engineered and artificial drug delivery system towards solid tumor based on immune cells.Biomed. Mater.202217202200210.1088/1748‑605X/ac4c8b35042206
    [Google Scholar]
  14. KorinN. KanapathipillaiM. MatthewsB.D. CrescenteM. BrillA. MammotoT. GhoshK. JurekS. BencherifS.A. BhattaD. CoskunA.U. FeldmanC.L. WagnerD.D. IngberD.E. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels.Science2012337609573874210.1126/science.121781522767894
    [Google Scholar]
  15. FarhoudiL. FobianS.F. OeiA.L. AminM. JaafariM.R. ten HagenT.L.M. Applications of biomimetic nanoparticles in breast cancer as a blueprint for improved next-generation cervical cancer therapy.Nano Today20235310203210.1016/j.nantod.2023.102032
    [Google Scholar]
  16. ZhongX. NaY. YinS. YanC. GuJ. ZhangN. GengF. Cell membrane biomimetic nanoparticles with potential in treatment of alzheimer’s disease.Molecules2023285233610.3390/molecules2805233636903581
    [Google Scholar]
  17. XiaS. LiuZ. CaiJ. RenH. LiQ. ZhangH. YueJ. ZhouQ. ZhouT. WangL. LiuX. ZhouX. Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells.J. Control. Release2023355546710.1016/j.jconrel.2023.01.05236693527
    [Google Scholar]
  18. ZhengD. ZhouJ. QianL. LiuX. ChangC. TangS. ZhangH. ZhouS. Biomimetic nanoparticles drive the mechanism understanding of shear-wave elasticity stiffness in triple negative breast cancers to predict clinical treatment.Bioact. Mater.20232256758710.1016/j.bioactmat.2022.10.02536382024
    [Google Scholar]
  19. GuX. ZhangR. SunY. AiX. WangY. LyuY. WangX. WuY. WangZ. FengN. LiuY. Oral membrane-biomimetic nanoparticles for enhanced endocytosis and regulation of tumor-associated macrophage.J. Nanobiotechnology202321120610.1186/s12951‑023‑01949‑537403048
    [Google Scholar]
  20. CuiJ.W. FengH.C. XuC. JiangD.Y. ZhangK.H. GaoN.N. WangY. TianH. LiuC. Platelet membrane-encapsulated ginkgolide B biomimetic nanoparticles for the treatment of ischemic stroke.ACS Appl. Nano Mater.2023619175601757110.1021/acsanm.3c02620
    [Google Scholar]
  21. IssakaE. WaribokoM.A. AgyekumE.A. Synergy and coordination between biomimetic nanoparticles and biological cells/tissues/organs/systems: Applications in nanomedicine and prospect.Biomed. Mater. Devices20232023133
    [Google Scholar]
  22. FischettiT. BorcianiG. AvnetS. RubiniK. BaldiniN. GrazianiG. BoaniniE. Incorporation/enrichment of 3D bioprinted constructs by biomimetic nanoparticles: Tuning printability and cell behavior in bone models.Nanomaterials (Basel)20231314204010.3390/nano1314204037513050
    [Google Scholar]
  23. YaoQ. TangY. DaiS. HuangL. JiangZ. ZhengS. SunM. XuY. LuR. SunT. HuangH. JiangX. YaoX. LinG. KouL. ChenR. A biomimetic nanoparticle exerting protection against acute liver failure by suppressing CYP2E1 activity and scavenging excessive ROS.Adv. Healthc. Mater.20231224230057110.1002/adhm.20230057137236618
    [Google Scholar]
  24. WangT. ZhangH. HanY. ZhengQ. LiuH. HanM. LiZ. reversing T cell dysfunction to boost glioblastoma immunotherapy by paroxetine-mediated GRK2 inhibition and blockade of multiple checkpoints through biomimetic nanoparticles.Adv. Sci. (Weinh.)2023109220496110.1002/advs.20220496136698265
    [Google Scholar]
  25. WangY. GaoS. YeW.H. YoonH.S. YangY.Y. Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer.Nat. Mater.200651079179610.1038/nmat173716998471
    [Google Scholar]
  26. BharaliD.J. KlejborI. StachowiakE.K. DuttaP. RoyI. KaurN. BergeyE.J. PrasadP.N. StachowiakM.K. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain.Proc. Natl. Acad. Sci. USA200510232115391154410.1073/pnas.050492610216051701
    [Google Scholar]
  27. LemboD. CavalliR. Nanoparticulate delivery systems for antiviral drugs.Antivir. Chem. Chemother.2010212537010.3851/IMP168421107015
    [Google Scholar]
  28. ParodiA. MolinaroR. SushnithaM. EvangelopoulosM. MartinezJ.O. ArrighettiN. CorboC. TasciottiE. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery.Biomaterials201714715516810.1016/j.biomaterials.2017.09.02028946131
    [Google Scholar]
  29. JoshyK SusanM SnigdhaS NandakumarK LalyAP SabuT Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery.Int. J. Biol. Macromol.2018107Pt A929937
    [Google Scholar]
  30. DizajS.M. JafariS. KhosroushahiA.Y. A sight on the current nanoparticle-based gene delivery vectors.Nanoscale Res. Lett.20149125210.1186/1556‑276X‑9‑25224936161
    [Google Scholar]
  31. Mohammad-RafieiF. KhojiniJ.Y. GhazvinianF. AlimardanS. NoriounH. TahershamsiZ. TajbakhshA. GheibihayatS.M. Cell membrane biomimetic nanoparticles in drug delivery.Biotechnol. Appl. Biochem.20237061843185910.1002/bab.248737387120
    [Google Scholar]
  32. YuanR. LiuM. ChengY. YanF. ZhuX. ZhouS. DongM. Biomimetic nanoparticle-mediated target delivery of hypoxia-responsive plasmid of angiotensin-converting enzyme 2 to reverse hypoxic pulmonary hypertension.ACS Nano20231798204822210.1021/acsnano.2c1219037071566
    [Google Scholar]
  33. GongY. HuangJ. Application of biomimetic nanoparticles based on the cell membrane in tumor therapy.Curr. Top. Med. Chem.2023231090792010.2174/156802662366623042711462237102484
    [Google Scholar]
  34. XuL. ChenY. JinQ. GaoT. DengC. WangR. WangY. BaiY. XuJ. WuW. LiH. FangL. WangJ. YangY. ZhangL. LvQ. XieM. A novel ultrasound-responsive biomimetic nanoparticle for targeted delivery and controlled release of nitric oxide to attenuate myocardial ischemia reperfusion injury.Small Struct.202348230000410.1002/sstr.202300004
    [Google Scholar]
  35. LeiF. LiP. ChenT. WangQ. WangC. LiuY. DengY. ZhangZ. XuM. TianJ. RenW. LiC. Recent advances in curcumin-loaded biomimetic nanomedicines for targeted therapies.J. Drug Deliv. Sci. Technol.20238010420010.1016/j.jddst.2023.104200
    [Google Scholar]
  36. WangQ. WangZ. LiZ. LiD. HeF. WangK. TianJ. ZhaoX. Biomimetic camouflaged nanoparticle-based folfirinox platform for optimizing clinical pancreatic cancer treatment.Nano Today20234810173310.1016/j.nantod.2022.101733
    [Google Scholar]
  37. LiS. MengX. PengB. HuangJ. LiuJ. XiaoH. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives.Acta Biomater.2023174264838008198
    [Google Scholar]
  38. BarcelosJ.M. HayasakiT.G. de SantanaR.C. LimaE.M. MendanhaS.A. BakuzisA.F. Photothermal properties of IR-780-based nanoparticles depend on nanocarrier design: A comparative study on synthetic liposomes and cell membrane and hybrid biomimetic vesicles.Pharmaceutics202315244410.3390/pharmaceutics1502044436839765
    [Google Scholar]
  39. JanN. MadniA. KhanS. ShahH. AkramF. KhanA. ErtasD. BostanudinM.F. ContagC.H. AshammakhiN. ErtasY.N. Biomimetic cell membrane-coated poly(lactic-CO-glycolic acid) nanoparticles for biomedical applications.Bioeng. Transl. Med.202382e1044110.1002/btm2.1044136925703
    [Google Scholar]
  40. DesanteG. PudełkoI. Krok-BorkowiczM. PamułaE. JacobsP. Kazek-KęsikA. NießenJ. TelleR. Gonzalez-JulianJ. SchickleK. Surface multifunctionalization of inert ceramic implants by calcium phosphate biomimetic coating doped with nanoparticles encapsulating antibiotics.ACS Appl. Mater. Interfaces20231517216992171810.1021/acsami.3c0388437083334
    [Google Scholar]
  41. ArjmandB. Kokabi HamidpourS. RabbaniZ. Tayanloo-BeikA. RahimF. AghayanH.R. LarijaniB. Organ on a chip: A novel in vitro biomimetic strategy in amyotrophic lateral sclerosis (ALS) modeling.Front. Neurol.20221278846210.3389/fneur.2021.78846235111126
    [Google Scholar]
  42. ChenB.Y. HongS.Y. WangH.M. ShiY. WangP. WangX.J. JiangQ.Y. YangK.D. ChenW. XuX.L. The subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles.Part. Fibre Toxicol.20232013810.1186/s12989‑023‑00548‑437807046
    [Google Scholar]
  43. ChaiZ. HuX. LuW. Cell membrane-coated nanoparticles for tumor-targeted drug delivery.Sci. China Mater.201760650451010.1007/s40843‑016‑5163‑4
    [Google Scholar]
  44. KrishnanN. PengF.X. MohapatraA. FangR.H. ZhangL. Genetically engineered cellular nanoparticles for biomedical applications.Biomaterials202329612206510.1016/j.biomaterials.2023.12206536841215
    [Google Scholar]
  45. LiY. KeJ. JiaH. RenJ. WangL. ZhangZ. WangC. Cancer cell membrane coated PLGA nanoparticles as biomimetic drug delivery system for improved cancer therapy.Colloids Surf. B Biointerfaces202322211313110.1016/j.colsurfb.2023.11313136646005
    [Google Scholar]
  46. XuB. ZengF. DengJ. YaoL. LiuS. HouH. HuangY. ZhuH. WuS. LiQ. ZhanW. QiuH. WangH. LiY. YangX. CaoZ. ZhangY. ZhouH. A homologous and molecular dual-targeted biomimetic nanocarrier for EGFR-related non-small cell lung cancer therapy.Bioact. Mater.20232733734710.1016/j.bioactmat.2023.04.00537122898
    [Google Scholar]
  47. CaiY. WuC. OuQ. ZengM. XueS. ChenJ. LuY. DingC. Enhanced osteoarthritis therapy by nanoengineered mesenchymal stem cells using biomimetic CuS nanoparticles loaded with plasmid DNA encoding TGF-β1.Bioact. Mater.20231944445710.1016/j.bioactmat.2022.04.02135574050
    [Google Scholar]
  48. YangL. HuangH. ZengH. ZhaoX. WangR. MaZ. FanZ. LiangY. MaS. ZhouF. Biomimetic chitosan nanoparticles with simultaneous water lubricant and anti-inflammatory.Carbohydr. Polym.202330412050310.1016/j.carbpol.2022.12050336641169
    [Google Scholar]
  49. LiX. LinY. YangZ. GuanL. WangZ. LiuA. YangB. TangL. LinQ. Cancer cell membrane biomimetic nanosystem for homologous targeted dual-mode imaging and combined therapy.J. Colloid Interface Sci.2023652Pt A77077910.1016/j.jcis.2023.08.10937619256
    [Google Scholar]
  50. ZhuH. LiuY. YiX. ZhuC. FuY. HuangZ. ZhuK. ZhangW. HouH. SunC. ZhongC. LiuW. LiZ. WangB. WoJ. Novel biomimetic mesoporous silica nanoparticle system possessing targetability and immune synergy facilitates effective solid tumor immuno-chemotherapy.Biomater. Adv.202314421322910.1016/j.bioadv.2022.21322936502749
    [Google Scholar]
  51. MohammedM. IbrahimU.H. AljoundiA. OmoloC.A. DevnarainN. GafarM.A. MocktarC. GovenderT. Enzyme-responsive biomimetic solid lipid nanoparticles for antibiotic delivery against hyaluronidase-secreting bacteria.Int. J. Pharm.202364012296710.1016/j.ijpharm.2023.12296737084831
    [Google Scholar]
  52. AbrahamS. HaC.S. BattC.A. KimI. Synthesis of stable gold nanoparticle–polymeric micelle conjugates: A new class of star molecular chimera that self-assemble into linear arrays of spherical micelles.J. Polym. Sci. A Polym. Chem.200745163570357910.1002/pola.22104
    [Google Scholar]
  53. ZakiA.A. HuiJ.Z. HigbeeE. TsourkasA. Biodistribution, clearance, and toxicology of polymeric micelles loaded with 0.9 or 5 nm gold nanoparticles.J. Biomed. Nanotechnol.201511101836184610.1166/jbn.2015.214226502646
    [Google Scholar]
  54. BolhassaniA. JavanzadS. SalehT. HashemiM. AghasadeghiM.R. SadatS.M. Polymeric nanoparticles.Hum. Vaccin. Immunother.201410232133210.4161/hv.2679624128651
    [Google Scholar]
  55. LiuJ. GongT. WangC. ZhongZ. ZhangZ. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: Preparation and characterization.Int. J. Pharm.20073401-215316210.1016/j.ijpharm.2007.03.00917428627
    [Google Scholar]
  56. LiangB. CaoY. WangX. ZhouH. WangM. CaoY. LuW. YuK. A biomimetic bone-magnet with suitable mechanical properties concurrently performs accurate target collection of nanoparticles for magnetothermally driven osteosarcoma thermo-chemotherapy.Mater. Des.202323411231110.1016/j.matdes.2023.112311
    [Google Scholar]
  57. WangY. HeJ. ChenJ. RenL. JiangB. ZhaoJ. Synthesis of monodisperse, hierarchically mesoporous, silica microspheres embedded with magnetic nanoparticles.ACS Appl. Mater. Interfaces2012452735274210.1021/am300373y22540143
    [Google Scholar]
  58. PeraltaM.E. JadhavS.A. MagnaccaG. ScalaroneD. MártireD.O. ParoloM.E. CarlosL. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery.J. Colloid Interface Sci.201954419820510.1016/j.jcis.2019.02.08630844568
    [Google Scholar]
  59. TarnD. AshleyC.E. XueM. CarnesE.C. ZinkJ.I. BrinkerC.J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility.Acc. Chem. Res.201346379280110.1021/ar300098623387478
    [Google Scholar]
  60. ParisJ.L. CabañasM.V. ManzanoM. Vallet-RegíM. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers.ACS Nano2015911110231103310.1021/acsnano.5b0437826456489
    [Google Scholar]
  61. SinghR.K. PatelK.D. KimJ.J. KimT.H. KimJ.H. ShinU.S. LeeE.J. KnowlesJ.C. KimH.W. Multifunctional hybrid nanocarrier: Magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system.ACS Appl. Mater. Interfaces2014642201220810.1021/am405693624476195
    [Google Scholar]
  62. LiH. QiaoW. ShenY. XuH. FanY. LiuY. LanY. GongY. ChenF. FengS. Biomimetic Boron Nitride Nanoparticles for Targeted Drug Delivery and Enhanced Antitumor Activity.Pharmaceutics2023154126910.3390/pharmaceutics1504126937111754
    [Google Scholar]
  63. DengS. LeiJ. LiuY. HuangY. JuH. A ferrocenyl-terminated dendrimer as an efficient quencher via electron and energy transfer for cathodic electrochemiluminescent bioanalysis.Chem. Commun. (Camb.)201349212106210810.1039/c3cc39208b23389586
    [Google Scholar]
  64. JieG. WangL. YuanJ. ZhangS. Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe-ZnS-quantum dot nanoclusters.Anal. Chem.201183103873388010.1021/ac200383z21469702
    [Google Scholar]
  65. LiZ. HuangP. LinJ. HeR. LiuB. ZhangX. YangS. XiP. ZhangX. RenQ. CuiD. Arginine-glycine-aspartic acid-conjugated dendrimer-modified quantum dots for targeting and imaging melanoma.J. Nanosci. Nanotechnol.20101084859486710.1166/jnn.2010.221721125820
    [Google Scholar]
  66. DivsarF. JuH. Electrochemiluminescence detection of near single DNA molecules by using quantum dots–dendrimer nanocomposites for signal amplification.Chem. Commun. (Camb.)201147359879988110.1039/c1cc13592a21826316
    [Google Scholar]
  67. JieG. YuanJ. ZhangJ. Quantum dots-based multifunctional dendritic superstructure for amplified electrochemiluminescence detection of ATP.Biosens. Bioelectron.2012311697610.1016/j.bios.2011.09.04722137060
    [Google Scholar]
  68. PhanA. AvilaH. MacKayJ.A. Biomimetic SARS-CoV-2 spike protein nanoparticles.Biomacromolecules20232452030204110.1021/acs.biomac.2c0146537001147
    [Google Scholar]
  69. HuoH.Q. MiY.F. YangX. LuH.H. JiY.L. ZhouY. GaoC.J. Polyamide thin film nanocomposite membranes with in-situ integration of multiple functional nanoparticles for high performance reverse osmosis.J. Membr. Sci.202366912131110.1016/j.memsci.2022.121311
    [Google Scholar]
  70. WangW. LiS. LiH. GuoP. LyuC. YeP. YangW. WangJ. YuD. LuG. TanH. Neuroprotective effects of microglial membrane-derived biomimetic particles for spinal cord injury.Adv. Healthc. Mater.20231230230159210.1002/adhm.20230159237681300
    [Google Scholar]
  71. ChengW. WuX. YuS. ZhangC. SongY. LiX. YuX. Biomimetic nanoplatform with selectively positioned indocyanine green for accurate sentinel lymph node imaging.Nanoscale20231547191681917910.1039/D3NR03149G37982186
    [Google Scholar]
  72. CardelliniJ. RidolfiA. DonatiM. GiampietroV. SeveriM. BrucaleM. ValleF. BergeseP. MontisC. CaselliL. BertiD. Probing the coverage of nanoparticles by biomimetic membranes through nanoplasmonics.J. Colloid Interface Sci.202364010010910.1016/j.jcis.2023.02.07336842416
    [Google Scholar]
  73. AhmadH.S. AteebM. NoreenS. FarooqM.I. BaigM.M.F.A. NazarM.S. AkhtarM.F. AhmadK. AyubA.R. ShoukatH. HadiF. MadniA. Biomimetic synthesis and characterization of silver nanoparticles from Dipterygium glaucum extract and its anti-cancerous activities.J. Mol. Struct.2023128213519610.1016/j.molstruc.2023.135196
    [Google Scholar]
  74. CheL. WangY. ShaD. LiG. WeiZ. LiuC. YuanY. SongD. A biomimetic and bioactive scaffold with intelligently pulsatile teriparatide delivery for local and systemic osteoporosis regeneration.Bioact. Mater.202319758710.1016/j.bioactmat.2022.03.02335441117
    [Google Scholar]
  75. KangS.H. LeeJ.Y. KimS.K. ByunS.H. ChoiI. HongS.J. Graphene quantum dots-loaded macrophages as a biomimetic delivery system for bioimaging and photodynamic therapy.J. Drug Deliv. Sci. Technol.20238510462010.1016/j.jddst.2023.104620
    [Google Scholar]
  76. LiQ. WangY. ZhangG. SuR. QiW. Biomimetic mineralization based on self-assembling peptides.Chem. Soc. Rev.20235251549159010.1039/D2CS00725H36602188
    [Google Scholar]
  77. SenM. MukherjeeM. Bioinspired and Green Synth Nanostruct: Sustain Approach.Hoboken, New Jersey, U.S.John Wiley & Sons202310.1002/9781394174928
    [Google Scholar]
  78. AbdelkarimM. Perez-DavalosL. AbdelkaderY. AbostaitA. LaboutaH.I. Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles.Expert Opin. Drug Deliv.2023201133010.1080/17425247.2023.215200036440475
    [Google Scholar]
  79. Harun-Ur-RashidM. JahanI. FoyezT. ImranA.B. Bio-inspired nanomaterials for micro/nanodevices: A new era in biomedical applications.Micromachines (Basel)2023149178610.3390/mi1409178637763949
    [Google Scholar]
  80. LiuR. LuoC. PangZ. ZhangJ. RuanS. WuM. WangL. SunT. LiN. HanL. ShiJ. HuangY. GuoW. PengS. ZhouW. GaoH. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment.Chin. Chem. Lett.202334210751810.1016/j.cclet.2022.05.032
    [Google Scholar]
  81. TalhaM. PathakN. BhattacharyyaS. LinY. Bio-nanomaterials and their applications.Applications of Multifunctional Nanomaterials: Micro and Nano TechnologiesAmsterdamElsevier2023461473
    [Google Scholar]
  82. DingC. HeR. ChengT. WangJ. LiuX. GuoG. ChenY. Bacterial outer membrane-based biomimetic immune adaptors: Mild immunomodulatory and bacterial targeted delivery strategy against implant-related infections.Adv. Funct. Mater.20233342230416810.1002/adfm.202304168
    [Google Scholar]
  83. GuY. LiuY. JacobsR. WeiL. SunY. TianL. LiuY. PolitisC. BMP-2 incorporated into a biomimetic coating on 3D-printed titanium scaffold promotes mandibular bicortical bone formation in a beagle dog model.Mater. Des.202322811184910.1016/j.matdes.2023.111849
    [Google Scholar]
  84. HongY. WangC. WangH. GaoY. WuJ. XiaJ. Cancer-cell-biomimetic nanoparticles for enhanced prostate cancer therapy.J. Chem. Technol. Biotechnol.20239871781179010.1002/jctb.7405
    [Google Scholar]
  85. MengL. TengZ. YangS. WangN. GuanY. ChenX. LiuY. Biomimetic nanoparticles for DC vaccination: A versatile approach to boost cancer immunotherapy.Nanoscale202315146432645510.1039/D2NR07071E36916703
    [Google Scholar]
  86. ZhangG. YaoM. MaS. ZhangK. WangY. WangZ. LiangJ. DaiS. JinR. GuanF. Application of cell membrane-functionalized biomimetic nanoparticles in the treatment of glioma.J. Mater. Chem. B Mater. Biol. Med.202311307055706810.1039/D3TB00605K
    [Google Scholar]
  87. ZahraT. AhmadK.S. ZequineC. ThomasA. GuptaR.K. MalikM.A. Electrocatalytic water splitting studies on zirconium oxide nanoparticles synthesized by biomimetic synthesis route.Ionics202320231410.1007/s11581‑023‑05215‑4
    [Google Scholar]
  88. LiuX. XiaoC. XiaoK. Engineered extracellular vesicles-like biomimetic nanoparticles as an emerging platform for targeted cancer therapy.J. Nanobiotechnology202321128710.1186/s12951‑023‑02064‑137608298
    [Google Scholar]
  89. IssakaE. State-of-the-art of synthesized exosomes and NPs-based biomimetic nanoparticles for wound rehabilitation: A review.Biomed. Mater. Devices20232023134
    [Google Scholar]
  90. MaX. KuangL. YinY. TangL. ZhangY. FanQ. WangB. DongZ. WangW. YinT. WangY. Tumor–antigen activated dendritic cell membrane-coated biomimetic nanoparticles with orchestrating immune responses promote therapeutic efficacy against glioma.ACS Nano20231732341235510.1021/acsnano.2c0903336688797
    [Google Scholar]
  91. ZingerA. Unleashing the potential of cell biomimetic nanoparticles: Strategies and challenges in their design and fabrication for therapeutic applications.J. Control. Release202335859160010.1016/j.jconrel.2023.04.04037146767
    [Google Scholar]
  92. SongY. HeY. RongL. WangZ. MaY. ZhangN. WangB. Platelet-coated bullets biomimetic nanoparticles to ameliorate experimental colitis by targeting endothelial cells.Biomater. Adv.202314821337810.1016/j.bioadv.2023.21337836963342
    [Google Scholar]
  93. LiuH. SuY.Y. JiangX.C. GaoJ.Q. Cell membrane-coated nanoparticles: A novel multifunctional biomimetic drug delivery system.Drug Deliv. Transl. Res.202313371673710.1007/s13346‑022‑01252‑036417162
    [Google Scholar]
  94. FengS. RenY. LiH. TangY. YanJ. ShenZ. ZhangH. ChenF. Cancer cell–membrane biomimetic boron nitride nanospheres for targeted cancer therapy.Int. J. Nanomed.2021162123213610.2147/IJN.S26694833731994
    [Google Scholar]
  95. LiW. MaT. HeT. LiY. YinS. Cancer cell membrane–encapsulated biomimetic nanoparticles for tumor immuno-photothermal therapy.Chem. Eng. J.202346314249510.1016/j.cej.2023.142495
    [Google Scholar]
  96. ZhuL. ZhongY. WuS. YanM. CaoY. MouN. WangG. SunD. WuW. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics.Mater. Today Bio20221410022810.1016/j.mtbio.2022.10022835265826
    [Google Scholar]
  97. WangH. YaoQ. ZhuW. YangY. GaoC. HanC. ChuX. Biomimetic antidote nanoparticles: A novel strategy for chronic heavy metal poisoning.AAPS PharmSciTech20222411210.1208/s12249‑022‑02466‑836451071
    [Google Scholar]
  98. KongJ. ZouR. LawG.L. WangY. Biomimetic multifunctional persistent luminescence nanoprobes for long-term near-infrared imaging and therapy of cerebral and cerebellar gliomas.Sci. Adv.2022810eabm707710.1126/sciadv.abm707735263137
    [Google Scholar]
  99. ZhengX. YuX. WangC. LiuY. JiaM. LeiF. TianJ. LiC. Targeted co-delivery biomimetic nanoparticles reverse macrophage polarization for enhanced rheumatoid arthritis therapy.Drug Deliv.20222911025103710.1080/10717544.2022.205761635363114
    [Google Scholar]
  100. ZhangY. YueX. YangS. LiX. CuiL. CuiX. ShiY. LiuZ. GuoX. LiY. Long circulation and tumor-targeting biomimetic nanoparticles for efficient chemo/photothermal synergistic therapy.J. Mater. Chem. B Mater. Biol. Med.202210265035504410.1039/D2TB00748G35726686
    [Google Scholar]
  101. KhosraviN. PishavarE. BaradaranB. OroojalianF. MokhtarzadehA. Stem cell membrane, stem cell-derived exosomes and hybrid stem cell camouflaged nanoparticles: A promising biomimetic nanoplatforms for cancer theranostics.J. Control. Release202234870672210.1016/j.jconrel.2022.06.02635732250
    [Google Scholar]
  102. BalmertS.C. LittleS.R. Biomimetic delivery with micro- and nanoparticles.Adv. Mater.201224283757377810.1002/adma.20120022422528985
    [Google Scholar]
  103. VenkateshS. ByrneM.E. PeppasN.A. HiltJ.Z. Applications of biomimetic systems in drug delivery.Expert Opin. Drug Deliv.2005261085109610.1517/17425247.2.6.108516296811
    [Google Scholar]
  104. GottliebS. Biosimilars: Policy, clinical, and regulatory considerations.Am. J. Health Syst. Pharm.20086514Suppl. 6S2S810.2146/ajhp08021018591712
    [Google Scholar]
  105. WangZ. WangX. XuW. LiY. LaiR. QiuX. ChenX. ChenZ. MiB. WuM. WangJ. Translational challenges and prospective solutions in the implementation of biomimetic delivery systems.Pharmaceutics20231511262310.3390/pharmaceutics1511262338004601
    [Google Scholar]
  106. HuangL.L. NieW. ZhangJ. XieH.Y. Cell-membrane-based biomimetic systems with bioorthogonal functionalities.Acc. Chem. Res.202053127628710.1021/acs.accounts.9b0055931913016
    [Google Scholar]
  107. LohmannW. KarstU. Biomimetic modeling of oxidative drug metabolism.Anal. Bioanal. Chem.20083911799610.1007/s00216‑007‑1794‑x18163163
    [Google Scholar]
  108. SheikhpourM. BaraniL. KasaeianA. Biomimetics in drug delivery systems: A critical review.J. Control. Release20172539710910.1016/j.jconrel.2017.03.02628322976
    [Google Scholar]
  109. GoughA. Soto-GutiérrezA. VernettiL. EbrahimkhaniM.R. SternA.M. TaylorD.L. Human biomimetic liver microphysiology systems in drug development and precision medicine.Nat. Rev. Gastroenterol. Hepatol.202118425226810.1038/s41575‑020‑00386‑133335282
    [Google Scholar]
  110. PrinceW. PungorE. SluzkyV. BaffiR. Therapeutic enzymes and biomimetic substrates.Bioconjug. Chem.201122377389
    [Google Scholar]
  111. CruzE. HubertT. ChancocoG. NaimO. Chayaamor-HeilN. CornetteR. MenezoC. BadarnahL. RaskinK. AujardF. Design processes and multi-regulation of biomimetic building skins: A comparative analysis.Energy Build.202124611103410.1016/j.enbuild.2021.111034
    [Google Scholar]
  112. BurgerS.R. Current regulatory issues in cell and tissue therapy.Cytotherapy20035428929810.1080/1465324031000232412944234
    [Google Scholar]
  113. ToniattiC. BujardH. CorteseR. CilibertoG. Gene therapy progress and prospects: Transcription regulatory systems.Gene Ther.200411864965710.1038/sj.gt.330225114985790
    [Google Scholar]
  114. MarguetM. BonduelleC. LecommandouxS. Multicompartmentalized polymeric systems: Towards biomimetic cellular structure and function.Chem. Soc. Rev.201342251252910.1039/C2CS35312A23073077
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002323535240830093452
Loading
/content/journals/cdm/10.2174/0113892002323535240830093452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test