Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Breast cancer (BC) is one of the major causes of poor health in women and the most devastating disease after lung cancer. The term “cancer” refers to a collection of problems resulting from abnormal cell proliferation, particularly cells that can spread to other parts of the body. Surgery, followed by chemotherapy or radiotherapy, is now accepted for BC-related cancers. However, chemotherapy and radiotherapy are rarely effective in the treatment of BC due to the adverse effects of these treatments on healthy tissues and organs. Consequently, the use of NPs in targeted Drug Delivery Systems (DDSs) has emerged as a promising strategy for BC treatment. This review provides a summary of recent clinical investigations of nanoparticle-mediated DDS that offer a novel therapeutic strategy commonly used for the treatment of breast cancer.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002298034240802110752
2024-08-06
2025-01-02
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  2. MiaoH. VerkooijenH.M. ChiaK.S. BouchardyC. PukkalaE. LarønningenS. MellemkjærL. CzeneK. HartmanM. Incidence and outcome of male breast cancer: An international population-based study.J. Clin. Oncol.201129334381438610.1200/JCO.2011.36.8902 21969512
    [Google Scholar]
  3. LehmannB.D. BauerJ.A. ChenX. SandersM.E. ChakravarthyA.B. ShyrY. PietenpolJ.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies.J. Clin. Invest.201112172750276710.1172/JCI45014 21633166
    [Google Scholar]
  4. ReinertT. BarriosC.H. Optimal management of hormone receptor positive metastatic breast cancer in 2016.Ther. Adv. Med. Oncol.20157630432010.1177/1758834015608993 26557899
    [Google Scholar]
  5. MahviD.A. LiuR. GrinstaffM.W. ColsonY.L. RautC.P. Local cancer recurrence: The realities, challenges, and opportunities for new therapies.CA Cancer J. Clin.201868648850510.3322/caac.21498 30328620
    [Google Scholar]
  6. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  7. SharmaA. JainN. SareenR. Nanocarriers for diagnosis and targeting of breast cancer.BioMed Res. Int.2013201396082110.1155/2013/960821
    [Google Scholar]
  8. Screening, PDQ Breast Cancer Screening (PDQ®): Health Professional Version.PDQ Cancer Information Summaries; Bethesda (MD).USNational Cancer Institute2002
    [Google Scholar]
  9. DorenA. VecchiolaA. AguirreB. VillasecaP. Gynecological–endocrinological aspects in women carriers of BRCA1/2 gene mutations.Climacteric201821652953510.1080/13697137.2018.1514006 30295091
    [Google Scholar]
  10. AkramM. SiddiquiS.A. Breast cancer management: Past, present and evolving.Indian J. Cancer201249327728210.4103/0019‑509X.104486 23238144
    [Google Scholar]
  11. KoppikerC.B. Oncoplastic breast surgery in India: Thinking globally, acting locally.Indian J. Surg.201981103110
    [Google Scholar]
  12. SilversteinM.J. MaiT. SavaliaN. VainceF. GuerraL. Oncoplastic breast conservation surgery: The new paradigm.J. Surg. Oncol.20141101828910.1002/jso.23641 24847860
    [Google Scholar]
  13. SchnittS.J. MoranM.S. GiulianoA.E. Lumpectomy margins for invasive breast cancer and ductal carcinoma in situ: Current guideline recommendations, their implications, and impact.J. Clin. Oncol.202038202240224510.1200/JCO.19.03213 32442067
    [Google Scholar]
  14. De La CruzL. MoodyA.M. TappyE.E. BlankenshipS.A. HechtE.M. Overall survival, disease-free survival, local recurrence, and nipple–areolar recurrence in the setting of nipple-sparing mastectomy: a meta-analysis and systematic review.Ann. Surg. Oncol.201522103241324910.1245/s10434‑015‑4739‑1 26242363
    [Google Scholar]
  15. PeledA.W. WangF. FosterR.D. AlvaradoM. EwingC.A. EssermanL.J. SbitanyH. Abstract P100.Plast. Reconstr. Surg.20151354125910.1097/01.prs.0000464069.10343.db
    [Google Scholar]
  16. GiulianoA.E. KirganD.M. GuentherJ.M. MortonD.L. Lymphatic mapping and sentinel lymphadenectomy for breast cancer.Ann. Surg.1994220339140110.1097/00000658‑199409000‑00015 8092905
    [Google Scholar]
  17. LucciA. McCallL.M. BeitschP.D. WhitworthP.W. ReintgenD.S. BlumencranzP.W. LeitchA.M. SahaS. HuntK.K. GiulianoA.E. Surgical complications associated with sentinel lymph node dissection (SLND) plus axillary lymph node dissection compared with SLND alone in the American College of Surgeons Oncology Group Trial Z0011.J. Clin. Oncol.200725243657366310.1200/JCO.2006.07.4062 17485711
    [Google Scholar]
  18. GrubbéE.H. Priority in the therapeutic use of X-rays.Radiology193321215616210.1148/21.2.156
    [Google Scholar]
  19. BoyagesJ. Radiation therapy and early breast cancer: Current controversies.Med. J. Aust.2017207521622210.5694/mja16.01020 28987136
    [Google Scholar]
  20. ChengY.J. NieX.Y. JiC.C. LinX.X. LiuL.J. ChenX.M. YaoH. WuS.H. Long-term cardiovascular risk after radiotherapy in women with breast cancer.J. Am. Heart Assoc.201765e00563310.1161/JAHA.117.005633 28529208
    [Google Scholar]
  21. LagadecC. VlashiE. Della DonnaL. MengY. DekmezianC. KimK. PajonkF. Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment.Breast Cancer Res.2010121R1310.1186/bcr2479 20158881
    [Google Scholar]
  22. LockF.E. McDonaldP.C. LouY. SerranoI. ChafeS.C. OstlundC. AparicioS. WinumJ-Y. SupuranC.T. DedharS. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche.Oncogene201332445210521910.1038/onc.2012.550 23208505
    [Google Scholar]
  23. HeM.Y. RancouleC. Rehailia-BlanchardA. EspenelS. TroneJ.C. BernichonE. GuillaumeE. VallardA. MagnéN. Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies.Crit. Rev. Oncol. Hematol.20181319610110.1016/j.critrevonc.2018.09.004 30293712
    [Google Scholar]
  24. PaikS. ShakS. TangG. KimC. BakerJ. CroninM. BaehnerF.L. WalkerM.G. WatsonD. ParkT. HillerW. FisherE.R. WickerhamD.L. BryantJ. WolmarkN. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.N. Engl. J. Med.2004351272817282610.1056/NEJMoa041588 15591335
    [Google Scholar]
  25. PerezE.A. RomondE.H. SumanV.J. JeongJ.H. SledgeG. GeyerC.E.Jr MartinoS. RastogiP. GralowJ. SwainS.M. WinerE.P. Colon-OteroG. DavidsonN.E. MamounasE. ZujewskiJ.A. WolmarkN. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831.J. Clin. Oncol.201432333744375210.1200/JCO.2014.55.5730 25332249
    [Google Scholar]
  26. SlamonD. EiermannW. RobertN. PienkowskiT. MartinM. PressM. MackeyJ. GlaspyJ. ChanA. PawlickiM. PinterT. ValeroV. LiuM.C. SauterG. von MinckwitzG. ViscoF. BeeV. BuyseM. BendahmaneB. Tabah-FischI. LindsayM.A. RivaA. CrownJ. Adjuvant trastuzumab in HER2-positive breast cancer.N. Engl. J. Med.2011365141273128310.1056/NEJMoa0910383 21991949
    [Google Scholar]
  27. TolaneyS.M. BarryW.T. DangC.T. YardleyD.A. MoyB. MarcomP.K. AlbainK.S. RugoH.S. EllisM. ShapiraI. WolffA.C. CareyL.A. OvermoyerB.A. PartridgeA.H. GuoH. HudisC.A. KropI.E. BursteinH.J. WinerE.P. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer.N. Engl. J. Med.2015372213414110.1056/NEJMoa1406281 25564897
    [Google Scholar]
  28. ChiraC. KirovaY.M. LiemX. CampanaF. PeurienD. AmessisM. Helical tomotherapy for inoperable breast cancer: a new promising tool.BioMed Res. Int.2013201326430610.1155/2013/264306
    [Google Scholar]
  29. BroëtP. SchollS.M. de la RochefordièreA. FourquetA. MoreauT. De RyckeY. AsselainB. PouillartP. Short and long‐term effects on survival in breast cancer patients treated by primary chemotherapy: an updated analysis of a randomized trial.Breast Cancer Res. Treat.199958215115610.1023/A:1006339918798 10674880
    [Google Scholar]
  30. FisherB. BryantJ. WolmarkN. MamounasE. BrownA. FisherE.R. WickerhamD.L. BegovicM. DeCillisA. RobidouxA. MargoleseR.G. CruzA.B.Jr HoehnJ.L. LeesA.W. DimitrovN.V. BearH.D. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer.J. Clin. Oncol.19981682672268510.1200/JCO.1998.16.8.2672 9704717
    [Google Scholar]
  31. MontemurroF. NuzzoleseI. PonzoneR. Neoadjuvant or adjuvant chemotherapy in early breast cancer?Expert Opin. Pharmacother.20202191071108210.1080/14656566.2020.1746273 32237920
    [Google Scholar]
  32. PetoR. DaviesC. GodwinJ. GrayR. PanH.C. ClarkeM. CutterD. DarbyS. McGaleP. TaylorC. WangY.C. BerghJ. Di LeoA. AlbainK. SwainS. PiccartM. PritchardK. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100 000 women in 123 randomised trials.Lancet2012379981443244410.1016/S0140‑6736(11)61625‑5 22152853
    [Google Scholar]
  33. CitronM.L. BerryD.A. CirrincioneC. HudisC. WinerE.P. GradisharW.J. DavidsonN.E. MartinoS. LivingstonR. IngleJ.N. PerezE.A. CarpenterJ. HurdD. HollandJ.F. SmithB.L. SartorC.I. LeungE.H. AbramsJ. SchilskyR.L. MussH.B. NortonL. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741.J. Clin. Oncol.20032181431143910.1200/JCO.2003.09.081 12668651
    [Google Scholar]
  34. VidarsdottirL. OlafsdottirE.J. BarkardottirR.B. BjarnadottirO. JonassonJ.G. SigurdssonS. TryggvadottirL. Estrogen receptor-positive breast cancer and adverse outcome in BRCA2 mutation carriers and young non-carrier patients.NPJ Breast Cancer2023919510.1038/s41523‑023‑00600‑8 38036573
    [Google Scholar]
  35. DayE.S. BickfordL.R. SlaterJ.H. RiggallN.S. DrezekR.A. WestJ.L. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer.Int. J. Nanomedicine2010544545410.2147/IJN.S10881 20957166
    [Google Scholar]
  36. CaiZ. ChattopadhyayN. YangK. KwonY.L. YookS. PignolJ.P. ReillyR.M. 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection.Nucl. Med. Biol.2016431281882610.1016/j.nucmedbio.2016.08.009 27788375
    [Google Scholar]
  37. WangX. YangL. ChenZ. ShinD.M. Application of nanotechnology in cancer therapy and imaging.CA Cancer J. Clin.20085829711010.3322/CA.2007.0003 18227410
    [Google Scholar]
  38. Hanafi-BojdM.Y. JaafariM.R. RamezanianN. XueM. AminM. ShahtahmassebiN. Malaekeh-NikoueiB. Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells.Eur. J. Pharm. Biopharm.20158924825810.1016/j.ejpb.2014.12.009 25511563
    [Google Scholar]
  39. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387 18654426
    [Google Scholar]
  40. AdairJ.H. ParetteM.P. AltınoğluE.İ. KesterM. Nanoparticulate alternatives for drug delivery.ACS Nano2010494967497010.1021/nn102324e 20873786
    [Google Scholar]
  41. MyburghE.J. LangenhovenL. GrantK.A. van der MerweL. KotzeM.J. Clinical Overestimation of HER2 positivity in early estrogen and progesterone receptor–positive breast cancer and the value of molecular subtyping using blueprint.J. Glob. Oncol.20173431432210.1200/JGO.2016.006072 28831439
    [Google Scholar]
  42. MalikS. MuhammadK. WaheedY. Emerging applications of nanotechnology in healthcare and medicine.Molecules20232818662410.3390/molecules28186624 37764400
    [Google Scholar]
  43. BanghamA.D. Liposomes: The Babraham connection.Chem. Phys. Lipids1993641-327528510.1016/0009‑3084(93)90071‑A 8242839
    [Google Scholar]
  44. WangA.Z. LangerR. FarokhzadO.C. Nanoparticle delivery of cancer drugs.Annu. Rev. Med.201263118519810.1146/annurev‑med‑040210‑162544 21888516
    [Google Scholar]
  45. BomanN.L. MasinD. MayerL.D. CullisP.R. BallyM.B. Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors.Cancer Res.1994541128302833 8187061
    [Google Scholar]
  46. KhodabandehlooH. ZahednasabH. Ashrafi HafezA. Nanocarriers usage for drug delivery in cancer therapy.Iran. J. Cancer Prev.2016In Press(In Press), e3966.10.17795/ijcp‑3966 27482328
    [Google Scholar]
  47. WongM.Y. ChiuG.N.C. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model.Nanomedicine20117683484010.1016/j.nano.2011.02.001 21371568
    [Google Scholar]
  48. DhankharR. VyasS.P. JainA.K. AroraS. RathG. GoyalA.K. Advances in novel drug delivery strategies for breast cancer therapy.Artif. Cells Blood Substit. Immobil. Biotechnol.201038523024910.3109/10731199.2010.494578 20677900
    [Google Scholar]
  49. GabizonA. PeretzT. SulkesA. AmselemS. Ben-YosefR. Ben-BaruchN. CataneR. BiranS. BarenholzY. Systemic administration of doxorubicin-containing liposomes in cancer patients: A phase I study.Eur. J. Cancer Clin. Oncol.198925121795180310.1016/0277‑5379(89)90350‑7 2632261
    [Google Scholar]
  50. GabizonA. CataneR. UzielyB. KaufmanB. SafraT. CohenR. MartinF. HuangA. BarenholzY. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes.Cancer Res.1994544987992 8313389
    [Google Scholar]
  51. HuoberJ. FettW. NuschA. NeiseM. SchmidtM. WischnikA. GerhardtS. GoehlerT. LückH.J. RostA. A multicentric observational trial of pegylated liposomal doxorubicin for metastatic breast cancer.BMC Cancer2010101210.1186/1471‑2407‑10‑2 20047698
    [Google Scholar]
  52. BatistG. BartonJ. ChaikinP. SwensonC. WellesL. Myocet liposome-encapsulated doxorubicin citrate: A new approach in breast cancer therapy.Expert Opin. Pharmacother.20023121739175110.1517/14656566.3.12.1739 12472371
    [Google Scholar]
  53. ChanS. DavidsonN. JuozaityteE. ErdkampF. PluzanskaA. AzarniaN. LeeL.W. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer.Ann. Oncol.200415101527153410.1093/annonc/mdh393 15367414
    [Google Scholar]
  54. BuradeV. BhowmickS. MaitiK. ZalawadiaR. RuanH. ThennatiR. Lipodox® (generic doxorubicin hydrochloride liposome injection): in vivo efficacy and bioequivalence versus Caelyx® (doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) xenograft and syngeneic fibrosarcoma (WEHI 164) mouse models.BMC Cancer201717140510.1186/s12885‑017‑3377‑3 28587612
    [Google Scholar]
  55. XuX. WangL. XuH.Q. HuangX.E. QianY.D. XiangJ. Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer.Asian Pac. J. Cancer Prev.20131442591259410.7314/APJCP.2013.14.4.2591 23725180
    [Google Scholar]
  56. WangH. ChengG. DuY. YeL. ChenW. ZhangL. WangT. TianJ. FuF. Hypersensitivity reaction studies of a polyethoxylated castor oil-free, liposome-based alternative paclitaxel formulation.Mol. Med. Rep.20137394795210.3892/mmr.2013.1264 23291923
    [Google Scholar]
  57. HeL. GuJ. LimL.Y. YuanZ. MoJ. Nanomedicine-mediated therapies to target breast cancer stem cells.Front. Pharmacol.2016731310.3389/fphar.2016.00313 27679576
    [Google Scholar]
  58. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  59. JinH. PiJ. ZhaoY. JiangJ. LiT. ZengX. YangP. EvansC.E. CaiJ. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy.Nanoscale2017942163651637410.1039/C7NR06898K 29052674
    [Google Scholar]
  60. MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.Mater. Sci. Eng. C20166056957810.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  61. ShenoyD.B. AmijiM.M. Poly(ethylene oxide)-modified poly(ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer.Int. J. Pharm.20052931-226127010.1016/j.ijpharm.2004.12.010 15778064
    [Google Scholar]
  62. LeeJ.H. NanA. Combination drug delivery approaches in metastatic breast cancer.J. Drug Deliv.2012201211710.1155/2012/915375 22619725
    [Google Scholar]
  63. YangY. PanD. LuoK. LiL. GuZ. Biodegradable and amphiphilic block copolymer–doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy.Biomaterials201334338430844310.1016/j.biomaterials.2013.07.037 23896006
    [Google Scholar]
  64. KatiyarS.S. MuntimaduguE. RafeeqiT.A. DombA.J. KhanW. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment.Drug Deliv.20162372608261610.3109/10717544.2015.1039667 26036652
    [Google Scholar]
  65. ChowdhuryP. NageshP.K.B. KhanS. HafeezB.B. ChauhanS.C. JaggiM. YallapuM.M. Development of polyvinylpyrrolidone/paclitaxel self-assemblies for breast cancer.Acta Pharm. Sin. B20188460261410.1016/j.apsb.2017.10.004 30109184
    [Google Scholar]
  66. VivekR. ThangamR. NipunBabu, V.; Rejeeth, C.; Sivasubramanian, S.; Gunasekaran, P.; Muthuchelian, K.; Kannan, S. Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy.ACS Appl. Mater. Interfaces2014696469648010.1021/am406012g 24780315
    [Google Scholar]
  67. MassadehS. OmerM.E. AlterawiA. AliR. AlanaziF.H. AlmutairiF. AlmotairiW. AlobaidiF.F. AlhelalK. AlmutairiM.S. AlmalikA. ObaidatA.A. AlaameryM. YassinA.E. Optimized polyethylene glycolylated polymer–lipid hybrid nanoparticles as a potential breast cancer treatment.Pharmaceutics202012766610.3390/pharmaceutics12070666 32679809
    [Google Scholar]
  68. AmanR.M. ZaghloulR.A. ElsaedW.M. HashimI.I.A. In vitro–in vivo assessments of apocynin-hybrid nanoparticle-based gel as an effective nanophytomedicine for treatment of rheumatoid arthritis.Drug Deliv. Transl. Res.202313112903292910.1007/s13346‑023‑01360‑5 37284937
    [Google Scholar]
  69. GhoshP. HanG. DeM. KimC. RotelloV. Gold nanoparticles in delivery applications.Adv. Drug Deliv. Rev.200860111307131510.1016/j.addr.2008.03.016 18555555
    [Google Scholar]
  70. GiljohannD.A. SeferosD.S. DanielW.L. MassichM.D. PatelP.C. MirkinC.A. Gold nanoparticles for biology and medicine.Angew. Chem. Int. Ed.201049193280329410.1002/anie.200904359 20401880
    [Google Scholar]
  71. LeeS.M. KimH.J. KimS.Y. KwonM.K. KimS. ChoA. YunM. ShinJ.S. YooK.H. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer.Biomaterials20143572272228210.1016/j.biomaterials.2013.11.068 24342728
    [Google Scholar]
  72. DreadenE.C. AlkilanyA.M. HuangX. MurphyC.J. El-SayedM.A. The golden age: gold nanoparticles for biomedicine.Chem. Soc. Rev.20124172740277910.1039/C1CS15237H 22109657
    [Google Scholar]
  73. PrabaharanM. GrailerJ.J. PillaS. SteeberD.A. GongS. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery.Biomaterials200930306065607510.1016/j.biomaterials.2009.07.048 19674777
    [Google Scholar]
  74. KievitF.M. ZhangM. Surface engineering of iron oxide nanoparticles for targeted cancer therapy.Acc. Chem. Res.2011441085386210.1021/ar2000277 21528865
    [Google Scholar]
  75. ChenB. WuW. WangX. Magnetic iron oxide nanoparticles for tumor-targeted therapy.Curr. Cancer Drug Targets201111218418910.2174/156800911794328475 21158723
    [Google Scholar]
  76. ScarberryK.E. DickersonE.B. ZhangZ.J. BenignoB.B. McDonaldJ.F. Selective removal of ovarian cancer cells from human ascites fluid using magnetic nanoparticles.Nanomedicine20106339940810.1016/j.nano.2009.11.003 19969103
    [Google Scholar]
  77. MaltasE. GubbukI.H. YildizS. Development of doxorubicin loading platform based albumin-sporopollenin as drug carrier.Biochem. Biophys. Rep.2016720120510.1016/j.bbrep.2016.06.012 28955907
    [Google Scholar]
  78. PollerJ. ZalogaJ. SchreiberE. UnterwegerH. JankoC. RadonP. EberbeckD. TrahmsL. AlexiouC. FriedrichR. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.Int. J. Nanomedicine2017123207322010.2147/IJN.S132369 28458541
    [Google Scholar]
  79. AhmedM. DouekM. The role of magnetic nanoparticles in the localization and treatment of breast cancer.BioMed Res. Int.2013201311110.1155/2013/281230 23936784
    [Google Scholar]
  80. ThorekD.L.J. ChenA.K. CzuprynaJ. TsourkasA. Superparamagnetic iron oxide nanoparticle probes for molecular imaging.Ann. Biomed. Eng.2006341233810.1007/s10439‑005‑9002‑7 16496086
    [Google Scholar]
  81. ShaikA.P. ShaikA.S. MajwalA.A. FarajA.A. Blocking interleukin-4 receptor α using polyethylene glycol functionalized superparamagnetic iron oxide nanocarriers to inhibit breast cancer cell proliferation.Cancer Res. Treat.201749232232910.4143/crt.2016.091 27456946
    [Google Scholar]
  82. WángY.X.J. IdéeJ.M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging.Quant. Imaging Med. Surg.2017718812210.21037/qims.2017.02.09 28275562
    [Google Scholar]
  83. BilanR. NabievI. SukhanovaA. Quantum dot‐based nanotools for bioimaging, diagnostics, and drug delivery.ChemBioChem201617222103211410.1002/cbic.201600357 27535363
    [Google Scholar]
  84. MaQ. LinZ.H. YangN. LiY. SuX.G. A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells.Acta Biomater.201410286887410.1016/j.actbio.2013.10.039 24211611
    [Google Scholar]
  85. ZhangH. YeeD. WangC. Quantum dots for cancer diagnosis and therapy: Biological and clinical perspectives.Nanomedicine200831839110.2217/17435889.3.1.83 18393668
    [Google Scholar]
  86. PathakS. CaoE. DavidsonM.C. JinS. SilvaG.A. Quantum dot applications to neuroscience: New tools for probing neurons and glia.J. Neurosci.20062671893189510.1523/JNEUROSCI.3847‑05.2006 16481420
    [Google Scholar]
  87. WuX. LiuH. LiuJ. HaleyK.N. TreadwayJ.A. LarsonJ.P. GeN. PealeF. BruchezM.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nat. Biotechnol.2003211414610.1038/nbt764 12459735
    [Google Scholar]
  88. BaeP.K. ChungB.H. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies.Nano Converg.2014112310.1186/s40580‑014‑0023‑5 28191403
    [Google Scholar]
  89. MiaoP. HanK. TangY. WangB. LinT. ChengW. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications.Nanoscale2015751586159510.1039/C4NR05712K 25510876
    [Google Scholar]
  90. ZhengX.T. AnanthanarayananA. LuoK.Q. ChenP. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications.Small201511141620163610.1002/smll.201402648 25521301
    [Google Scholar]
  91. LimS.Y. ShenW. GaoZ. Carbon quantum dots and their applications.Chem. Soc. Rev.201544136238110.1039/C4CS00269E 25316556
    [Google Scholar]
  92. FangM. PengC.W. PangD.W. LiY. Quantum dots for cancer research: Current status, remaining issues, and future perspectives.Cancer Biol. Med.20129315116310.7497/j.issn.2095‑3941.2012.03.001 23691472
    [Google Scholar]
  93. YanY. GongJ. ChenJ. ZengZ. HuangW. PuK. LiuJ. ChenP. Recent advances on graphene quantum dots: From chemistry and physics to applications.Adv. Mater.20193121180828310.1002/adma.201808283 30828898
    [Google Scholar]
  94. DilenkoH. Bartoň TománkováK. VálkováL. HošíkováB. KolaříkováM. MalinaL. BajgarR. KolářováH. Graphene-based photodynamic therapy and overcoming cancer resistance mechanisms: A comprehensive review.Int. J. Nanomedicine2024195637568010.2147/IJN.S461300 38882538
    [Google Scholar]
  95. QiL. PanT. OuL. YeZ. YuC. BaoB. WuZ. CaoD. DaiL. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage.Commun. Biol.2021 Feb 164121410.1038/s42003‑021‑01713‑133594275PMC7886873
    [Google Scholar]
  96. Vallet-RegíM. BalasF. ArcosD. Mesoporous materials for drug delivery.Angew. Chem. Int. Ed.200746407548755810.1002/anie.200604488 17854012
    [Google Scholar]
  97. RosenholmJ.M. SahlgrenC. LindénM. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment.Curr. Drug Targets20111281166118610.2174/138945011795906624 21443474
    [Google Scholar]
  98. BaezaA. ColillaM. Vallet-RegíM. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery.Expert Opin. Drug Deliv.201512231933710.1517/17425247.2014.953051 25421898
    [Google Scholar]
  99. ZhangJ. YuanZ.F. WangY. ChenW.H. LuoG.F. ChengS.X. ZhuoR.X. ZhangX.Z. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery.J. Am. Chem. Soc.2013135135068507310.1021/ja312004m 23464924
    [Google Scholar]
  100. ZhangY. XuJ. Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release.R. Soc. Open Sci.20185117098610.1098/rsos.170986 29410811
    [Google Scholar]
  101. AugustineS. SinghJ. SrivastavaM. SharmaM. DasA. MalhotraB.D. Recent advances in carbon based nanosystems for cancer theranostics.Biomater. Sci.20175590195210.1039/C7BM00008A 28401206
    [Google Scholar]
  102. YanQ.L. GozinM. ZhaoF.Q. CohenA. PangS.P. Highly energetic compositions based on functionalized carbon nanomaterials.Nanoscale2016894799485110.1039/C5NR07855E 26880518
    [Google Scholar]
  103. RongJ.S. LiuC. ZhangB. YangF. XuJ. Carbon nanotubes in cancer diagnosis and therapy.Biochim. Biophys. Acta2010180612935
    [Google Scholar]
  104. ShaoN. LuS. WickstromE. PanchapakesanB. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes.Nanotechnology2007183131510110.1088/0957‑4484/18/31/315101
    [Google Scholar]
  105. McKernanP. ViraniN.A. FariaG.N.F. KarchC.G. Prada SilvyR. ResascoD.E. ThompsonL.F. HarrisonR.G. Targeted single-walled carbon nanotubes for photothermal therapy combined with immune checkpoint inhibition for the treatment of metastatic breast cancer.Nanoscale Res. Lett.2021161910.1186/s11671‑020‑03459‑x 33411055
    [Google Scholar]
  106. MarchesR. MikoryakC. WangR.H. PantanoP. DraperR.K. VitettaE.S. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells.Nanotechnology201122909510110.1088/0957‑4484/22/9/095101 21258147
    [Google Scholar]
  107. MadaniS.Y. NaderiN. DissanayakeO. TanA. SeifalianA.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools.Int. J. Nanomedicine2011629632979 22162655
    [Google Scholar]
  108. ShaoW. PaulA. RodesL. PrakashS. A new carbon nanotube-based breast cancer drug delivery system: Preparation and in vitro analysis using paclitaxel.Cell Biochem. Biophys.20157131405141410.1007/s12013‑014‑0363‑0 27101155
    [Google Scholar]
  109. IijimaS. Helical microtubules of graphitic carbon.Nature19913546348565810.1038/354056a0
    [Google Scholar]
  110. NiuL. MengL. LuQ. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells.Macromol. Biosci.201313673574410.1002/mabi.201200475 23616476
    [Google Scholar]
  111. XuX. RayR. GuY. PloehnH.J. GearheartL. RakerK. ScrivensW.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments.J. Am. Chem. Soc.200412640127361273710.1021/ja040082h 15469243
    [Google Scholar]
  112. PengZ. MiyanjiE.H. ZhouY. PardoJ. HettiarachchiS.D. LiS. BlackwelderP.L. SkromneI. LeblancR.M. Carbon dots: Promising biomaterials for bone-specific imaging and drug delivery.Nanoscale2017944175331754310.1039/C7NR05731H 29110000
    [Google Scholar]
  113. ZingaleG.A. DistefanoA. PandinoI. TuccittoN. OliveriV. GaetaM. D’UrsoA. ArcoriaA. GrassoG. Carbon dots as a versatile tool to monitor insulin aggregation.Anal. Bioanal. Chem.2023415101829184010.1007/s00216‑023‑04585‑y 36808276
    [Google Scholar]
  114. HsuP.C. ChenP.C. OuC.M. ChangH.Y. ChangH.T. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells.J Mater Chem B.2013Apr7;11317741781Epub 2013 Feb 20.10.1039/c3tb00545c 32261141
    [Google Scholar]
  115. ZengQ. ShaoD. HeX. RenZ. JiW. ShanC. QuS. LiJ. ChenL. LiQ. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo.J. Mater. Chem. B Mater. Biol. Med.20164305119512610.1039/C6TB01259K 32263509
    [Google Scholar]
  116. ClinicalTrials.govAvailable from: https://clinicaltrials.gov (accessed on 29-7-2024)
/content/journals/cdm/10.2174/0113892002298034240802110752
Loading
/content/journals/cdm/10.2174/0113892002298034240802110752
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test