Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).

Objective

Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.

Methods

Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible inhibition using pharmacokinetic and Ki or IC values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.

Results

In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 µM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC values ranged from 0.69 µM (simvastatin) and 57 µM (diltiazem) to > 100 µM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 µM. Remifentanil was ineffective even at 1250 µM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible inhibitors of remimazolam metabolism.

Conclusion

Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002308233240801104910
2024-08-06
2025-01-06
Loading full text...

Full text loading...

References

  1. PastisN.J. YarmusL.B. SchippersF. OstroffR. ChenA. AkulianJ. WahidiM. ShojaeeS. TannerN.T. CallahanS.P. FeldmanG. LorchD.G.Jr NdukwuI. PritchettM.A. SilvestriG.A. Safety and efficacy of remimazolam compared with placebo and midazolam for moderate sedation during bronchoscopy.Chest2019155113714610.1016/j.chest.2018.09.015 30292760
    [Google Scholar]
  2. RexD.K. BhandariR. DestaT. DeMiccoM.P. SchaefferC. EtzkornK. BarishC.F. PruittR. CashB.D. QuirkD. TiongcoF. SullivanS. BernsteinD. A phase III study evaluating the efficacy and safety of remimazolam (CNS 7056) compared with placebo and midazolam in patients undergoing colonoscopy.Gastrointest. Endosc.2018883427437.e610.1016/j.gie.2018.04.2351 29723512
    [Google Scholar]
  3. WesolowskiA.M. ZaccagninoM.P. MalaperoR.J. KayeA.D. UrmanR.D. Remimazolam: Pharmacologic considerations and clinical role in anesthesiology.Pharmacotherapy20163691021102710.1002/phar.1806 27496519
    [Google Scholar]
  4. SchmalixW. PetersenK.-U. PesicM. StöhrT. The metabolism of the new benzodiazepine remimazolam.Curr. Drug Metab.202425216417310.2174/01138920023010262403180603073852353910.2147/DDDT.S186759 31037028
    [Google Scholar]
  5. HosokawaM. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs.Molecules20081341243110.3390/molecules13020412
    [Google Scholar]
  6. RossM.K. BorazjaniA. WangR. Allen CrowJ. XieS. Examination of the carboxylesterase phenotype in human liver.Arch. Biochem. Biophys.20125221445610.1016/j.abb.2012.04.010 22525521
    [Google Scholar]
  7. LaizureS.C. HerringV. HuZ. WitbrodtK. ParkerR.B. The role of human carboxylesterases in drug metabolism: have we overlooked their importance?Pharmacotherapy201333221022210.1002/phar.1194 23386599
    [Google Scholar]
  8. WangD. ZouL. JinQ. HouJ. GeG. YangL. Human carboxylesterases: A comprehensive review.Acta Pharm. Sin. B20188569971210.1016/j.apsb.2018.05.005 30245959
    [Google Scholar]
  9. DiL. The impact of carboxylesterases in drug metabolism and pharmacokinetics.Curr. Drug Metab.20192029110210.2174/1389200219666180821094502 30129408
    [Google Scholar]
  10. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.BMJ202137271n7110.1136/bmj.n71 33782057
    [Google Scholar]
  11. QuinneyS.K. SanghaniS.P. DavisW.I. HurleyT.D. SunZ. MurryD.J. BosronW.F. Hydrolysis of capecitabine to 5′-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide.J. Pharmacol. Exp. Ther.200531331011101610.1124/jpet.104.081265 15687373
    [Google Scholar]
  12. Sanofi-Aventis2013Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020623s010lbl.pdf,020624s023lbl.pdf (accessed on 28-6-2024)
  13. FukamiT. TakahashiS. NakagawaN. MaruichiT. NakajimaM. YokoiT. In-vitro evaluation of inhibitory effects of antidiabetic and antihyperlipidemic drugs on human carboxylesterase activities.Drug Metab. Dispos.201038122173217810.1124/dmd.110.034454 20810539
    [Google Scholar]
  14. Polsky-FisherS.L. CaoH. LuP. GibsonC.R. Effect of cytochromes P450 chemical inhibitors and monoclonal antibodies on human liver microsomal esterase activity.Drug Metab. Dispos.20063481361136610.1124/dmd.106.009704 16720683
    [Google Scholar]
  15. RhoadesJ.A. PetersonY.K. ZhuH.J. AppelD.I. PeloquinC.A. MarkowitzJ.S. Prediction and in vitro evaluation of selected protease inhibitor antiviral drugs as inhibitors of carboxylesterase 1: a potential source of drug-drug interactions.Pharm. Res.201229497298210.1007/s11095‑011‑0637‑9 22161308
    [Google Scholar]
  16. ChengC. PrusoffW.H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction.Biochem. Pharmacol.197322233099310810.1016/0006‑2952(73)90196‑2 4202581
    [Google Scholar]
  17. HauptL.J. KazmiF. OgilvieB.W. BuckleyD.B. SmithB.D. LeathermanS. ParisB. ParkinsonO. ParkinsonA. The Reliability of estimating Ki values for direct, reversible inhibition of cytochrome P450 enzymes from corresponding IC50 values: a retrospective analysis of 343 experiments.Drug Metab. Dispos.201543111744175010.1124/dmd.115.066597 26354951
    [Google Scholar]
  18. ZhuH.J. AppelD.I. PetersonY.K. WangZ. MarkowitzJ.S. Identification of selected therapeutic agents as inhibitors of carboxylesterase 1: Potential sources of metabolic drug interactions.Toxicology20102702-3596510.1016/j.tox.2010.01.009 20097249
    [Google Scholar]
  19. ZhuH.J. PatrickK.S. YuanH.J. WangJ.S. DonovanJ.L. DeVaneC.L. MalcolmR. JohnsonJ.A. YoungbloodG.L. SweetD.H. LangaeeT.Y. MarkowitzJ.S. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis.Am. J. Hum. Genet.20088261241124810.1016/j.ajhg.2008.04.015 18485328
    [Google Scholar]
  20. ShimizuM. FukamiT. NakajimaM. YokoiT. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase.Drug Metab. Dispos.20144271103110910.1124/dmd.114.056994 24751575
    [Google Scholar]
  21. TakahashiS. KatohM. SaitohT. NakajimaM. YokoiT. Different inhibitory effects in rat and human carboxylesterases.Drug Metab. Dispos.200937595696110.1124/dmd.108.024331 19225040
    [Google Scholar]
  22. YanjiaoX. ChengliangZ. XipingL. TaoW. XiuhuaR. DongL. Evaluation of the inhibitory effects of antihypertensive drugs on human carboxylesterase in vitro.Drug Metab. Pharmacokinet.201328646847410.2133/dmpk.DMPK‑12‑RG‑143 23648675
    [Google Scholar]
  23. KristensenK.E. ZhuH-J. WangX. GislasonG.H. Torp-PedersenC. RasmussenH.B. MarkowitzJ.S. HansenP.R. Clopidogrel bioactivation and risk of bleeding in patients cotreated with angiotensin-converting enzyme inhibitors after myocardial infarction: A proof-of-concept study.Clin. Pharmacol. Ther.201496671372210.1038/clpt.2014.183 25222620
    [Google Scholar]
  24. ThomsenR. RasmussenH.B. LinnetK. In-vitro drug metabolism by human carboxylesterase 1: Focus on angiotensin-converting enzyme inhibitors.Drug Metab. Dispos.201442112613310.1124/dmd.113.053512 24141856
    [Google Scholar]
  25. TarkiainenK. Pharmacogenetics of carboxylesterase 1.2017Available from: https://helda.helsinki.fi/bitstream/handle/10138/187775/pharmaco.pdf?sequence=1 (accessed on 28-6-2024
    [Google Scholar]
  26. KanefendtF. BraseC. JungmannN. FrickeR. EngelenA. SchmitzS. Pharmacokinetics of asundexian with combined CYP3A and P-gp inhibitors and an inducer: Target in vitro and in vivo studies.Br. J. Clin. Pharmacol. 2023 Epub ahead of print 38048692
    [Google Scholar]
  27. KatzungB.G. MastersS.B. TrevorA.J. Basic and Clinical Pharmacology.11th edMcGrahill2009
    [Google Scholar]
  28. TanguayM. GirardJ. ScarsiC. MautoneG. LaroucheR. Pharmacokinetics and comparative bioavailability of a levothyroxine sodium oral solution and soft capsule.Clin. Pharmacol. Drug Dev.20198452152810.1002/cpdd.608 30153382
    [Google Scholar]
  29. ColucciP. YueC.S. DucharmeM. BenvengaS. A review of the pharmacokinetics of levothyroxine for the treatment of hypothyroidism.Eur. Endocrinol.2013914047 30349610
    [Google Scholar]
  30. PrestonC.L. Ed.; Stockley’s Drug Interactions.11th edLondonPharmaceutical Press2016
    [Google Scholar]
  31. WilliamsE.T. JonesK.O. PonslerG.D. LoweryS.M. PerkinsE.J. WrightonS.A. RuterboriesK.J. KazuiM. FaridN.A. The biotransformation of prasugrel, a new thienopyridine prodrug, by the human carboxylesterases 1 and 2.Drug Metab. Dispos.20083671227123210.1124/dmd.107.020248 18372401
    [Google Scholar]
  32. EMA Assessment Report for Efient.2009Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/000984/WC500021975.pdf (accessed on 13-6-2024)
    [Google Scholar]
  33. ZhangQ. MelchertP.W. MarkowitzJ.S. In-vitro evaluation of the impact of Covid-19 therapeutic agents on the hydrolysis of the antiviral prodrug remdesivir.Chem. Biol. Interact.202236511009710.1016/j.cbi.2022.110097 35964681
    [Google Scholar]
  34. SongY.Q. JinQ. WangD.D. HouJ. ZouL.W. GeG.B. Carboxylesterase inhibitors from clinically available medicines and their impact on drug metabolism.Chem. Biol. Interact.202134510956610.1016/j.cbi.2021.109566 34174250
    [Google Scholar]
  35. IshizukaT. YoshigaeY. MurayamaN. IzumiT. Different hydrolases involved in bioactivation of prodrug-type angiotensin receptor blockers: Carboxymethylenebutenolidase and carboxylesterase 1.Drug Metab. Dispos.201341111888189510.1124/dmd.113.053595 23946449
    [Google Scholar]
  36. DerendorfH. Pharmacokinetic and pharmacodynamic properties of inhaled ciclesonide.J. Clin. Pharmacol.200747678278910.1177/0091270007299763 17412829
    [Google Scholar]
  37. AustinR.P. BartonP. CockroftS.L. WenlockM.C. RileyR.J. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties.Drug Metab. Dispos.200230121497150310.1124/dmd.30.12.1497 12433825
    [Google Scholar]
  38. HallifaxD. HoustonJ.B. Binding of drugs to hepatic microsomes: comment and assessment of current prediction methodology with recommendation for improvement.Drug Metab. Dispos.200634472472610.1124/dmd.105.007658 16552024
    [Google Scholar]
  39. GertzM. KilfordP.J. HoustonJ.B. GaletinA. Drug lipophilicity and microsomal protein concentration as determinants in the prediction of the fraction unbound in microsomal incubations.Drug Metab. Dispos.200836353554210.1124/dmd.107.018713 18096674
    [Google Scholar]
  40. BowmanC.M. BenetL.Z. An examination of protein binding and protein-facilitated uptake relating to in vitro-in vivo extrapolation.Eur. J. Pharm. Sci.201812350251410.1016/j.ejps.2018.08.008 30098391
    [Google Scholar]
  41. WilliamsE.T. CarlsonJ.E. LaiW.G. WongY.N. YoshimuraT. CritchleyD.J. NarurkarM. Investigation of the metabolism of rufinamide and its interaction with valproate.Drug Metab. Lett.20115428028910.2174/187231211798472511 22022867
    [Google Scholar]
  42. BriandE. ThomsenR. LinnetK. RasmussenH.B. BrunakS. TaboureauO. Combined ensemble docking and machine learning in identification of therapeutic agents with potential inhibitory effect on human CES1.Molecules20192415274710.3390/molecules24152747 31362390
    [Google Scholar]
  43. FDA. Guidance for Industry. 2020. Available from: https://www.fda.gov/media/134582/download (accessed on 28-6-2024)
  44. PMDA Guideline on drug interaction for drug development and appropriate provision of information.2020Available from: https://www.pref.hiroshima.lg.jp/uploaded/attachment/342918.pdf (accessed on 13-6-2024)
    [Google Scholar]
  45. EMA Note for Guidance on the investigation of bioavailability and bioequivalence.2002Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/note-guidance-investigation-bioavailability-and-bioequivalence_en.pdf (accessed on 28-6-2024)
    [Google Scholar]
  46. DershwitzM. RosowC.E. Remifentanil: A truly-short-acting opioid.Semin. Anesth.1996151889610.1016/S0277‑0326(96)80009‑2
    [Google Scholar]
  47. PloskerG.L. Landiolol: A review of its use in intraoperative and postoperative tachyarrhythmias.Drugs201373995997710.1007/s40265‑013‑0077‑4 23760735
    [Google Scholar]
  48. ImaiT. IsozakiM. OhuraK. Esterases involved in the rapid bioconversion of esmolol after intravenous injection in humans.Biol. Pharm. Bull.202245101544155210.1248/bpb.b22‑00468 36184514
    [Google Scholar]
  49. QianY. WangX. MarkowitzJ.S. In-vitro inhibition of carboxylesterase 1 by major cannabinoids and selected metabolites.Drug Metab. Dispos.201947546547210.1124/dmd.118.086074 30833288
    [Google Scholar]
  50. SatoY. MiyashitaA. IwatsuboT. UsuiT. Conclusive identification of the oxybutynin-hydrolyzing enzyme in human liver.Drug Metab. Dispos.201240590290610.1124/dmd.111.043208 22293119
    [Google Scholar]
  51. BaileyD.N. BriggsJ.R. Procainamide and quinidine inhibition of the human hepatic degradation of meperidine in vitro.J. Anal. Toxicol.200327314214410.1093/jat/27.3.142 12731654
    [Google Scholar]
  52. EMA Byfavo®. Summary of Product Characteristics.PAION Pharma GmbH2024 https://www.ema.europa.eu/en/documents/product-information/byfavo-epar-product-information_en.pdf
    [Google Scholar]
  53. ShiotsukaJ. SanuiM. LeforA. Safe use of landiolol hydrochloride in a patient with marked pseudocholinesterase deficiency.J. Anesth.201024230931010.1007/s00540‑010‑0889‑2 20155298
    [Google Scholar]
  54. EMA Guideline on the Investigation of Drug Interactions.2013Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions_en.pdf (accessed on 28-6-2024)
    [Google Scholar]
  55. ShiD. YangJ. YangD. LeCluyseE.L. BlackC. YouL. AkhlaghiF. YanB. Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxylesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel.J. Pharmacol. Exp. Ther.200631931477148410.1124/jpet.106.111807 16966469
    [Google Scholar]
  56. FlemingC.D. BencharitS. EdwardsC.C. HyattJ.L. TsurkanL. BaiF. FragaC. MortonC.L. Howard-WilliamsE.L. PotterP.M. RedinboM.R. Structural insights into drug processing by human carboxylesterase 1: Tamoxifen, mevastatin, and inhibition by benzil.J. Mol. Biol.2005352116517710.1016/j.jmb.2005.07.016 16081098
    [Google Scholar]
  57. ShionoiriH. Pharmacokinetic drug interactions with ACE inhibitors.Clin. Pharmacokinet.1993251205810.2165/00003088‑199325010‑00003 8354016
    [Google Scholar]
  58. LaizureS.C. ParkerR.B. HerringV.L. HuZ.Y. Identification of carboxylesterase-dependent dabigatran etexilate hydrolysis.Drug Metab. Dispos.201442220120610.1124/dmd.113.054353 24212379
    [Google Scholar]
  59. AntoniouT. MacdonaldE.M. YaoZ. HollandsS. GomesT. TadrousM. MamdaniM.M. JuurlinkD.N. Association between statin use and ischemic stroke or major hemorrhage in patients taking dabigatran for atrial fibrillation.CMAJ20171891E4E1010.1503/cmaj.160303 28246253
    [Google Scholar]
  60. YangS. CuiC. ZhangJ. QiaoR. Angiotensin-converting enzyme inhibitors’ influence on antiplatelet therapy of clopidogrel in ACS. Clin. Lab., 20166210/20161911191810.7754/Clin.Lab.2016.16014228164519
    [Google Scholar]
  61. CressmanA.M. MacdonaldE.M. FernandesK.A. GomesT. PatersonJ.M. MamdaniM.M. JuurlinkD.N. A population‐based study of the drug interaction between clopidogrel and angiotensin converting enzyme inhibitors.Br. J. Clin. Pharmacol.201580466266910.1111/bcp.12682 25980448
    [Google Scholar]
  62. WangX. ZhuH.J. MarkowitzJ.S. Carboxylesterase 1-mediated drug-drug interactions between clopidogrel and simvastatin.Biol. Pharm. Bull.201538229229710.1248/bpb.b14‑00679 25747989
    [Google Scholar]
  63. SiepmannT. HeinkeD. KepplingerJ. BarlinnK. GehrischS. GrählertX. SchwanebeckU. ReichmannH. PuetzV. BodechtelU. GahnG. Interaction of clopidogrel and statins in secondary prevention after cerebral ischaemia – A randomized, double‐blind, double‐dummy crossover study.Br. J. Clin. Pharmacol.20147851058106610.1111/bcp.12416 24803100
    [Google Scholar]
  64. Serrano JúniorC.V. Soeiro, Ade.M.; Araújo, L.F.; Jabot, B.; Rached, F.; Orii, N.M.; Nicolau, J.C.; Duarte, A.J.; Ramires, J.A. Lack of clopidogrel-statin interaction in patients undergoing coronary stent implantation.Arq. Bras. Cardiol.2010953321327 20721515
    [Google Scholar]
  65. SawJ. BrennanD.M. SteinhublS.R. BhattD.L. MakK.H. FoxK. TopolE.J. Lack of evidence of a clopidogrel-statin interaction in the CHARISMA trial.J. Am. Coll. Cardiol.200750429129510.1016/j.jacc.2007.01.097 17659194
    [Google Scholar]
  66. BohnertT. PatelA. TempletonI. ChenY. LuC. LaiG. LeungL. TseS. EinolfH.J. WangY.H. SinzM. StearnsR. WalskyR. GengW. SudsakornS. MooreD. HeL. WahlstromJ. KeirnsJ. NarayananR. LangD. YangX. Evaluation of a new molecular entity as a victim of metabolic drug-drug interactions-An industry perspective.Drug Metab. Dispos.20164481399142310.1124/dmd.115.069096 27052879
    [Google Scholar]
  67. ZuidemaJ. Hilbers-ModdermanE.S.M. MerkusF.W.H.M. Clinical pharmacokinetics of dapsone.Clin. Pharmacokinet.198611429931510.2165/00003088‑198611040‑00003 3530584
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002308233240801104910
Loading
/content/journals/cdm/10.2174/0113892002308233240801104910
Loading

Data & Media loading...

Supplements

Supplementary material is provided in a separate document.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test