Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Antibiotics and bronchodilator drugs can be used together in respiratory distress caused by bacterial infections. Levofloxacin (LVX) and Salbutamol (SLB) can be used simultaneously in respiratory distress. However, there have been no investigations on how the concurrent use of SLB can affect the pharmacokinetics of LVX in rats.

Objective

The purpose of this study was to investigate the influence of SLB on the plasma and lung pharmacokinetics of LVX in rats.

Methods

A total of 132 rats were randomly assigned to two groups: LVX (n=66) and LVX+SLB (n=66). LVX (intraperitoneal) and SLB (oral) were administered to rats at doses of 50 and 3 mg/kg, respectively. The concentrations of LVX in the plasma and lungs were determined through the utilization of high-performance liquid chromatography along with UV. Pharmacokinetic parameters were assessed by non-compartmental analysis.

Results

The area under the curve from 0 to 16 h (AUC), terminal elimination half-life, volume of distribution, total body clearance, and peak concentration of LVX in the plasma were 42.57 h*μg/mL, 2.32 h, 3.91 L/kg, 1.17 L/h/kg, and 23.96 μg/mL, respectively. There were no alterations observed in the plasma and lung pharmacokinetic parameters of LVX when co-administered with SLB. The AUC/AUC ratios of LVX were 1.60 and 1.39 after administration alone and co-administration with SLB, respectively.

Conclusion

The concentration of LVX in lung tissue was higher than that in plasma. SLB administration to rats did not affect the plasma and lung pharmacokinetics and lung penetration ratio of LVX. There is a need to reveal the change in the pharmacokinetics of LVX after multiple administration of both drugs and after administration of SLB by different routes.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002314136240816094609
2024-08-21
2025-01-06
Loading full text...

Full text loading...

References

  1. HooperD.C. Quinolone mode of action.Drugs1995492Suppl. 2101510.2165/00003495‑199500492‑000048549276
    [Google Scholar]
  2. ZhanelG. NoreddinA.M. Pharmacokinetics and pharmacodynamics of the new fluoroquinolones: Focus on respiratory infections.Curr. Opin. Pharmacol.20011545946310.1016/S1471‑4892(01)00080‑711764770
    [Google Scholar]
  3. LodeH. Evidence of different profiles of side effects and drug-drug interactions among the quinolones-The pharmacokinetic standpoint.Chemotherapy2001473Suppl. 3243110.1159/00005784111549786
    [Google Scholar]
  4. BakkenJ.S. The fluoroquinolones: How long will their utility last?Scand. J. Infect. Dis.2004362859210.1080/0036554041001903915061660
    [Google Scholar]
  5. GoudahA. Pharmacokinetics and tissue residues of moxifloxacin in broiler chickens.Br. Poult. Sci.200950225125810.1080/0007166080271010819373726
    [Google Scholar]
  6. LopezR. HysellM. LongJ. LongobardiJ. Legionella pneumonia on point-of-care ultrasound in the emergency department: A case report.Clin. Pract. Cases Emerg. Med.20212515515810.5811/cpcem.2021.1.5031434436993
    [Google Scholar]
  7. PodderV. SadiqN.M. Levofloxacin.Study Guide from StatPearls PublishingTreasure Island (FL)2019
    [Google Scholar]
  8. Durna CorumD. CorumO. YildizR. FakiH.E. IderM. CetinG. UneyK. Influences of tolfenamic acid and flunixin meglumine on the disposition kinetics of levofloxacin in sheep.Acta Veterinaria Hungarica.20206816570
    [Google Scholar]
  9. KayaS. Pharmacology for Veterinary Medicine3rd edMedisan Publishing HouseAnkara2002360370
    [Google Scholar]
  10. YildizR. OkM. Clinical efficacy of combinations of nebulised fluticasone, salbutamol and furosemide on lung function in premature calves with respiratory distress syndrome.Vet. Med.2017621054155210.17221/34/2017‑VETMED
    [Google Scholar]
  11. MarquesL. ValeN. Salbutamol in the management of asthma: A review.Int. J. Mol. Sci.202223221420710.3390/ijms23221420736430683
    [Google Scholar]
  12. KocakM.Z. IlhanN. OzsariS. FidanK. Oral amiodarone-induced liver injury with gamma glutamyl transferase elevation: A case report.Eurasian J. Med. Oncol.201822117119
    [Google Scholar]
  13. MahmoudM.I. ElfakiA. AlhajZ.A. SaidA.H. Allergic bronchopulmonary aspergillosis with an atypical mass-like presentation.Case Rep. Pulmonol.202220221610.1155/2022/362720235733508
    [Google Scholar]
  14. OdenholtI. CarsO. Pharmacodynamics of moxifloxacin and levofloxacin against Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli: Simulation of human plasma concentrations after intravenous dosage in an in vitro kinetic model.J. Antimicrob. Chemother.200658596096510.1093/jac/dkl35616936293
    [Google Scholar]
  15. ErdoganT. OguzH. CorumO. Effect of dexketoprofen on the disposition kinetics of moxifloxacin in plasma and lung in male and female rats.Curr. Drug Metab.2024251637010.2174/011389200228227123121904450838258775
    [Google Scholar]
  16. AltanF. CorumO. YildizR. Eser FakiH. IderM. OkM. UneyK. Intravenous pharmacokinetics of moxifloxacin following simultaneous administration with flunixin meglumine or diclofenac in sheep.J. Vet. Pharmacol. Ther.202043210811410.1111/jvp.1284132043623
    [Google Scholar]
  17. CetinG. Durna CorumD. CorumO. AtikO. CoskunD. UneyK. Effect of ketoprofen and tolfenamic acid on intravenous pharmacokinetics of ceftriaxone in sheep.J. Vet. Pharmacol. Ther.202144694595110.1111/jvp.1300134312894
    [Google Scholar]
  18. VaudauxP. FrancoisP. BisognanoC. SchrenzelJ. LewD.P. Comparison of levofloxacin, alatrofloxacin, and vancomycin for prophylaxis and treatment of experimental foreign-body-associated infection by methicillin-resistant Staphylococcus aureus.Antimicrob. Agents Chemother.20024651503150910.1128/AAC.46.5.1503‑1509.200211959588
    [Google Scholar]
  19. OlsenK.M. Gentry-NielsenM. YueM. SnitilyM.U. PreheimL.C. Effect of ethanol on fluoroquinolone efficacy in a rat model of pneumococcal pneumonia.Antimicrob. Agents Chemother.200650121021910.1128/AAC.50.1.210‑219.200616377688
    [Google Scholar]
  20. ZhuL. ZhangY. YangJ. WangY. ZhangJ. ZhaoY. DongW. Prediction of the pharmacokinetics and tissue distribution of levofloxacin in humans based on an extrapolated PBPK model.Eur. J. Drug Metab. Pharmacokinet.201641439540210.1007/s13318‑015‑0271‑825753830
    [Google Scholar]
  21. Šoic-VranicT. BobinacD. BajekS. JerkovićR. Malnar-DragojevićD. NikolićM. Effect of salbutamol on innervated and denervated rat soleus muscle.Braz. J. Med. Biol. Res.200538121799180510.1590/S0100‑879X200500120000816302094
    [Google Scholar]
  22. CorumO. TerziE. Durna CorumD. TastanY. GonzalesR.C. KenanogluO.N. ArriesgadoD.M. NavarroV.R. BilenS. SonmezA.Y. UneyK. Plasma and muscle tissue disposition of enrofloxacin in Nile tilapia ( Oreochromis niloticus ) after intravascular, intraperitoneal, and oral administrations.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.202239111806181710.1080/19440049.2022.212142936136094
    [Google Scholar]
  23. Durna CorumD. CorumO. TerziE. CoskunD. BilenS. CetinG. UneyK. Pharmacokinetics of cefquinome in rainbow trout ( Oncorhynchus mykiss ) after intravascular, intraperitoneal, and oral administrations.J. Vet. Pharmacol. Ther.202245657858310.1111/jvp.1309136000461
    [Google Scholar]
  24. CorumO. UneyK. TerziE. Durna CorumD. CoskunD. AltanF. ElmasM. Effects of temperature on the pharmacokinetics, tissue residues, and withdrawal times of doxycycline in rainbow trout (Oncorhynchus mykiss) following oral administration.Vet. Sci.202310640110.3390/vetsci1006040137368787
    [Google Scholar]
  25. TekeliI.O. TurkE. Durna CorumD. CorumO. KirgizF.C. UneyK. Pharmacokinetics, bioavailability and tissue residues of doxycycline in Japanese quails ( Coturnix coturnix japonica ) after oral administration.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.202037122082209210.1080/19440049.2020.182582733066710
    [Google Scholar]
  26. EkiciA. Effect of N-Acetylcystein on passage of levofloxacin to lung tissue in rats.PhD Thesis, Selcuk University Institute of Health Sciences, Konya.2022
    [Google Scholar]
  27. MoriH. NakajimaT. NakayamaA. YamoriM. IzushiF. GomitaY. Interaction between levofloxacin and vancomycin in rats-study of serum and organ levels.Chemotherapy199844318118910.1159/0000071139612608
    [Google Scholar]
  28. ZimmermannE.S. LaureanoJ.V. dos SantosC.N. SchmidtS. LagishettyC.V. de CastroW.V. Dalla CostaT. Simultaneous semimechanistic population analyses of levofloxacin in plasma, lung, and prostate to describe the influence of efflux transporters on drug distribution following intravenous and intratracheal administration.Antimicrob. Agents Chemother.201660294695410.1128/AAC.02317‑1526621623
    [Google Scholar]
  29. CzyrskiA. KondysK. SzałekE. KarbownikA. GrześkowiakE. The pharmacokinetic interaction between levofloxacin and sunitinib.Pharmacol. Rep.201567354254410.1016/j.pharep.2014.12.01325933967
    [Google Scholar]
  30. Patel JatinH. Vihol PritiD. Sadariya KamleshA. Patel UrveshD. Varia RaseshD. Bhavsar ShaileshK. Thaker AshwinM. Effect of ketoprofen co-administration and febrile state on pharmacokinetics of levofloxacin in goats following intravenous administration.Int. J. Curr. Microbiol. Appl. Sci.20187102477248310.20546/ijcmas.2018.710.287
    [Google Scholar]
  31. DumkaV.K. SrivastavaA.K. Disposition kinetics, urinary excretion and dosage regimen of levofloxacin formulation following single intravenous administration in crossbred calves.Vet. Res. Commun.200731787387910.1007/s11259‑007‑0090‑817279462
    [Google Scholar]
  32. DumkaV.K. SinghH. SrivastavaA.K. Disposition kinetics and urinary excretion of levofloxacin on concomitant administration with meloxicam in cross-bred calves.Environ. Toxicol. Pharmacol.2008261566010.1016/j.etap.2008.01.00721783888
    [Google Scholar]
  33. K HurtadoF. LaureanoJ.V. de A LockG. DerendorfH. Dalla CostaT. Enhanced penetration of moxifloxacin into rat prostate tissue evidenced by microdialysis.Int. J. Antimicrob. Agents201444432733310.1016/j.ijantimicag.2014.06.01125218157
    [Google Scholar]
  34. MorganD.J. PaullJ.D. RichmondB.H. Wilson-EveredE. ZicconeS.P. Pharmacokinetics of intravenous and oral salbutamol and its sulphate conjugate.Br. J. Clin. Pharmacol.198622558759310.1111/j.1365‑2125.1986.tb02939.x3790406
    [Google Scholar]
  35. HurstM. LambH.M. ScottL.J. FiggittD.P. Levofloxacin.Drugs200262142127216710.2165/00003495‑200262140‑0001312269858
    [Google Scholar]
  36. HemeryckA. MamidiR.N.V.S. BottaciniM. MacphersonD. KaoM. KelleyM.F. Pharmacokinetics, metabolism, excretion and plasma protein binding of 14 C-levofloxacin after a single oral administration in the Rhesus monkey.Xenobiotica200636759761310.1080/0049825060067443616864506
    [Google Scholar]
  37. BoultonD.W. FawcettJ.P. The pharmacokinetics of levosalbutamol: What are the clinical implications?Clin. Pharmacokinet.2001401234010.2165/00003088‑200140010‑0000311236808
    [Google Scholar]
  38. AminimanizaniA. BeringerP. JelliffeR. Comparative pharmacokinetics and pharmacodynamics of the newer fluoroquinolone antibacterials.Clin. Pharmacokinet.200140316918710.2165/00003088‑200140030‑0000311327197
    [Google Scholar]
  39. SartiniI. Łebkowska-WieruszewskaB. SitovsA. LisowskiA. PoapolathepA. GiorgiM. Levofloxacin pharmacokinetics and tissue residue concentrations after oral administration in Bilgorajska geese.Br. Poult. Sci.202162219319810.1080/00071668.2020.184285533121260
    [Google Scholar]
  40. AndersonV.R. PerryC.M. Levofloxacin.Drugs200868453556510.2165/00003495‑200868040‑0001118318569
    [Google Scholar]
  41. PacificiG.M. GiulianettiB. QuiliciM.C. SpisniR. NerviM. GiulianiL. GomeniR. (-)-Salbutamol sulphation in the human liver and duodenal mucosa : Interindividual variability.Xenobiotica199727327928610.1080/0049825972406049141235
    [Google Scholar]
  42. AbushammalaI.M. AbuwakedE.A. FayyadH.M. ElqedraA.F. RamadanM.A. AlmasriI.M. In situ absorption study of acebutolol by modulating P-glycoprotein with verapamil in rats.Turk J Pharm Sci202017667367810.4274/tjps.galenos.2019.5986233389978
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002314136240816094609
Loading
/content/journals/cdm/10.2174/0113892002314136240816094609
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): HPLC; levofloxacin; liquid chromatography; optical L-isomer; pharmacokinetics; salbutamol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test