Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Modern nanostructures must fulfill a wide range of functions to be valuable, leading to the combination of various nano-objects into hierarchical assemblies. Hybrid Nanoparticles (HNPs), comprised of multiple types of nanoparticles, are emerging as nanoscale structures with versatile applications. HNPs offer enhanced medical benefits compared to basic combinations of distinct components. They address the limitations of traditional nanoparticle delivery systems, such as poor water solubility, nonspecific targeting, and suboptimal therapeutic outcomes. HNPs also facilitate the transition from anatomical to molecular imaging in lung cancer diagnosis, ensuring precision. In clinical settings, the selection of nanoplatforms with superior reproducibility, cost-effectiveness, easy preparation, and advanced functional and structural characteristics is paramount. This study aims toextensively examine hybrid nanoparticles, focusing on their classification, drug delivery mechanisms, properties of hybrid inorganic nanoparticles, advancements in hybrid nanoparticle technology, and their biomedical applications, particularly emphasizing the utilization of smart hybrid nanoparticles. PHNPs enable the delivery of numerous anticancer, anti-leishmanial, and antifungal drugs, enhancing cellular absorption, bioavailability, and targeted drug delivery while reducing toxic side effects.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002291778240610073122
2024-05-01
2025-01-24
Loading full text...

Full text loading...

References

  1. SeabergJ. MontazerianH. HossenM.N. BhattacharyaR. KhademhosseiniA. MukherjeeP. Hybrid nanosystems for biomedical applications.ACS Nano20211522099214210.1021/acsnano.0c09382 33497197
    [Google Scholar]
  2. RanX. HuangY. WangM. A hybrid Monte Carlo-discrete ordinates method for phonon transport in micro/nanosystems with rough interfaces.Int J Heat Mass Trans20232012123624
    [Google Scholar]
  3. HamdanM.F. Mohd NoorS.N. Abd-AzizN. PuaT.L. TanB.C. Green revolution to gene revolution: Technological advances in agriculture to feed the world.Plants20221110129710.3390/plants11101297 35631721
    [Google Scholar]
  4. HueckelT. LuoX. AlyO.F. MacfarlaneR.J. Nanoparticle brushes: Macromolecular ligands for materials synthesis.Acc. Chem. Res.202356141931194110.1021/acs.accounts.3c00160 37390490
    [Google Scholar]
  5. MoulahoumH. GhorbanizamaniF. BedukT. BedukD. OzufuklarO. Guler CelikE. TimurS. Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications.J. Pharm. Biomed. Anal.202323511562310.1016/j.jpba.2023.115623 37542827
    [Google Scholar]
  6. LiB. AshrafizadehM. JiaoT. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis.Int. J. Biol. Macromol.2024260Pt 212939110.1016/j.ijbiomac.2024.129391 38242413
    [Google Scholar]
  7. KhanJ. Optical chemosensors synthesis and appplication for trace level metal ions detection in aqueous media: A review.J. Fluoresc.2024410.1007/s10895‑023‑03559‑8 38175458
    [Google Scholar]
  8. JainS. KumarM. KumarP. VermaJ. RosenholmJ.M. BansalK.K. VaidyaA. Lipid–Polymer hybrid nanosystems: A rational fusion for advanced therapeutic delivery.J. Funct. Biomater.202314943710.3390/jfb14090437 37754852
    [Google Scholar]
  9. ScopelR. FalcãoM.A. CappellariA.R. MorroneF.B. GuterresS.S. CasselE. KaskoA.M. VargasR.M.F. Lipid-polymer hybrid nanoparticles as a targeted drug delivery system for melanoma treatment.Int. J. Polym. Mater.202271212713810.1080/00914037.2020.1809406
    [Google Scholar]
  10. KashapovR. IbragimovaA. PavlovR. GabdrakhmanovD. KashapovaN. BurilovaE. ZakharovaL. SinyashinO. Nanocarriers for biomedicine: From lipid formulations to inorganic and hybrid nanoparticles.Int. J. Mol. Sci.20212213705510.3390/ijms22137055 34209023
    [Google Scholar]
  11. ElmowafyM. ShalabyK. ElkomyM.H. AlsaidanO.A. GomaaH.A.M. AbdelgawadM.A. MostafaE.M. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges.Polymers (Basel)2023155112310.3390/polym15051123 36904364
    [Google Scholar]
  12. DeljooS. RabieeN. RabieeM. Curcumin-hybrid nanoparticles in drug delivery system.Asian J of Nanosci and Mat2019216691
    [Google Scholar]
  13. QiX. XiangY. CaiE. GeX. ChenX. ZhangW. LiZ. ShenJ. Inorganic–organic hybrid nanomaterials for photothermal antibacterial therapy.Coord. Chem. Rev.202349621542610.1016/j.ccr.2023.215426
    [Google Scholar]
  14. PushpalathaC. SowmyaS.V. AugustineD. KumarC. BharkavyK.V. JithyaS. GayathriV.S. ShakirA. DhodwadR. Nanoparticle as an effective tool for the diagnosis of diseases and vaccinology.Nanovaccinology202310.1007/978‑3‑031‑35395‑6_15
    [Google Scholar]
  15. ChuY.M. NazirU. SohailM. SelimM. LeeJ.R. Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach.Fractal and Fractional20215311910.3390/fractalfract5030119
    [Google Scholar]
  16. ZhaoZ. WangX. JingX. ZhaoY. LanK. ZhangW. DuanL. GuoD. WangC. PengL. ZhangX. AnZ. LiW. NieZ. FanC. ZhaoD. General synthesis of ultrafine monodispersed hybrid nanoparticles from highly stable monomicelles.Adv. Mater.20213323210082010.1002/adma.202100820 33914372
    [Google Scholar]
  17. LiuR. LuoC. PangZ. ZhangJ. RuanS. WuM. WangL. SunT. LiN. HanL. ShiJ. HuangY. GuoW. PengS. ZhouW. GaoH. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment.Chin. Chem. Lett.202334210751810.1016/j.cclet.2022.05.032
    [Google Scholar]
  18. SalehiS. NoriA. HosseinzadehK. GanjiD.D. Hydrothermal analysis of MHD squeezing mixture fluid suspended by hybrid nanoparticles between two parallel plates.Case Stud. Therm. Eng.20202110065010.1016/j.csite.2020.100650
    [Google Scholar]
  19. SekarR. BasavegowdaN. ThathapudiJ.J. SekharM.R. JoshiP. SomuP. BaekK.H. Recent progress of gold-based nanostructures towards future emblem of photo-triggered cancer theranostics: A special focus on combinatorial phototherapies.Pharmaceutics202315243310.3390/pharmaceutics15020433 36839754
    [Google Scholar]
  20. XuY. DongX. XuH. JiaoP. ZhaoL.X. SuG. Nanomaterial-based drug delivery systems for pain treatment and relief: From the delivery of a single drug to co-delivery of multiple therapeutics.Pharmaceutics2023159230910.3390/pharmaceutics15092309 37765278
    [Google Scholar]
  21. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  22. ShettyK. BhandariA. YadavK.S. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system.J. Control. Release202235042143410.1016/j.jconrel.2022.08.035 36002053
    [Google Scholar]
  23. WangH. YangS. ChenL. LiY. HeP. WangG. DongH. MaP. DingG. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer.Bioact. Mater.20243317422210.1016/j.bioactmat.2023.10.004 38034499
    [Google Scholar]
  24. KhaliliL. DehghanG. SheibaniN. KhataeeA. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges.Int. J. Biol. Macromol.202221316619410.1016/j.ijbiomac.2022.05.156 35644315
    [Google Scholar]
  25. AhmedT. LiuF.C.F. WuX.Y. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: Exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism.Expert Opin. Drug Deliv.202421224527810.1080/17425247.2024.2318459 38344771
    [Google Scholar]
  26. SivadasanD. SultanM.H. MadkhaliO. AlmoshariY. ThangavelN. Polymeric Lipid Hybrid Nanoparticles (PLNs) as Emerging drug delivery platform—a comprehensive review of their properties, preparation methods, and therapeutic applications.Pharmaceutics2021138129110.3390/pharmaceutics13081291 34452251
    [Google Scholar]
  27. SurapaneniS.G. AmbadeA.V. Poly(N -vinylcaprolactam) containing solid lipid polymer hybrid nanoparticles for controlled delivery of a hydrophilic drug gemcitabine hydrochloride.RSC Advances20221227176211762810.1039/D2RA02845J 35765442
    [Google Scholar]
  28. YangQ. ZhouY. ChenJ. HuangN. WangZ. ChengY. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound.Int. J. Nanomedicine20211618519910.2147/IJN.S286221 33447034
    [Google Scholar]
  29. BhattacharyaS. Methotrexate-loaded polymeric lipid hybrid nanoparticles (PLHNPs): A reliable drug delivery system for the treatment of glioblastoma.J. Exp. Nanosci.202116134436710.1080/17458080.2021.1983172
    [Google Scholar]
  30. RoucoH. García-GarcíaP. ÉvoraC. Díaz-RodríguezP. DelgadoA. Screening strategies for surface modification of lipid-polymer hybrid nanoparticles.Int. J. Pharm.202262412197310.1016/j.ijpharm.2022.121973 35811041
    [Google Scholar]
  31. HossainN. MobarakM.H. MimonaM.A. IslamM.A. HossainA. ZohuraF.T. ChowdhuryM.A. Advances and significances of nanoparticles in semiconductor applications – A review.Results in Engineering20231910134710.1016/j.rineng.2023.101347
    [Google Scholar]
  32. MohantyA. UthamanS. ParkI.K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy.Molecules20202519437710.3390/molecules25194377 32977707
    [Google Scholar]
  33. AminP. ShojaeiA. HamzehlouyanT. ZIF-8/Chitosan hybrid nanoparticles with tunable morphologies as superior adsorbents towards both anionic and cationic dyes for a broad range of acidic and basic environments.Microporous Mesoporous Mater.202234311214910.1016/j.micromeso.2022.112149
    [Google Scholar]
  34. SetiaA. SahuR.K. RayS. WidyowatiR. EkasariW. SarafS. Advances in hybrid vesicular-based drug delivery systems: Improved biocompatibility, targeting, therapeutic efficacy and pharmacokinetics of anticancer drugs.Curr. Drug Metab.202223975778010.2174/1389200223666220627110049 35761494
    [Google Scholar]
  35. SailorM.J. ParkJ.H. Hybrid nanoparticles for detection and treatment of cancer.Adv. Mater.201224283779380210.1002/adma.201200653 22610698
    [Google Scholar]
  36. WangJ. GongJ. WeiZ. Strategies for liposome drug delivery systems to improve tumor treatment efficacy.AAPS PharmSciTech20222312710.1208/s12249‑021‑02179‑4 34907483
    [Google Scholar]
  37. DehainiD. FangR.H. LukB.T. PangZ. HuC.M.J. KrollA.V. YuC.L. GaoW. ZhangL. Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery.Nanoscale2016830144111441910.1039/C6NR04091H 27411852
    [Google Scholar]
  38. DanhierF. DanhierP. De SaedeleerC.J. FruytierA.C. SchleichN. RieuxA. SonveauxP. GallezB. PréatV. Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors.Int. J. Pharm.2015479239940710.1016/j.ijpharm.2015.01.009 25578367
    [Google Scholar]
  39. ZhangT. LuoJ. FuY. LiH. DingR. GongT. ZhangZ. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer.Colloids Surf. B Biointerfaces2017150899710.1016/j.colsurfb.2016.11.024 27898360
    [Google Scholar]
  40. YalcinT.E. Ilbasmis-TamerS. TakkaS. Antitumor activity of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs): In vitro and in vivo. Int. J. Pharm.202058011924610.1016/j.ijpharm.2020.119246 32205141
    [Google Scholar]
  41. KhanM.M. MadniA. TorchilinV. FilipczakN. PanJ. TahirN. ShahH. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin.Drug Deliv.201926176577210.1080/10717544.2019.1642420 31357896
    [Google Scholar]
  42. TahirN. MadniA. BalasubramanianV. RehmanM. CorreiaA. KashifP.M. MäkiläE. SalonenJ. SantosH.A. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.Int. J. Pharm.2017533115616810.1016/j.ijpharm.2017.09.061 28963013
    [Google Scholar]
  43. YousafR. KhanM.I. AkhtarM.F. MadniA. SohailM.F. SaleemA. IrshadK. SharifA. RanaM. Development and in-vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole.Heliyon202393e1428110.1016/j.heliyon.2023.e14281 36925532
    [Google Scholar]
  44. AwadeenR.H. BoughdadyM.F. ZaghloulR.A. ElsaedW.M. Abu HashimI.I. MeshaliM.M. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo assessment against severe acute pancreatitis.Sci. Rep.20231311911010.1038/s41598‑023‑46215‑8 37925581
    [Google Scholar]
  45. KamarajS. PalanisamyU.M. Kadhar MohamedM.S.B. GangasalamA. MariaG.A. KandasamyR. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.Eur. J. Pharm. Sci.2018116486010.1016/j.ejps.2018.01.023 29355595
    [Google Scholar]
  46. ManjushaV. RajeevM.R. AnirudhanT.S. Magnetic nanoparticle embedded chitosan-based polymeric network for the hydrophobic drug delivery of paclitaxel.Int. J. Biol. Macromol.202323512390010.1016/j.ijbiomac.2023.123900 36870643
    [Google Scholar]
  47. OlusegunS.J. OsialM. Majkowska-PilipA. Żelechowska-MatysiakK. NiecieckaD. KrajewskiM. PękałaM. KrysinskiP. Synthesis and characterization of Sr2+ and Gd3+ doped magnetite nanoparticles for magnetic hyperthermia and drug delivery application.Ceram. Int.20234912198511986010.1016/j.ceramint.2023.03.102
    [Google Scholar]
  48. HajebiS. AbdollahiA. Roghani-MamaqaniH. Salami-KalajahiM. Hybrid and hollow Poly(N,N-dimethylaminoethyl methacrylate) nanogels as stimuli-responsive carriers for controlled release of doxorubicin.Polymer (Guildf.)201918012171610.1016/j.polymer.2019.121716
    [Google Scholar]
  49. KhalidQ. AhmadM. Usman MinhasM. Hydroxypropyl‐β‐cyclodextrin hybrid nanogels as nano‐drug delivery carriers to enhance the solubility of dexibuprofen: Characterization, in vitro release, and acute oral toxicity studies.Adv. Polym. Technol.20183762171218510.1002/adv.21876
    [Google Scholar]
  50. RahmanS. HaqueT.N. SugandhiV.V. SaraswatA.L. XinX. ChoH. Topical cream carrying drug-loaded nanogels for melanoma treatment.Pharm. Res.202340102291230110.1007/s11095‑023‑03506‑z 37012533
    [Google Scholar]
  51. RezaeiS.J.T. SarijlooE. RashidzadehH. ZamaniS. RamazaniA. HesamiA. MohammadiE. pH-triggered prodrug micelles for cisplatin delivery: Preparation and in vitro/vivo evaluation.React. Funct. Polym.202014610439910.1016/j.reactfunctpolym.2019.104399
    [Google Scholar]
  52. BauerT.A. SchrammJ. FenaroliF. SiemerS. SeidlC.I. RosenauerC. BleulR. StauberR.H. KoynovK. MaskosM. BarzM. Complex structures made simple – continuous flow production of core cross‐linked polymeric micelles for paclitaxel pro‐drug‐delivery.Adv. Mater.20233521221070410.1002/adma.202210704 36934295
    [Google Scholar]
  53. SomavarapuS. SornsuteA. TrillJ. AbdelhakimH.E. GoonatilakaD. PannalaA.S. TaylorK.M.G. Engineering artesunate-loaded micelles using spray drying for pulmonary drug delivery.J. Drug Deliv. Sci. Technol.20238610464110.1016/j.jddst.2023.104641
    [Google Scholar]
  54. ZhuJ. WangG. AlvesC.S. TomásH. XiongZ. ShenM. RodriguesJ. ShiX. Multifunctional dendrimer-entrapped gold nanoparticles conjugated with doxorubicin for pH-responsive drug delivery and targeted computed tomography imaging.Langmuir20183441124281243510.1021/acs.langmuir.8b02901 30251859
    [Google Scholar]
  55. FataniW.K. AleanizyF.S. AlqahtaniF.Y. AlanaziM.M. AldossariA.A. ShakeelF. HaqN. AbdelhadyH. AlkahtaniH.M. AlsarraI.A. Erlotinib-loaded dendrimer nanocomposites as a targeted lung cancer chemotherapy.Molecules2023289397410.3390/molecules28093974 37175381
    [Google Scholar]
  56. DingQ. DingC. LiuX. ZhengY. ZhaoY. ZhangS. SunS. PengZ. LiuW. Preparation of nanocomposite membranes loaded with taxifolin liposome and its mechanism of wound healing in diabetic mice.Int. J. Biol. Macromol.202324112453710.1016/j.ijbiomac.2023.124537 37086765
    [Google Scholar]
  57. HasanbeglooK. BanihashemS. Faraji DizajiB. BybordiS. Farrokh-EslamlouN. AbadiP.G. JaziF.S. IraniM. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly(ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer.Int. J. Biol. Macromol.202323012338010.1016/j.ijbiomac.2023.123380 36706885
    [Google Scholar]
  58. LuW. LiuW. HuA. ShenJ. YiH. ChengZ. Combinatorial polydopamine-liposome nanoformulation as an effective anti-breast cancer therapy.Int. J. Nanomedicine20231886187910.2147/IJN.S382109 36844433
    [Google Scholar]
  59. AlsadooniJ.F.K. HaghiM. BarzegarA. FeiziM.A.H. The effect of chitosan hydrogel containing gold nanoparticle complex with paclitaxel on colon cancer cell line.Int. J. Biol. Macromol.202324712561210.1016/j.ijbiomac.2023.125612 37390995
    [Google Scholar]
  60. ShahidiM. AbazariO. DayatiP. BakhshiA. RastiA. HaghiralsadatF. NaghibS.M. TofighiD. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment.Nanotechnol. Rev.20221112875289010.1515/ntrev‑2022‑0479
    [Google Scholar]
  61. ShakibaM. JahangiriP. RahmaniE. HosseiniS.M. BighamA. ForoozandehA. TajikiA. PourmadadiM. NasiriS. JouybarS. AbdoussM. Drug-loaded carbon nanotube incorporated in nanofibers: A multifunctional nanocomposite for smart chronic wound healing.ACS Appl. Polym. Mater.2023575662567510.1021/acsapm.3c00965
    [Google Scholar]
  62. NguyenT. ManiyarA. SarkarM. SarkarT.R. NeelgundG.M. The cytotoxicity of carbon nanotubes and hydroxyapatite, and graphene and hydroxyapatite nanocomposites against breast cancer cells.Nanomaterials (Basel)202313355610.3390/nano13030556 36770518
    [Google Scholar]
  63. ShuG. XuD. XieS. ChangL.J. LiuX. YangJ. LiY. WangX. The antioxidant, antibacterial, and infected wound healing effects of ZnO quantum dots-chitosan biocomposite.Appl. Surf. Sci.202361115572710.1016/j.apsusc.2022.155727
    [Google Scholar]
  64. WangZ. ZhuJ. ChenL. DengK. HuangH. Multifunctional gold–silver–carbon quantum dots nano-hybrid composite: Advancing antibacterial wound healing and cell proliferation.ACS Appl. Mater. Interfaces20231534402414025410.1021/acsami.3c07625 37599603
    [Google Scholar]
  65. GómezI.J. Ovejero-ParedesK. Méndez-ArriagaJ.M. PizúrováN. FiliceM. ZajíčkováL. PrasharS. Gómez-RuizS. Organotin(IV)‐decorated graphene quantum dots as dual platform for molecular imaging and treatment of triple negative breast cancer.Chemistry20232960e20230184510.1002/chem.202301845 37540499
    [Google Scholar]
  66. Sainaga JyothiV.G.S. BulusuR. Venkata Krishna RaoB. PranothiM. BandaS. Kumar BollaP. KommineniN. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update.Int. J. Pharm.202262412202210.1016/j.ijpharm.2022.122022 35843364
    [Google Scholar]
  67. CastroK.C. CostaJ.M. CamposM.G.N. Drug-loaded polymeric nanoparticles: A review.Int. J. Polym. Mater.202271111310.1080/00914037.2020.1798436
    [Google Scholar]
  68. VallorzE.L. Encinas-BasurtoD. SchnellmannR.G. MansourH.M. Design, development, physicochemical characterization, and in vitro drug release of formoterol PEGylated PLGA polymeric nanoparticles.Pharmaceutics202214363810.3390/pharmaceutics14030638 35336011
    [Google Scholar]
  69. ZhangH. HeZ. FuC. PanP. ZhuY. XuM. DengS. YingG. ShenY. Dissociation of polymeric micelle under hemodynamic shearing.Nano Today20224510151710.1016/j.nantod.2022.101517
    [Google Scholar]
  70. GandhiN.S. TekadeR.K. ChouguleM.B. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances.J. Control. Release201419423825610.1016/j.jconrel.2014.09.001 25204288
    [Google Scholar]
  71. DuM. OuyangY. MengF. MaQ. LiuH. ZhuangY. PangM. CaiT. CaiY. Nanotargeted agents: An emerging therapeutic strategy for breast cancer.Nanomedicine (Lond.)201914131771178610.2217/nnm‑2018‑0481 31298065
    [Google Scholar]
  72. ZhangX. LiF. ZhaoX. Treatment of surfactants with concentrations below critical micelle concentration by ultrafiltration: A mini-review.Water Cycle20223505510.1016/j.watcyc.2022.04.002
    [Google Scholar]
  73. MiriV. JangdeR.K. SinghD. SureshP.K. Lipid-polymer hybrid nanoparticles for topical drug delivery system.J. Drug Deliv. Ther.202313411312010.22270/jddt.v13i4.5789
    [Google Scholar]
  74. ZhouL. LiY. LiangQ. LiuJ. LiuY. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review.J. Drug Target.202230657758810.1080/1061186X.2022.2044485 35179094
    [Google Scholar]
  75. CruseK. TrewarthaA. LeeS. WangZ. HuoH. HeT. KononovaO. JainA. CederG. Text-mined dataset of gold nanoparticle synthesis procedures, morphologies, and size entities.Sci. Data20229123410.1038/s41597‑022‑01321‑6 35618761
    [Google Scholar]
  76. MandalB. MittalN.K. BalabathulaP. ThomaL.A. WoodG.C. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer.Eur. J. Pharm. Sci.20168116217110.1016/j.ejps.2015.10.021 26517962
    [Google Scholar]
  77. Mat IsaS.Z. ZainonR. TamalM. State of the art in gold nanoparticle synthesisation via pulsed laser ablation in liquid and its characterisation for molecular imaging: A review.Materials (Basel)202215387510.3390/ma15030875 35160822
    [Google Scholar]
  78. RamezaniM. DehghaniA. SherifM.M. Carbon nanotube reinforced cementitious composites: A comprehensive review.Constr. Build. Mater.202231512510010.1016/j.conbuildmat.2021.125100
    [Google Scholar]
  79. SridharanR. MonishaB. KumarP.S. GayathriK.V. Carbon nanomaterials and its applications in pharmaceuticals: A brief review.Chemosphere202229413373110.1016/j.chemosphere.2022.133731 35090848
    [Google Scholar]
  80. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  81. SimõesM.G. HugoA. AlvesP. PérezP.F. Gómez-ZavagliaA. SimõesP.N. Long term stability and interaction with epithelial cells of freeze-dried pH-responsive liposomes functionalized with cholesterol-poly(acrylic acid).Colloids Surf. B Biointerfaces2018164505710.1016/j.colsurfb.2018.01.018 29413620
    [Google Scholar]
  82. FanL. WeiA. GaoZ. MuX. Current progress of mesenchymal stem cell membrane-camouflaged nanoparticles for targeted therapy.Biomed. Pharmacother.202316111445110.1016/j.biopha.2023.114451 36870279
    [Google Scholar]
  83. ChenH. PinaJ.M. HouY. SargentE.H. Synthesis, applications, and prospects of quantum‐dot‐in‐perovskite solids.Adv. Energy Mater.2022124210077410.1002/aenm.202100774
    [Google Scholar]
  84. BangeraP.D. KaraD.D. TanviK. TippavajhalaV.K. RathnanandM. Highlights on cell-penetrating peptides and polymer-lipid hybrid nanoparticle: Overview and therapeutic applications for targeted anticancer therapy.AAPS PharmSciTech202324512410.1208/s12249‑023‑02576‑x 37225901
    [Google Scholar]
  85. ChenB.Z. HeY.T. ZhaoZ.Q. FengY.H. LiangL. PengJ. YangC.Y. UyamaH. ShahbaziM.A. GuoX.D. Strategies to develop polymeric microneedles for controlled drug release.Adv. Drug Deliv. Rev.202320311510910.1016/j.addr.2023.115109
    [Google Scholar]
  86. JinZ. GaoQ. WuK. OuyangJ. GuoW. LiangX.J. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy.Adv. Drug Deliv. Rev.202320211511110.1016/j.addr.2023.115111 37820982
    [Google Scholar]
  87. IravaniS. VarmaR.S. Smart MXene quantum dot-based nanosystems for biomedical applications.Nanomaterials (Basel)2022127120010.3390/nano12071200 35407317
    [Google Scholar]
  88. IsmailJ. KlepschL.C. DahlkeP. TsarenkoE. VollrathA. PretzelD. JordanP.M. RezaeiK. CzaplewskaJ.A. StumpfS. Beringer-SiemersB. NischangI. HoeppenerS. WerzO. SchubertU.S. PEG–Lipid–PLGA hybrid particles for targeted delivery of anti-inflammatory drugs.Pharmaceutics202416218710.3390/pharmaceutics16020187 38399248
    [Google Scholar]
  89. OluwasanmiA. ManE. CurtisA. YiuH.H.P. PerrieY. HoskinsC. Investigation into the use of microfluidics in the manufacture of metallic gold-coated iron oxide hybrid nanoparticles.Nanomaterials (Basel)20211111297610.3390/nano11112976 34835738
    [Google Scholar]
  90. SuH. HanX. HeL. DengL. YuK. JiangH. WuC. JiaQ. ShanS. Synthesis and characterization of magnetic dextran nanogel doped with iron oxide nanoparticles as magnetic resonance imaging probe.Int. J. Biol. Macromol.201912876877410.1016/j.ijbiomac.2019.01.219 30716377
    [Google Scholar]
  91. MyeniN. PerlaV.K. GhoshS.K. MallickK. Organic matrix stabilized copper sulfide nanoparticles: Synthesis, characterization and application in glucose recognition.Mater. Today Commun.20202510129110.1016/j.mtcomm.2020.101291
    [Google Scholar]
  92. MukherjeeA. WatersA.K. KalyanP. AchrolA.S. KesariS. YenugondaV.M. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives.Int. J. Nanomedicine2019141937195210.2147/IJN.S198353 30936695
    [Google Scholar]
  93. DaliP. ShendeP. Self-assembled lipid polymer hybrid nanoparticles using combinational drugs for migraine via intranasal route.AAPS PharmSciTech20222412010.1208/s12249‑022‑02479‑3 36526821
    [Google Scholar]
  94. RenY. Selenized polymer-lipid hybrid nanoparticles for oral delivery of tripterine with ameliorative oral anti-enteritis activity and bioavailability.Pharmaceut.202315382110.3390/pharmaceutics15030821 36986681
    [Google Scholar]
  95. TanC.H. JiangL. LiW. ChanS.H. BaekJ.S. NgN.K.J. SailovT. KharelS. ChongK.K.L. LooS.C.J. Lipid-polymer hybrid nanoparticles enhance the potency of ampicillin against] Enterococcus faecalis in a protozoa infection model.ACS Infect. Dis.2021761607161810.1021/acsinfecdis.0c00774 33866781
    [Google Scholar]
  96. RizwanullahM. PerwezA. AlamM. AhmadS. MirS.R. RizviM.M.A. AminS. Polymer-lipid hybrid nanoparticles of exemestane for improved oral bioavailability and anti-tumor efficacy: An extensive preclinical investigation.Int. J. Pharm.202364212313610.1016/j.ijpharm.2023.123136 37311498
    [Google Scholar]
  97. Abo El-EninH.A. TulbahA.S. DarwishH.W. SalamaR. NaguibI.A. YassinH.A. Abdel-BarH.M. Evaluation of brain targeting and antipsychotic activity of nasally administrated ziprasidone lipid–polymer hybrid nanocarriers.Pharmaceuticals (Basel)202316688610.3390/ph16060886 37375832
    [Google Scholar]
  98. YuanH. LiuB. LiuF. LiC. HanL. HuangX. XueJ. QuW. XuJ. LiuW. FengF. WangL. Enhanced anti-rheumatoid arthritis activity of total alkaloids from picrasma quassioides in collagen-induced arthritis rats by a targeted drug delivery system.J. Pharm. Sci.202311292483249310.1016/j.xphs.2023.03.024 37023852
    [Google Scholar]
  99. PradyuthK.S. SalunkheS.A. SinghA.K. ChitkaraD. MittalA. Belinostat loaded lipid–polymer hybrid nanoparticulate delivery system for breast cancer: Improved pharmacokinetics and biodistribution in a tumor model.J. Mater. Chem. B Mater. Biol. Med.20231145108591087210.1039/D3TB01317K 37938124
    [Google Scholar]
  100. MunirA. MuhammadF. ZaheerY. AliM.A. IqbalM. RehmanM. MunirM.U. AkhtarB. WebsterT.J. SharifA. IhsanA. Synthesis of naringenin loaded lipid based nanocarriers and their in-vivo therapeutic potential in a rheumatoid arthritis model.J. Drug Deliv. Sci. Technol.20216610285410.1016/j.jddst.2021.102854
    [Google Scholar]
  101. JadonR.S. SharmaG. GargN.K. TandelN. GajbhiyeK.R. SalveR. GajbhiyeV. SharmaU. KatareO.P. SharmaM. TyagiR.K. Efficient in vitro and in vivo docetaxel delivery mediated by pH-sensitive LPHNPs for effective breast cancer therapy.Colloids Surf. B Biointerfaces202120311176010.1016/j.colsurfb.2021.111760 33872827
    [Google Scholar]
  102. SanjanwalaD. PatravaleV. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer.Drug Discov. Today202328510355010.1016/j.drudis.2023.103550 36906220
    [Google Scholar]
  103. LvJ. RoyS. XieM. YangX. GuoB. Contrast agents of magnetic resonance imaging and future perspective.Nanomaterials (Basel)20231313200310.3390/nano13132003 37446520
    [Google Scholar]
  104. BhardwajH. JangdeR.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications.Next Nanotechnology2023210001310.1016/j.nxnano.2023.100013
    [Google Scholar]
  105. HuangL. HuangX.H. YangX. HuJ.Q. ZhuY.Z. YanP.Y. XieY. Novel nano-drug delivery system for natural products and their application.Pharmacol. Res.202420110710010.1016/j.phrs.2024.107100 38341055
    [Google Scholar]
  106. JangdeR. ElhassanG.O. KhuteS. SinghD. SinghM. SahuR.K. KhanJ. Hesperidin-loaded lipid polymer hybrid nanoparticles for topical delivery of bioactive drugs.Pharmaceuticals (Basel)202215221110.3390/ph15020211 35215324
    [Google Scholar]
  107. ShinH.E. HanJ.H. ParkJ.D. ParkM. HanJ. KangM.H. LeeJ.S. ParkC.G. ParkJ. KimH.Y. ChoD. ParkW. Enhancing CAR‐NK cells against solid tumors through chemical and genetic fortification with DOTAP‐functionalized lipid nanoparticles.Adv. Funct. Mater.20247231572110.1002/adfm.202315721
    [Google Scholar]
  108. BhardwajH. KhuteS. SahuR. JangdeR.K. Advanced drug delivery system for management of chronic diabetes wound healing.Curr. Drug Targets202324161239125910.2174/0113894501260002231101080505 37957907
    [Google Scholar]
  109. IqbalM.F. YangY. HassanM.U. ZhangX. LiG. HuiK.N. EsmatM. ZhangM. Polyaniline grafted mesoporous zinc sulfide nanoparticles for hydrogen evolution reaction.Int. J. Hydrogen Energy20224796067607710.1016/j.ijhydene.2021.11.255
    [Google Scholar]
  110. SankarR. RizwanaK. ShivashangariK.S. RavikumarV. Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles.Appl. Nanosci.20155673173610.1007/s13204‑014‑0369‑3
    [Google Scholar]
  111. GurunathanS. KangM.H. QasimM. KimJ.H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer.Int. J. Mol. Sci.20181910326410.3390/ijms19103264 30347840
    [Google Scholar]
  112. ShettyA. ChandraS. Inorganic hybrid nanoparticles in cancer theranostics: Understanding their combinations for better clinical translation.Mater. Today Chem.20201810038110.1016/j.mtchem.2020.100381
    [Google Scholar]
  113. TiwariA. DhobleS.J. Stabilization of ZnS nanoparticles by polymeric matrices: Synthesis, optical properties and recent applications.RSC Advances2016669644006442010.1039/C6RA13108E
    [Google Scholar]
  114. EoK. KimM. IhmH. JeongS. KwonY.K. Preparation and surface plasmon resonance of polymer/silver hybrid nanoparticles.Porrime2018421939810.7317/pk.2018.42.1.93
    [Google Scholar]
  115. WangH. YuanY. QinL. YueM. XueJ. CuiZ. ZhanX. GaiJ. ZhangX. GuanJ. MaoS. Tunable rigidity of PLGA shell-lipid core nanoparticles for enhanced pulmonary siRNA delivery in 2D and 3D lung cancer cell models.J. Control. Release2024366746760
    [Google Scholar]
  116. ZhouC.Q. HanJ. GuoR. Controllable synthesis and catalysis application of conducting polymer/noble metal nanoparticle hybrids.Acta Poly Sinica.2020515517529
    [Google Scholar]
  117. SuvarliN. FrentzelM. HubbuchJ. Perner-NochtaI. WörnerM. Synthesis of spherical nanoparticle hybrids via aerosol thiol-ene photopolymerization and their bioconjugation.Nanomaterials (Basel)202212357710.3390/nano12030577 35159922
    [Google Scholar]
  118. MujahidM.H. UpadhyayT.K. KhanF. PandeyP. ParkM.N. SharangiA.B. SaeedM. UpadhyeV.J. KimB. Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications.Biomed. Pharmacother.202215511379110.1016/j.biopha.2022.113791 36271568
    [Google Scholar]
  119. ChariparK. KimH. PiquéA. ChariparN. ZnO nanoparticle/graphene hybrid photodetectors via laser fragmentation in liquid.Nanomaterials (Basel)2020109164810.3390/nano10091648 32825778
    [Google Scholar]
  120. MajumdarR. TantayanonS. In-situ synthesis of metal nanoparticle embedded soft hybrid materials via eco-benign approach.Pure and Appl. Chem.202294810
    [Google Scholar]
  121. WangC. ChenS. BaoL. LiuX. HuF. YuanH. Size-controlled preparation and behavior study of phospholipid–calcium carbonate hybrid nanoparticles.Int. J. Nanomedicine2020154049406210.2147/IJN.S237156 32606663
    [Google Scholar]
  122. JiangJ. PiJ. CaiJ. The advancing of zinc oxide nanoparticles for biomedical applications.Bioinorg. Chem. Appl.20182018118
    [Google Scholar]
  123. EsmaeiliM.S. VarziZ. Taheri-LedariR. MalekiA. Preparation and study of the catalytic application in the synthesis of xanthenedione pharmaceuticals of a hybrid nano-system based on copper, zinc and iron nanoparticles.Res. Chem. Intermed.202147397399610.1007/s11164‑020‑04311‑8
    [Google Scholar]
  124. AndreaniT. Dias-FerreiraJ. FangueiroJ.F. SouzaA.L.R. KiillC.P. GremiãoM.P.D. GarcíaM.L. SilvaA.M. SoutoE.B. Formulating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection.Heliyon202065e0383110.1016/j.heliyon.2020.e03831 32395645
    [Google Scholar]
  125. FadiaP. TyagiS. BhagatS. NairA. PanchalP. DaveH. DangS. SinghS. Calcium carbonate nano- and microparticles: Synthesis methods and biological applications.3 Biotech2021111145710.1007/s13205‑021‑02995‑2
    [Google Scholar]
  126. HuY. QiuC. JinZ. QinY. ZhanC. XuX. WangJ. Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers.Carbohydr. Polym.202022911541810.1016/j.carbpol.2019.115418 31826463
    [Google Scholar]
  127. HuangY. LiP. ZhaoR. ZhaoL. LiuJ. PengS. FuX. WangX. LuoR. WangR. ZhangZ. Silica nanoparticles: Biomedical applications and toxicity.Biomed. Pharmacother.202215111305310.1016/j.biopha.2022.113053 35594717
    [Google Scholar]
  128. KhanM.M. MadniA. FilipczakN. PanJ. RehmanM. RaiN. AttiaS.A. TorchilinV.P. Folate targeted lipid chitosan hybrid nanoparticles for enhanced anti-tumor efficacy.Nanomedicine20202810222810.1016/j.nano.2020.102228 32485321
    [Google Scholar]
  129. Mutlu-AgardanN.B. HanS. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery.Pharm. Dev. Technol.202126215716610.1080/10837450.2020.1849282 33183103
    [Google Scholar]
  130. YangH. LeQ.V. ShimG. OhY.K. ShinY.K. Molecular engineering of antibodies for site-specific conjugation to lipid polydopamine hybrid nanoparticles.Acta Pharm. Sin. B202010112212222610.1016/j.apsb.2020.07.006 33304787
    [Google Scholar]
  131. SilvaL.B. CastroK.A.D.F. BotteonC.E.A. OliveiraC.L.P. da SilvaR.S. MarcatoP.D. Hybrid nanoparticles as an efficient porphyrin delivery system for cancer cells to enhance photodynamic therapy.Front. Bioeng. Biotechnol.2021967912810.3389/fbioe.2021.679128 34604182
    [Google Scholar]
  132. JangdeR.K. Rabsanjani; Khute, S. Design and development of ciprofloxacin lipid polymer hybrid nanoparticle by response surface methodology.Res J Pharm Technol20201373249325610.5958/0974‑360X.2020.00576.4
    [Google Scholar]
  133. AlfagihI.M. KanekoK. KundaN.K. AlanaziF. DennisonS.R. TawfeekH.M. SaleemI.Y. In vitro characterization of inhalable cationic hybrid nanoparticles as potential vaccine carriers.Pharmaceuticals (Basel)202114216410.3390/ph14020164 33670611
    [Google Scholar]
  134. JiaoX. YuX. GongC. ZhuH. ZhangB. WangR. YuanY. Erythrocyte-cancer hybrid membrane-camouflaged Mesoporous silica nanoparticles loaded with gboxin for glioma-targeting therapy.Curr. Pharm. Biotechnol.202223683584610.2174/1389201022666210719164538 34825635
    [Google Scholar]
  135. SurendranV. PaleiN.N. VanangamudiM. MadheswaraguptaP. Systemic optimization and validation of RP-HPLC method for the estimation of ritonavir from hybrid polymeric nanoparticles in rat plasma.Curr. Pharm. Anal.202218665066210.2174/1573412918666220128092959
    [Google Scholar]
  136. QinL. WuH. XuE. ZhangX. GuanJ. ZhaoR. MaoS. Exploring the potential of functional polymer-lipid hybrid nanoparticles for enhanced oral delivery of paclitaxel.Asian J Pharmaceut Sci202116338739510.1016/j.ajps.2021.02.004 34276826
    [Google Scholar]
  137. KalayciogluG.D. AydoganN. Fluorocarbon/hydrocarbon hybrid surfactant decorated gold nanoparticles and their interaction with model cell membranes.J. Mol. Liq.202132611534610.1016/j.molliq.2021.115346
    [Google Scholar]
  138. Esteban-PérezS. Andrés-GuerreroV. López-CanoJ.J. Molina-MartínezI. Herrero-VanrellR. Bravo-OsunaI. Gelatin nanoparticles-HPMC hybrid system for effective ocular topical administration of antihypertensive agents.Pharmaceutics202012430610.3390/pharmaceutics12040306 32231033
    [Google Scholar]
  139. ShiW. CaoX. LiuQ. ZhuQ. LiuK. DengT. YuQ. DengW. YuJ. WangQ. XuX. Hybrid membrane-derived nanoparticles for isoliquiritin enhanced glioma therapy.Pharmaceuticals (Basel)2022159105910.3390/ph15091059 36145280
    [Google Scholar]
  140. NiuB. ZhouY. LiaoK. WenT. LaoS. QuanG. PanX. WuC. “Pincer movement”: Reversing cisplatin resistance based on simultaneous glutathione depletion and glutathione S-transferases inhibition by redox-responsive degradable organosilica hybrid nanoparticles.Acta Pharm. Sin. B20221242074208810.1016/j.apsb.2021.10.013 35847508
    [Google Scholar]
  141. GodaraS. LatherV. KirthanashriS.V. AwasthiR. PanditaD. Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation.Mater. Sci. Eng. C202010911057610.1016/j.msec.2019.110576 32228957
    [Google Scholar]
  142. BogireddyN.K.R. SahareP. PalU. MéndezS.F.O. GomezL.M. AgarwalV. Platinum nanoparticle-assembled porous biogenic silica 3D hybrid structures with outstanding 4-nitrophenol degradation performance.Chem. Eng. J.202038812423710.1016/j.cej.2020.124237
    [Google Scholar]
  143. ZhangK. LiJ. XinX. DuX. ZhaoD. QinC. HanX. HuoM. YangL. YinL. Dual targeting of cancer cells and MMPs with self-assembly hybrid nanoparticles for combination therapy in combating cancer.Pharmaceutics20211312199010.3390/pharmaceutics13121990 34959271
    [Google Scholar]
  144. FuW. LiangY. XieZ. WuH. ZhangZ. LvH. Preparation and evaluation of lecithin/zein hybrid nanoparticles for the oral delivery of Panax notoginseng saponins.Eur. J. Pharm. Sci.202116410588210.1016/j.ejps.2021.105882 34000426
    [Google Scholar]
  145. MehtaS. SureshA. NayakY. NarayanR. NayakU.Y. Hybrid nanostructures: Versatile systems for biomedical applications.Coord. Chem. Rev.202246021448210.1016/j.ccr.2022.214482
    [Google Scholar]
  146. YameenM.A. ZebA. MustafaR.E. MushtaqS. AmanN. SamieM. ShahK.H. IqbalJ. Synthesis and biological evaluation of amoxicillin loaded hybrid material composite spheres against methicillin-resistant Staphylococcus aureus.Curr. Pharm. Biotechnol.202122568669610.2174/1389201021666201221143537 33349214
    [Google Scholar]
  147. PirasC.C. MahonC.S. GeneverP.G. SmithD.K. Shaping and patterning supramolecular materials—stem cell-compatible dual-network hybrid gels loaded with silver nanoparticles.ACS Biomater. Sci. Eng.2022851829184010.1021/acsbiomaterials.1c01560 35364810
    [Google Scholar]
  148. HongW. GaoY. LouB. YingS. WuW. JiX. YuN. JiaoY. WangH. ZhouX. LiA. GuoF. YangG. Curcumin-loaded hybrid nanoparticles: Microchannel-based preparation and antitumor activity in a mouse model.Int. J. Nanomedicine2021164147415910.2147/IJN.S303829 34168445
    [Google Scholar]
  149. AsfourM.H. SalamaA.A.A. MohsenA.M. Fabrication of all-trans retinoic acid loaded chitosan/tripolyphosphate lipid hybrid nanoparticles as a novel oral delivery approach for management of diabetic nephropathy in rats.J. Pharm. Sci.202111093208322010.1016/j.xphs.2021.05.007 34015278
    [Google Scholar]
  150. RibeiroL.N.M. Rodrigues da SilvaG.H. CoutoV.M. CastroS.R. BreitkreitzM.C. MartinezC.S. IgartúaD.E. PrietoM.J. de PaulaE. Functional hybrid nanoemulsions for sumatriptan intranasal delivery.Front Chem.2020858950310.3389/fchem.2020.589503 33282832
    [Google Scholar]
  151. KarthikeyanC. SisubalanN. VaraprasadK. AepuruR. YallapuM.M. ViswanathanM.R. Umaralikhan; Sadiku, R. Hybrid nanoparticles from chitosan and nickel for enhanced biocidal activities.New J. Chem.20224627132401324810.1039/D2NJ02009B
    [Google Scholar]
  152. KarimiB. Ma’maniL. AminA.A. KarimiH. HossiniH. Ionic liquid modified magnetic nanoparticles-graphene hybrid (Fe3O4@GO-IL) for the removal of ibuprofen and penicillin G from aqueous solutions.Desalination Water Treat.202020835536610.5004/dwt.2020.26473
    [Google Scholar]
  153. ElzayatA. TolbaE. Pérez-PlaF.F. OrabyA. Muñoz-EspíR. Increased stability of polysaccharide/silica hybrid sub‐millicarriers for retarded release of hydrophilic substances.Macromol. Chem. Phys.20212229210002710.1002/macp.202100027
    [Google Scholar]
  154. LvL. ChengH. WangZ. MiaoZ. ZhangF. ChenJ. WangG. TaoL. ZhouJ. ZhangH. DingY. Carrier–drug layer-by-layer hybrid assembly of biocompatible polydopamine nanoparticles to amplify photo-chemotherapy.Nanoscale20221437137401375410.1039/D2NR03200G 36098072
    [Google Scholar]
  155. CorreiaD.M. FernandesL.C. FernandesM.M. HermenegildoB. MeiraR.M. RibeiroC. RibeiroS. RegueraJ. Lanceros-MéndezS. Ionic liquid-based materials for biomedical applications.Nanomaterials (Basel)2021119240110.3390/nano11092401 34578716
    [Google Scholar]
  156. BonettiF.M.R. de PaulaE. FonsecaB.B. da SilvaG.R. da SilvaL.S.S. de MouraL.D. BreitkreitzM.C. Rodrigues da SilvaG.H. de Morais RibeiroL.N. Hybrid nanobeads for oral indomethacin delivery.Pharmaceutics202214358310.3390/pharmaceutics14030583 35335959
    [Google Scholar]
  157. YangT. LiX.T. TangC.H. Novel edible pickering high-internal-phase-emulsion gels efficiently stabilized by unique polysaccharide-protein hybrid nanoparticles from Okara.Food Hydrocoll.20209810528510.1016/j.foodhyd.2019.105285
    [Google Scholar]
  158. BarbosaR.M. LeiteA.M. García-VillénF. Sánchez-EspejoR. CerezoP. ViserasC. FaccendiniA. SandriG. RaffinF.N. MouraT.F.A.L. Hybrid lipid/clay carrier systems containing annatto oil for topical formulations.Pharmaceutics2022145106710.3390/pharmaceutics14051067 35631653
    [Google Scholar]
  159. SiddiqueS. ChowJ.C.L. Application of nanomaterials in biomedical imaging and cancer therapy.Nanomaterials (Basel)2020109170010.3390/nano10091700 32872399
    [Google Scholar]
  160. MadduN. Nanoparticle mediated diagnosis of clinical biomarkers of different diseases: Amedical application of nanotechnology.Nanoparticles in Analytical and Medical Devices.AmsterdamElsevier2021155173
    [Google Scholar]
  161. MossD.M. SiccardiM. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling.Br. J. Pharmacol.2014171173963397910.1111/bph.12604 24467481
    [Google Scholar]
  162. GaoY. WuY. Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications.Int. J. Biol. Macromol.202220337938810.1016/j.ijbiomac.2022.01.162 35104473
    [Google Scholar]
  163. HuangY. ZengJ. Recent development and applications of nanomaterials for cancer immunotherapy.Nanotechnol. Rev.20209136738410.1515/ntrev‑2020‑0027
    [Google Scholar]
  164. MandalB. BhattacharjeeH. MittalN. SahH. BalabathulaP. ThomaL.A. WoodG.C. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform.Nanomedicine20139447449110.1016/j.nano.2012.11.010 23261500
    [Google Scholar]
  165. MukherjeeB. ChakrabortyS. MondalL. SatapathyB.S. SenguptaS. DuttaL. ChoudhuryA. MandalD. Multifunctional drug nanocarriers facilitate more specific entry of therapeutic payload into tumors and control multiple drug resistance in cancer.Nanobiomaterials in Cancer Therapy: Applications of NanobiomaterialsElsevier: Aamsterdam2016720325110.1016/B978‑0‑323‑42863‑7.00007‑4
    [Google Scholar]
  166. NagpalK. MohanA. ThakurS. KumarP. Dendritic platforms for biomimicry and biotechnological applications.Artif. Cells Nanomed. Biotechnol.201846sup186187510.1080/21691401.2018.1438451 29447478
    [Google Scholar]
  167. ChenJ. TangY. LiuY. DouY. Nucleic acid-based therapeutics for pulmonary diseases.AAPS PharmSciTech20181983670368010.1208/s12249‑018‑1183‑0 30338490
    [Google Scholar]
  168. WahaneA. WaghmodeA. KapphahnA. DhuriK. GuptaA. BahalR. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy.Molecules20202512286610.3390/molecules25122866 32580326
    [Google Scholar]
  169. ZhangD.X. EsserL. VasaniR.B. ThissenH. VoelckerN.H. Porous silicon nanomaterials: Recent advances in surface engineering for controlled drug-delivery applications.Nanomedicine (Lond.)201914243213323010.2217/nnm‑2019‑0167 31855121
    [Google Scholar]
  170. ParkW. ShinH. ChoiB. RhimW.K. NaK. Keun HanD. Advanced hybrid nanomaterials for biomedical applications.Prog. Mater. Sci.202011410068610.1016/j.pmatsci.2020.100686
    [Google Scholar]
  171. AlvesM.M. AndradeS.M. GrenhoL. FernandesM.H. SantosC. MontemorM.F. Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications.Mater. Sci. Eng. C2019101768710.1016/j.msec.2019.03.084 31029366
    [Google Scholar]
  172. BhardwajH. JoshiR. GuptaA. Updated scenario on negative pressure wound therapy.Int. J. Low. Extrem. Wounds202471534734624122878810.1177/15347346241228788 38327069
    [Google Scholar]
  173. NyabadzaA. McCarthyÉ. MakhesanaM. HeidarinassabS. PlouzeA. VazquezM. BrabazonD. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage.Adv. Colloid Interface Sci.202332110301010.1016/j.cis.2023.103010 37804661
    [Google Scholar]
  174. KhuteS. JangdeR.K. In silico exploration of venlafaxine, a potential non-tricyclic antidepressant in a liposomal formulation for nose-to-brain drug delivery.Drug Dev. Ind. Pharm.2024501556710.1080/03639045.2023.2297238 38112520
    [Google Scholar]
  175. SohailM. NazirU. SinghA. TuluA. KhanM.J. Finite element analysis of cross fluid model over a vertical disk suspended to a tetra hybrid nanoparticles mixture.Sci. Rep.2024141152010.1038/s41598‑024‑51262‑w 38233448
    [Google Scholar]
  176. WangC. AstrucD. Recent developments of nanocatalyzed liquid-phase hydrogen generation.Chem. Soc. Rev.20215053437348410.1039/D0CS00515K 33492311
    [Google Scholar]
  177. SahooJ. SarkhelS. MukherjeeN. JaiswalA. Nanomaterial-based antimicrobial coating for biomedical implants: New age solution for biofilm-associated infections.ACS Omega2022750459624598010.1021/acsomega.2c06211 36570317
    [Google Scholar]
  178. JafariS. MahyadB. HashemzadehH. JanfazaS. GholikhaniT. TayebiL. Biomedical applications of TiO2 nanostructures: Recent advances.Int. J. Nanomedicine2020153447347010.2147/IJN.S249441 32523343
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002291778240610073122
Loading
/content/journals/cdm/10.2174/0113892002291778240610073122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test