Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Precision dosing is essential in improving drug efficacy and minimizing adverse reactions, especially in liver impaired patients. However, there is no objective index to directly evaluate the body's ability to metabolize specific drugs. Many factors affect the activity of enzymes, and alter the systemic exposure of substrate drugs, like genetic polymorphism, drug-drug interactions and physiological/pathological state. So, quantifying the activities of enzymes dynamically would be helpful to make precision dosing. Recently, some endogenous substrates of enzymes, such as 6β-hydroxycortisol (6β-OH-cortisol)/cortisol and 6β-hydroxycortisone, have been identified to investigate variations in drug enzymes in humans. Clinical data obtained support their performance as surrogate probes in terms of reflecting the activities of corresponding enzyme. Therefore, a group of Monitored endogenous biomarkers in multiple points can address the uncertainty in drug metabolization in the preclinical phase and have the potential to fulfill precision dosing. This review focuses on recent progress in the contribution of endogenous substances to drug precision dosing, factors that influence enzyme activities, and drug exposure in .

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002289027240809114634
2024-08-16
2025-01-05
Loading full text...

Full text loading...

References

  1. ZengS. WangD. YanY. ZhuM. LiuW. GongZ. WangL. SunS. Single-center analysis of the potential inappropriate use of intravenous medications in hospitalized patients in China.Clin. Ther.201941816311637.e410.1016/j.clinthera.2019.05.00931174860
    [Google Scholar]
  2. ShahinM.H. Abdel-RahmanS. HartmanD. JohnsonJ.A. MitchellD.Y. ReynoldsK.S. WagnerJ.A. MorrisseyK.M. The patient-centered future of clinical pharmacology.Clin. Pharmacol. Ther.20201071727510.1002/cpt.168131751490
    [Google Scholar]
  3. VenkatakrishnanK. ZhengS. MusanteC.J. JinJ.Y. RiggsM.M. KrishnaswamiS. VisserS.A.G. Toward progress in quantitative translational medicine: A call to action.Clin. Pharmacol. Ther.20201071858810.1002/cpt.168731750932
    [Google Scholar]
  4. CullyM. MYDGF promotes heart repair after myocardial infarction.Nat. Rev. Drug Discov.201514316416510.1038/nrd455725722237
    [Google Scholar]
  5. Ingelman-SundbergM. MkrtchianS. ZhouY. LauschkeV.M. Integrating rare genetic variants into pharmacogenetic drug response predictions.Hum. Genomics20181212610.1186/s40246‑018‑0157‑329793534
    [Google Scholar]
  6. RodenD.M. McLeodH.L. RellingM.V. WilliamsM.S. MensahG.A. PetersonJ.F. Van DriestS.L. Pharmacogenomics.Lancet20193941019752153210.1016/S0140‑6736(19)31276‑031395440
    [Google Scholar]
  7. FangY. WangT. GuoY.Y. ZhangH.F. WenQ. XingY.R. GaoN. QiaoH.L. From genotype to phenotype: Content and activities of cytochromes p450 2a6 in human liver in vitro and predicted in vivo.J. Pharmacol. Exp. Ther.2020372332033010.1124/jpet.119.26315231882454
    [Google Scholar]
  8. GroenlandS.L. MathijssenR.H.J. BeijnenJ.H. HuitemaA.D.R. SteeghsN. Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine.Eur. J. Clin. Pharmacol.20197591309131810.1007/s00228‑019‑02704‑231175385
    [Google Scholar]
  9. Pharmacokinetics in Patients with Impaired Hepatic Function: Study Design, Data Analysis, and Impact on Dosing and Labeling.U.S. Department of Health and Human Services Food and Drug Administration200319
    [Google Scholar]
  10. AgencyE.M. Guidense on the evaluation of the pharmacokinetics of medicinal products in patients with impaired hepatic function.COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP) 200510
    [Google Scholar]
  11. BurraP. TackeF. RatziuV. ZeuzemS. SangroB. AngeliP. From the Editor’s Desk….J. Hepatol.20217411410.1016/j.jhep.2020.10.00533339558
    [Google Scholar]
  12. TuranA.S. PohlH. MatsumotoM. LeeB.S. AizawaM. DesideriF. AlbénizE. RajuG.S. LubaD. BarretM. GuruduS.R. RamirezF.C. LinW.R. AtsmaF. SiersemaP.D. van GeenenE.J.M. RexD.K. LimB.S. KwokK.K. TogashiK. CoriatR. UmarS.B. ChenC-W. Terhaar sive DrosteJ. SchrauwenR. KemperG. Prophylactic Clipping Collaborative Group The role of clips in preventing delayed bleeding after colorectal polyp resection: An individual patient data meta-analysis.Clin. Gastroenterol. Hepatol.2022202362371.e2310.1016/j.cgh.2021.05.01233991691
    [Google Scholar]
  13. HealeyC.J. ChapmanR.W. FlemingK.A. Liver histology in hepatitis C infection: A comparison between patients with persistently normal or abnormal transaminases.Gut199537227427810.1136/gut.37.2.2747557581
    [Google Scholar]
  14. HaberM.M. WestA.B. HaberA.D. ReubenA. Relationship of aminotransferases to liver histological status in chronic hepatitis C.Am. J. Gastroenterol.1995908125012577639225
    [Google Scholar]
  15. HelfgottS.M. KarlsonE. BeckmanE. Misinterpretation of serum transaminase elevation in “occult” myositis.Am. J. Med.199395444744910.1016/0002‑9343(93)90319‑K8213881
    [Google Scholar]
  16. HoekstraL.T. de GraafW. NibourgG.A.A. HegerM. BenninkR.J. StiegerB. van GulikT.M. Physiological and biochemical basis of clinical liver function tests: A review.Ann. Surg.20132571273610.1097/SLA.0b013e31825d5d4722836216
    [Google Scholar]
  17. SakkaS.G. Assessing liver function.Curr. Opin. Crit. Care200713220721410.1097/MCC.0b013e328012b26817327744
    [Google Scholar]
  18. OfotokunI. Sex differences in the pharmacologic effects of antiretroviral drugs: Potential roles of drug transporters and phase 1 and 2 metabolizing enzymes.Top. HIV Med.2005132798316082059
    [Google Scholar]
  19. WrightonS.A. StevensJ.C. The human hepatic cytochromes P450 involved in drug metabolism.Crit. Rev. Toxicol.199222112110.3109/104084492091453191616599
    [Google Scholar]
  20. ChristensenM. AnderssonK. DalénP. MirghaniR.A. MuirheadG.J. NordmarkA. TybringG. WahlbergA. YaşarU. BertilssonL. The karolinska cocktail for phenotyping of five human cytochrome P450 enzymes.Clin. Pharmacol. Ther.200373651752810.1016/S0009‑9236(03)00050‑X12811361
    [Google Scholar]
  21. KanebrattK.P. DiczfalusyU. BäckströmT. SparveE. BredbergE. BöttigerY. AnderssonT.B. BertilssonL. Cytochrome P450 induction by rifampicin in healthy subjects: Determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol.Clin. Pharmacol. Ther.200884558959410.1038/clpt.2008.13218650803
    [Google Scholar]
  22. YuK.M. YangP. HuangT.Y. ShenT.Y.S. LauJ.Y.N. HuO.Y.P. A novel galactose electrochemical biosensor intended for point-of-care measurement of quantitative liver function using galactose single-point test.Anal. Bioanal. Chem.2022414144067407710.1007/s00216‑022‑04051‑135524003
    [Google Scholar]
  23. GasperiA.D. MazzaE. ProsperiM. Indocyanine green kinetics to assess liver function: Ready for a clinical dynamic assessment in major liver surgery?World J. Hepatol.20168735536710.4254/wjh.v8.i7.35526981173
    [Google Scholar]
  24. BlixH.S. ViktilK.K. MogerT.A. ReikvamA. Drugs with narrow therapeutic index as indicators in the risk management of hospitalised patients.Pharm. Pract. (Granada)201081505510.4321/S1886‑3655201000010000625152793
    [Google Scholar]
  25. De JongeM.E. HuitemaA.D.R. SchellensJ.H.M. RodenhuisS. BeijnenJ.H. Population pharmacokinetics of orally administered paclitaxel formulated in Cremophor EL.Br. J. Clin. Pharmacol.200559332533410.1111/j.1365‑2125.2004.02325.x15752379
    [Google Scholar]
  26. RodighieroV. Effects of liver disease on pharmacokinetics. An update.Clin. Pharmacokinet.199937539943110.2165/00003088‑199937050‑0000410589374
    [Google Scholar]
  27. AlvarezF. BergP.A. BianchiF.B. BianchiL. BurroughsA.K. CancadoE.L. ChapmanR.W. CooksleyW.G.E. CzajaA.J. DesmetV.J. DonaldsonP.T. EddlestonA.L.W.F. FainboimL. HeathcoteJ. HombergJ.C. HoofnagleJ.H. KakumuS. KrawittE.L. MackayI.R. MacSweenR.N.M. MaddreyW.C. MannsM.P. McFarlaneI.G. Meyer zum BüschenfeldeK.H. Mieli-VerganiG. NakanumaY. NishiokaM. PennerE. PortaG. PortmannB.C. ReedW.D. RodesJ. SchalmS.W. ScheuerP.J. SchrumpfE. SekiT. TodaG. TsujiT. TygstrupN. VerganiD. ZeniyaM. International autoimmune hepatitis group report: Review of criteria for diagnosis of autoimmune hepatitis.J. Hepatol.199931592993810.1016/S0168‑8278(99)80297‑910580593
    [Google Scholar]
  28. DalekosG.N. ZachouK. LiaskosC. GatselisN. Autoantibodies and defined target autoantigens in autoimmune hepatitis: An overview.Eur. J. Intern. Med.200213529330310.1016/S0953‑6205(02)00089‑412144908
    [Google Scholar]
  29. MiyakawaH. KitazawaE. KikuchiK. FujikawaH. KawaguchiN. AbeK. MatsushitaM. MatsushimaH. IgarashiT. HankinsR.W. KakoM. Immunoreactivity to various human cytochrome P450 proteins of sera from patients with autoimmune hepatitis, chronic hepatitis B, and chronic hepatitis C.Autoimmunity2001331233210.3109/0891693010899410611204250
    [Google Scholar]
  30. BortolottiF. MuratoriL. JaraP. HierroL. VerucchiG. GiacchinoR. BarberaC. ZancanL. GuidoM. RestiM. PedditziS. BianchiF. GattaA. Hepatitis C virus infection associated with liver-kidney microsomal antibody type 1 (LKM1) autoantibodies in children.J. Pediatr.2003142218519010.1067/mpd.2003.4512584542
    [Google Scholar]
  31. IzumiY. KanekoA. OkuK. KimuraM. TanakaS. TadaH. TatsumiK. TakanoT. HidakaY. AminoN. Development of liver dysfunction after delivery is possibly due to postpartum autoimmune hepatitis. A report of three cases.J. Intern. Med.2002252436136710.1046/j.1365‑2796.2002.01047.x12366609
    [Google Scholar]
  32. GeervlietE. BansalR. Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases.Cells202095121210.3390/cells905121232414178
    [Google Scholar]
  33. CoverdaleS. BythK. FieldJ. LiddleC. LinR. FarrellG.C. Antipyrine clearance and response to interferon treatment in patients with chronic active hepatitis C.Hepatology1995224 Pt 1106510717557852
    [Google Scholar]
  34. JoeresR. KlinkerH. HeuslerH. EppingJ. ZillyW. RichterE. Influence of smoking on caffeine elimination in healthy volunteers and in patients with alcoholic liver cirrhosis.Hepatology19888357557910.1002/hep.18400803233371873
    [Google Scholar]
  35. BranchR.A. JamesJ.A. ReadA.E. The clearance of antipyrine and indocyanine green in normal subjects and in patients with chronic liver disease.Clin. Pharmacol. Ther.1976201818910.1002/cpt1976201811277728
    [Google Scholar]
  36. VilleneuveJ.P. PichetteV. Cytochrome P450 and liver diseases.Curr. Drug Metab.20045327328210.2174/138920004333553115180496
    [Google Scholar]
  37. FryeR. ZgheibN. MatzkeG. ChavesgneccoD. RabinovitzM. ShaikhO. BranchR. Liver disease selectively modulates cytochrome P450–mediated metabolism.Clin. Pharmacol. Ther.200680323524510.1016/j.clpt.2006.05.00616952490
    [Google Scholar]
  38. HannH.W. WanS. MyersR.E. HannR.S. XingJ. ChenB. YangH. Comprehensive analysis of common serum liver enzymes as prospective predictors of hepatocellular carcinoma in HBV patients.PLoS One2012710e4768710.1371/journal.pone.004768723112834
    [Google Scholar]
  39. ZhouJ. WenQ. LiS.F. ZhangY.F. GaoN. TianX. FangY. GaoJ. CuiM.Z. HeX.P. JiaL.J. JinH. QiaoH.L. Significant change of cytochrome P450s activities in patients with hepatocellular carcinoma.Oncotarget2016731506125062310.18632/oncotarget.943727203676
    [Google Scholar]
  40. KrishnaD.R. ShekarM.S. Krishna, D.R. Shekar, M.S. Cytochrome P450 3A: Genetic polymorphisms and interethnic differences.Methods Find. Exp. Clin. Pharmacol.200527855956710.1358/mf.2005.27.8.92831016273136
    [Google Scholar]
  41. HustertE. HaberlM. BurkO. WolboldR. HeY.Q. KleinK. NuesslerA.C. NeuhausP. KlattigJ. EiseltR. KochI. ZibatA. BrockmöllerJ. HalpertJ.R. ZangerU.M. WojnowskiL. The genetic determinants of the CYP3A5 polymorphism.Pharmacogenetics200111977377910.1097/00008571‑200112000‑0000511740341
    [Google Scholar]
  42. KuehlP. ZhangJ. LinY. LambaJ. AssemM. SchuetzJ. WatkinsP.B. DalyA. WrightonS.A. HallS.D. MaurelP. RellingM. BrimerC. YasudaK. VenkataramananR. StromS. ThummelK. BoguskiM.S. SchuetzE. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression.Nat. Genet.200127438339110.1038/8688211279519
    [Google Scholar]
  43. OhnishiA. MurakamiS. AkizukiS. MochizukiJ. EchizenH. TakagiI. In vivo metabolic activity of CYP2C19 and CYP3A in relation to CYP2C19 genetic polymorphism in chronic liver disease.J. Clin. Pharmacol.200545111221122910.1177/009127000528078716239354
    [Google Scholar]
  44. KirchheinerJ. HeeschC. BauerS. MeiselC. SeringerA. GoldammerM. TzvetkovM. MeinekeI. RootsI. BrockmöllerJ. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics.Clin. Pharmacol. Ther.200476430231210.1016/j.clpt.2004.07.00215470329
    [Google Scholar]
  45. HoskinsJ.M. GoldbergR.M. QuP. IbrahimJ.G. McLeodH.L. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters.J. Natl. Cancer Inst.200799171290129510.1093/jnci/djm11517728214
    [Google Scholar]
  46. MackenzieP.I. MinersJ.O. McKinnonR.A. Polymorphisms in UDP glucuronosyltransferase genes: Functional consequences and clinical relevance.Clin. Chem. Lab. Med.200038988989210.1515/CCLM.2000.12911097345
    [Google Scholar]
  47. LeblondF. GuévinC. DemersC. PellerinI. Gascon-BarréM. PichetteV. Downregulation of hepatic cytochrome P450 in chronic renal failure.J. Am. Soc. Nephrol.200112232633210.1681/ASN.V12232611158222
    [Google Scholar]
  48. LeblondF.A. PetrucciM. DubéP. BernierG. BonnardeauxA. PichetteV. Downregulation of intestinal cytochrome p450 in chronic renal failure.J. Am. Soc. Nephrol.20021361579158510.1097/01.ASN.0000017575.50319.7712039987
    [Google Scholar]
  49. MarburyT. RuckleJ.L. HatorpV. AndersenM.P. NielsenK.K. HuangW.C. StrangeP. Pharmacokinetics of repaglinide in subjects with renal impairment.Clin. Pharmacol. Ther.200067171510.1067/mcp.2000.10397310668848
    [Google Scholar]
  50. ChristensenH. HermannM. Immunological response as a source to variability in drug metabolism and transport.Front. Pharmacol.20123810.3389/fphar.2012.0000822363283
    [Google Scholar]
  51. FilellaX. BladeJ. GuillermoA.L. MolinaR. RozmanC. BallestaA.M. Cytokines (IL-6, TNF-alpha, IL-1alpha) and soluble interleukin-2 receptor as serum tumor markers in multiple myeloma.Cancer Detect. Prev.199620152568907203
    [Google Scholar]
  52. DostalekM. CourtM.H. YanB. AkhlaghiF. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus.Br. J. Pharmacol.2011163593794710.1111/j.1476‑5381.2011.01270.x21323901
    [Google Scholar]
  53. MorganE.T. Regulation of cytochromes P450 during inflammation and infection.Drug Metab. Rev.19972941129118810.3109/036025397090022469421688
    [Google Scholar]
  54. ElkahwajiJ. RobinM.A. BersonA. TinelM. LettéronP. LabbeG. BeauneP. EliasD. RougierP. EscudierB. DuvillardP. PessayreD. Decrease in hepatic cytochrome P450 after interleukin-2 immunotherapy.Biochem. Pharmacol.199957895195410.1016/S0006‑2952(98)00372‑410086330
    [Google Scholar]
  55. Abdel-RazzakZ. GarlattiM. AggerbeckM. BaroukiR. Determination of interleukin-4-responsive region in the human cytochrome P450 2E1 gene promoter.Biochem. Pharmacol.20046871371138110.1016/j.bcp.2004.06.00315345327
    [Google Scholar]
  56. WangJ. HuY. NekvindovaJ. Ingelman-SundbergM. NeveE.P.A. IL-4-mediated transcriptional regulation of human CYP2E1 by two independent signaling pathways.Biochem. Pharmacol.201080101592160010.1016/j.bcp.2010.08.00520723539
    [Google Scholar]
  57. NyagodeB.A. LeeC.M. MorganE.T. Modulation of hepatic cytochrome P450s by Citrobacter rodentium infection in interleukin-6- and interferon-gamma-null mice.J. Pharmacol. Exp. Ther.2010335248048810.1124/jpet.110.17148820719939
    [Google Scholar]
  58. GorskiJ. HallS.D. BeckerP. AffrimeM.B. CutlerD.L. Haehner-DanielsB. In vivo effects of interleukin-10 on human cytochrome P450 activity.Clin. Pharmacol. Ther.2000671324310.1067/mcp.2000.10386010668851
    [Google Scholar]
  59. ChakrabortyA. BlumR.A. MisS.M. CutlerD.L. JuskoW.J. Pharmacokinetic and adrenal interactions of IL-10 and prednisone in healthy volunteers.J. Clin. Pharmacol.199939662463510.1177/0091270992200813710354967
    [Google Scholar]
  60. DallasS. ChattopadhyayS. SensenhauserC. BathejaA. SingerM. SilvaJ. Interleukins-12 and -23 do not alter expression or activity of multiple cytochrome P450 enzymes in cryopreserved human hepatocytes.Drug Metab. Dispos.201341468969310.1124/dmd.112.04888423349185
    [Google Scholar]
  61. NguyenT.V. UkairoO. KhetaniS.R. McVayM. KanchagarC. SeghezziW. AyanogluG. IrrechukwuO. EversR. Establishment of a hepatocyte-kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters.Drug Metab. Dispos.201543577478510.1124/dmd.114.06131725739975
    [Google Scholar]
  62. AshinoT. OguroT. ShiodaS. HoraiR. AsanoM. SekikawaK. IwakuraY. NumazawaS. YoshidaT. Involvement of interleukin-6 and tumor necrosis factor alpha in CYP3A11 and 2C29 down-regulation by Bacillus Calmette-Guerin and lipopolysaccharide in mouse liver.Drug Metab. Dispos.200432770771410.1124/dmd.32.7.70715205385
    [Google Scholar]
  63. QasqasS.A. McPhersonC. FrishmanW.H. ElkayamU. Cardiovascular pharmacotherapeutic considerations during pregnancy and lactation.Cardiol. Rev.200412420122110.1097/01.crd.0000102420.62200.e115191632
    [Google Scholar]
  64. VillaniP. FloridiaM. PirilloM.F. CusatoM. TamburriniE. CavaliereA.F. GuaraldiG. VanziniC. MolinariA. AntoniA. RegazziM. Pharmacokinetics of nelfinavir in HIV-1-infected pregnant and nonpregnant women.Br. J. Clin. Pharmacol.200662330931510.1111/j.1365‑2125.2006.02669.x16934047
    [Google Scholar]
  65. TracyT.S. VenkataramananR. GloverD.D. CaritisS.N. National Institute for Child Health and Human Development Network of Maternal-Fetal-Medicine Units Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy.Am. J. Obstet. Gynecol.2005192263363910.1016/j.ajog.2004.08.03015696014
    [Google Scholar]
  66. HirtD. TreluyerJ.M. JullienV. FirtionG. ChappuyH. ReyE. PonsG. MandelbrotL. UrienS. Pregnancy-related effects on nelfinavir-M8 pharmacokinetics: A population study with 133 women.Antimicrob. Agents Chemother.20065062079208610.1128/AAC.01596‑0516723569
    [Google Scholar]
  67. HebertM.F. EasterlingT.R. KirbyB. CarrD.B. BuchananM.L. RutherfordT. ThummelK.E. FishbeinD.P. UnadkatJ.D. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: A University of Washington specialized center of research study.Clin. Pharmacol. Ther.200884224825310.1038/clpt.2008.118288078
    [Google Scholar]
  68. TsutsumiK. KotegawaT. MatsukiS. TanakaY. IshiiY. KodamaY. KuranariM. MiyakawaI. NakanoS. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N -acetyltransferase activities in humans.Clin. Pharmacol. Ther.200170212112510.1067/mcp.2001.11649511503005
    [Google Scholar]
  69. GrossoL.M. BrackenM.B. Caffeine metabolism, genetics, and perinatal outcomes: A review of exposure assessment considerations during pregnancy.Ann. Epidemiol.200515646046610.1016/j.annepidem.2004.12.01115967394
    [Google Scholar]
  70. PennellP.B. NewportD.J. StoweZ.N. HelmersS.L. MontgomeryJ.Q. HenryT.R. The impact of pregnancy and childbirth on the metabolism of lamotrigine.Neurology200462229229510.1212/01.WNL.0000103286.47129.F814745072
    [Google Scholar]
  71. FeghaliM. VenkataramananR. CaritisS. Pharmacokinetics of drugs in pregnancy.Semin. Perinatol.201539751251910.1053/j.semperi.2015.08.00326452316
    [Google Scholar]
  72. KennedyM.J. Hormonal regulation of hepatic drug-metabolizing enzyme activity during adolescence.Clin. Pharmacol. Ther.200884666267310.1038/clpt.2008.20218971926
    [Google Scholar]
  73. TrinkleR. Sex differences during drug development.Can. J. Clin. Pharmacol.19996313610610273
    [Google Scholar]
  74. KandoJ.C. YonkersK.A. ColeJ.O. Gender as a risk factor for adverse events to medications.Drugs19955011610.2165/00003495‑199550010‑000017588082
    [Google Scholar]
  75. Miriam del Carmen Carrasco-PortugalF.J.F-M. Gender differences in the pharmacokinetics of oral drugs.Pharmacol. Pharm.20112
    [Google Scholar]
  76. LutzU. BittnerN. UferM. LutzW.K. Quantification of cortisol and 6 beta-hydroxycortisol in human urine by LC-MS/MS, and gender-specific evaluation of the metabolic ratio as biomarker of CYP3A activity.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.201087819710110.1016/j.jchromb.2009.11.02319959402
    [Google Scholar]
  77. SoldinO.P. ChungS.H. MattisonD.R. Sex differences in drug disposition.J. Biomed. Biotechnol.2011201118710321403873
    [Google Scholar]
  78. AbduljalilK. JameiM. Rostami-HodjeganA. JohnsonT.N. Changes in individual drug-independent system parameters during virtual paediatric pharmacokinetic trials: introducing time-varying physiology into a paediatric PBPK model.AAPS J.201416356857610.1208/s12248‑014‑9592‑924700271
    [Google Scholar]
  79. BerthouF. RatanasavanhD. AlixD. CarlhantD. RicheC. GuillouzoA. Caffeine and theophylline metabolism in newborn and adult human hepatocytes; Comparison with adult rat hepatocytes.Biochem. Pharmacol.198837193691370010.1016/0006‑2952(88)90402‑93178881
    [Google Scholar]
  80. SonnierM. CresteilT. Delayed ontogenesis of CYP1A2 in the human liver.Eur. J. Biochem.1998251389389810.1046/j.1432‑1327.1998.2510893.x9490065
    [Google Scholar]
  81. TanakaE. In vivo age-related changes in hepatic drug-oxidizing capacity in humans.J. Clin. Pharm. Ther.199823424725510.1046/j.1365‑2710.1998.00164.x9867310
    [Google Scholar]
  82. TateishiT. NakuraH. AsohM. WatanabeM. TanakaM. KumaiT. TakashimaS. ImaokaS. FunaeY. YabusakiY. KamatakiT. KobayashiS. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy.Life Sci.199761262567257410.1016/S0024‑3205(97)01011‑49416779
    [Google Scholar]
  83. UpretiV.V. WahlstromJ.L. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling.J. Clin. Pharmacol.201656326628310.1002/jcph.58526139104
    [Google Scholar]
  84. JacobsB.A.W. DeenenM.J. PluimD. van HasseltJ.G.C. KrähenbühlM.D. van GeelR.M.J.M. de VriesN. RosingH. MeulendijksD. BuryloA.M. CatsA. BeijnenJ.H. HuitemaA.D.R. SchellensJ.H.M. Pronounced between-subject and circadian variability in thymidylate synthase and dihydropyrimidine dehydrogenase enzyme activity in human volunteers.Br. J. Clin. Pharmacol.201682370671610.1111/bcp.1300727161955
    [Google Scholar]
  85. LemmerB. NoldG. Circadian changes in estimated hepatic blood flow in healthy subjects.Br. J. Clin. Pharmacol.199132562762910.1111/j.1365‑2125.1991.tb03964.x1954078
    [Google Scholar]
  86. HishikawaS. SugimotoK. KobayashiE. KumagaiY. FujimuraA. Dosing-time-dependent variation in biliary excretion of flomoxef in rats.Chronobiol. Int.200320346347110.1081/CBI‑12002042112868541
    [Google Scholar]
  87. ErolK. KiliçF.S. BatuÖ.S. YildirimE. Morning-evening administration time differences in digoxin kinetics in healthy young subjects.Chronobiol. Int.200118584184910.1081/CBI‑10010751911763991
    [Google Scholar]
  88. NeelyM. OnufrakN. ScheetzM.H. AvedissianS. LakotaE. DeitchmanA.N. GonzalezD. Supporting precision dosing in drug labeling.Clin. Pharmacol. Ther.20211091374110.1002/cpt.205433111328
    [Google Scholar]
  89. PolasekT.M. ShakibS. Rostami-HodjeganA. Precision dosing in clinical medicine: Present and future.Expert Rev. Clin. Pharmacol.201811874374610.1080/17512433.2018.150127130010447
    [Google Scholar]
  90. PrasadB. AchourB. ArturssonP. HopC.E.C.A. LaiY. SmithP.C. BarberJ. WisniewskiJ.R. SpellmanD. UchidaY. ZientekM.A. UnadkatJ.D. Rostami-HodjeganA. Toward a consensus on applying quantitative liquid chromatography-tandem mass spectrometry proteomics in translational pharmacology research: A white paper.Clin. Pharmacol. Ther.2019106352554310.1002/cpt.153731175671
    [Google Scholar]
  91. StreetmanD.S. BertinoJ.S.Jr NafzigerA.N. Phenotyping of drug-metabolizing enzymes in adults: A review of in-vivo cytochrome P450 phenotyping probes.Pharmacogenetics200010318721610.1097/00008571‑200004000‑0000110803676
    [Google Scholar]
  92. LangL.M. LinnetK. The ratio of 6β-hydroxycortisol to cortisol in urine as a measure of cytochrome P450 3A activity in postmortem cases.J. Forensic Sci.20145941036104010.1111/1556‑4029.1241824611975
    [Google Scholar]
  93. LuoX. ZhengL. CaiN. LiuQ. YangS. HeX. ChengZ. Evaluation of 6β-hydroxycortisol and 6β-hydroxycortisone as biomarkers for cytochrome p450 3a activity: Insight into their predictive value for estimating oral immunosuppressant metabolism.J. Pharm. Sci.2015104103578358610.1002/jps.2456626150050
    [Google Scholar]
  94. PengC-C. TempletonI. ThummelK.E. DavisC. KunzeK.L. IsoherranenN. Evaluation of 6β-hydroxycortisol, 6β-hydroxycortisone, and a combination of the two as endogenous probes for inhibition of CYP3A4 in vivo.Clin. Pharmacol. Ther.201189688889510.1038/clpt.2011.5321490593
    [Google Scholar]
  95. LeeS. LeeY. KimA.H. YoonS. LeeJ. JiS.C. YoonS.H. LeeS. YuK.S. JangI.J. ChoJ.Y. Urinary metabolic markers reflect on hepatic, not intestinal, CYP3A activity in healthy subjects.Drug Metab. Pharmacokinet.20213610037410.1016/j.dmpk.2020.12.00133348239
    [Google Scholar]
  96. CrewsK.R. GaedigkA. DunnenbergerH.M. LeederJ.S. KleinT.E. CaudleK.E. HaidarC.E. ShenD.D. CallaghanJ.T. SadhasivamS. ProwsC.A. KharaschE.D. SkaarT.C. Clinical Pharmacogenetics Implementation Consortium Clinical pharmacogenetics implementation consortium guidelines for cytochrome p450 2d6 genotype and codeine therapy: 2014 update.Clin. Pharmacol. Ther.201495437638210.1038/clpt.2013.25424458010
    [Google Scholar]
  97. MaglioccoG. DesmeulesJ. MattheyA. Quirós-GuerreroL.M. BararpourN. JoyeT. MarcourtL. QueirozE.F. WolfenderJ.L. GloorY. ThomasA. DaaliY. Metabolomics reveals biomarkers in human urine and plasma to predict cytochrome P450 2D6 (CYP2D6) activity.Br. J. Pharmacol.2021178234708472510.1111/bph.1565134363609
    [Google Scholar]
  98. TukeyR.H. StrassburgC.P. Human UDP-glucuronosyltransferases: Metabolism, expression, and disease.Annu. Rev. Pharmacol. Toxicol.200040158161610.1146/annurev.pharmtox.40.1.58110836148
    [Google Scholar]
  99. ShinK-H. ChoiM.H. LimK.S. YuK-S. JangI-J. ChoJ-Y. Evaluation of endogenous metabolic markers of hepatic CYP3A activity using metabolic profiling and midazolam clearance.Clin. Pharmacol. Ther.201394560160910.1038/clpt.2013.12823784264
    [Google Scholar]
  100. DutreixC. LorenzoS. WangY. Comparison of two endogenous biomarkers of CYP3A4 activity in a drug–drug interaction study between midostaurin and rifampicin.Eur. J. Clin. Pharmacol.201470891592010.1007/s00228‑014‑1675‑024839948
    [Google Scholar]
  101. Mårde ArrhénY. NylénH. Lövgren-SandblomA. KanebrattK.P. WideK. DiczfalusyU. A comparison of 4β-hydroxycholesterol: Cholesterol and 6β-hydroxycortisol: Cortisol as markers of CYP3A4 induction.Br. J. Clin. Pharmacol.20137561536154010.1111/bcp.1201623116409
    [Google Scholar]
  102. GaedigkA. Complexities of CYP2D6 gene analysis and interpretation.Int. Rev. Psychiatry201325553455310.3109/09540261.2013.82558124151800
    [Google Scholar]
  103. NofzigerC. TurnerA.J. SangkuhlK. Whirl-CarrilloM. AgúndezJ.A.G. BlackJ.L. DunnenbergerH.M. RuanoG. KennedyM.A. PhillipsM.S. HachadH. KleinT.E. GaedigkA. PharmVar GeneFocus: CYP2D6.Clin. Pharmacol. Ther.2020107115417010.1002/cpt.164331544239
    [Google Scholar]
  104. TracyT.S. ChaudhryA.S. PrasadB. ThummelK.E. SchuetzE.G. ZhongX. TienY.C. JeongH. PanX. ShiremanL.M. Tay-SontheimerJ. LinY.S. Interindividual variability in cytochrome P450-mediated drug metabolism.Drug Metab. Dispos.201644334335110.1124/dmd.115.06790026681736
    [Google Scholar]
  105. MaglioccoG. ThomasA. DesmeulesJ. DaaliY. Phenotyping of Human CYP450 enzymes by endobiotics: Current knowledge and methodological approaches.Clin. Pharmacokinet.201958111373139110.1007/s40262‑019‑00783‑z31131437
    [Google Scholar]
  106. SobczakA.I.S. PittS.J. SmithT.K. AjjanR.A. StewartA.J. Lipidomic profiling of plasma free fatty acids in type-1 diabetes highlights specific changes in lipid metabolism.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20211866115882310.1016/j.bbalip.2020.15882333010452
    [Google Scholar]
  107. MikusG. BochnerF. EichelbaumM. HorakP. SomogyiA.A. SpectorS. Endogenous codeine and morphine in poor and extensive metabolisers of the CYP2D6 (debrisoquine/sparteine) polymorphism.J. Pharmacol. Exp. Ther.199426825465518113966
    [Google Scholar]
  108. KirchheinerJ. HenckelH.B. FrankeL. MeinekeI. TzvetkovM. UebelhackR. RootsI. BrockmöllerJ. Impact of the CYP2D6 ultra-rapid metabolizer genotype on doxepin pharmacokinetics and serotonin in platelets.Pharmacogenet. Genomics200515857958710.1097/01.fpc.0000167331.30905.9e16007002
    [Google Scholar]
  109. ZhouX. GaoQ. PraticòG. ChenJ. DragstedL.O. Biomarkers of tuber intake.Genes Nutr.2019141910.1186/s12263‑019‑0631‑030984301
    [Google Scholar]
  110. HarveyM.H. McMillanM. MorganM.R.A. ChanH.W.S. Solanidine is present in sera of healthy individuals and in amounts dependent on their dietary potato consumption.Hum. Toxicol.19854218719410.1177/0960327185004002094007882
    [Google Scholar]
  111. YuA.M. IdleJ. HerraizT. KüpferA. GonzalezF. Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase.Pharmacogenetics200313630731910.1097/00008571‑200306000‑0000212777961
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002289027240809114634
Loading
/content/journals/cdm/10.2174/0113892002289027240809114634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test