Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

To achieve catalytic performance for the oxidation of alcohols using Ruthenium(III) metal complexes as a catalyst.

Chitosan is a potential candidate, which enables the synthesis of transition metal complexes from its corresponding bidentate ligands.

The chemical modification was performed on a chitosan molecule with suitable aldehydes.

The oxidation of alcohols was performed using ruthenium metal complexes as a catalyst with pyridinium chlorochromate (PCC) as an oxidant and dichloromethane as a solvent. To a solution of alcohol (2 mmol) and dichloromethane (25 mmol), pyridinium chlorochromate (3 mmol), and ruthenium(III) complexes (0.01 mmol) were added. The solution was stirred for 12 h at room temperature. At the required time, the aldehyde/ketone was extracted with n-hexane. The n-hexane was then analyzed by GC.

The ruthenium(III) complexes derived from modified chitosan Schiff bidentate ligands have resulted in good catalytic performance for the oxidation of alcohols under optimized conditions.

The enhanced catalytic activities of ruthenium(III) complexes were due to the presence of electron-donating groups in the Schiff base ligand.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001601666210527113042
2021-05-27
2025-03-16
Loading full text...

Full text loading...

References

  1. EnescuD. HamciucV. PricopL. HamaideT. HarabagiuV. SimionescuB.C. Polydimethylsiloxane-modified chitosan I. synthesis and structural characterisation of graft andcrosslinked copolymers.J. Polym. Res.200916738010.1007/s10965‑008‑9204‑4
    [Google Scholar]
  2. BansalV. Kumar SharmaP. SharmaN. Prakash PalO. MalviyaR. Applications of chitosan and chitosan derivatives in drug delivery.Adv. Biol. Res. (Faisalabad)201152837
    [Google Scholar]
  3. HongS. YangQ. YuanY. ChenL. SongY. LianH. Sustainable co-solvent induced one step extraction of low molecular weight chitin with high purity from raw lobster shell.Carbohydr. Polym.2019205236-24310.1016/j.carbpol.2018.10.04530446100
    [Google Scholar]
  4. KrishnapriyaK.R. KandaswamyM. A new chitosan biopolymer derivative as metal-complexing agent: Synthesis, characterization, and metal(II) ion adsorption studies.Carbohydr. Res.2010345142013-202210.1016/j.carres.2010.06.00520708730
    [Google Scholar]
  5. ChenP.H. HwangY.H. KuoT.Y. LiuF.H. YihJ. JenHsieh, H. Improvement in the properties of chitosan membranes using natural organic acid solutions as solvents for chitosan dissolution.J. Med. Biol. Eng.2007272328
    [Google Scholar]
  6. KocakN. SahinM. KücükkolbasiS. ErdoganZ.O. Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor.Int. J. Biol. Macromol.20125151159-116610.1016/j.ijbiomac.2012.09.00322982811
    [Google Scholar]
  7. PervaizM. AhmadI. YousafM. KirnS. MunawarA. SaeedZ. AdnanA. GulzarT. KamalT. AhmadA. RashidA. Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes.Spectrochim. Acta A Mol. Biomol. Spectrosc.2019206642-64910.1016/j.saa.2018.05.05729880252
    [Google Scholar]
  8. GavilanK.C. PestovA.V. GarciaH.M. YatlukY. RoussyJ. GuibalE. Mercury sorption on a thiocarbamoyl derivative of chitosan.J. Hazard. Mater.20091651.3415-42610.1016/j.jhazmat.2008.10.00519059716
    [Google Scholar]
  9. AnanN.A. HassanS.M. SaadE.M. ButlerI.S. MostafaS.I. Preparation, characterization and pH-metric measurements of 4- hydroxysalicylidenechitosan Schiff-base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III).Carbohydr. Res.20113466775-79310.1016/j.carres.2011.01.01421392736
    [Google Scholar]
  10. CaroC.A. CabelloG. LandaetaE. PérezJ. GonzálezM. ZagaJ.H. LilloL. Preparation, spectroscopic, and electrochemical characterization of metal(II) complexes with Schiff base ligands derived from chitosan: Correlations of redox potentials with Hammett parameters.J. Coord. Chem.2014674114412410.1080/00958972.2014.977271
    [Google Scholar]
  11. BalS. OrhanB. ConnollyJ.D. Dıgrak, M.; Koytepe, S. Synthesis and characterization of Schiff bases, their metal complexes and thermal, antimicrobial and catalytic features.J. Therm. Anal. Calorim.201512190991710.1007/s10973‑015‑4617‑x
    [Google Scholar]
  12. GunasekaranN. KarvembuR. Synthesis, characterization, and catalytic applications of Ru(III) complexes containing N-[di(alkyl/aryl)carbamothioyl]benzamide derivatives and triphenylphosphine/triphenylarsine.Inorg. Chem. Commun.20101395295510.1016/j.inoche.2010.05.004
    [Google Scholar]
  13. DemetgulC. SerinS. Synthesis and characterization of a new vic-dioximederivativeof chitosan and its transition metal complexes.Carbohydr. Polym.20087250651210.1016/j.carbpol.2007.09.020
    [Google Scholar]
  14. AntonyR. Theodore DavidS. SaravananK. KaruppasamyK. BalakumarS. Synthesis, spectrochemical characterisation and catalytic activity of transition metal complexes derived from Schiff base modified chitosan.Spectrochim. Acta A Mol. Biomol. Spectrosc.2013103423-43010.1016/j.saa.2012.09.10123274227
    [Google Scholar]
  15. MadhanR. GalmariV. Half‒Sandwich (h6‒p‒Cymene) Ruthenium(II) complexes bearing 5‒Amino‒1‒Methyl‒3‒Phenylpyrazole Schiff base ligands: Synthesis, structure and catalytic transfer hydrogenation of ketones.J. Organomet. Chem.2019880475510.1016/j.jorganchem.2018.10.029
    [Google Scholar]
  16. Elton Marks deA.B.; Solranny Carla Cavalcante, C.e.S.; Durcilene Alves da, S.; Fernando Aécio de, A.C.; Humberto, M.B.; Luiz de Sousa, S.J.; Edson Cavalcanti da, S.F. Modified chitosan-based bioactive material for antimicrobial application: Synthesis and characterization.Int. J. Biol. Macromol.2018117640647
    [Google Scholar]
  17. Selwin JoseyphusR. Justin DhanarajC. Sivasankaran NairM. Synthesis and characterization of some Schiff base transition metal complexes derived from vanillin and L(+)alanine.Transition Met. Chem.20063169970210.1007/s11243‑006‑0048‑7
    [Google Scholar]
  18. ViswanathamurthiP. DharmarajN. AnuradhaS. Karuppannan NatarajanK. Ruthenium(III) complexes with tetradentate Schiff bases containing triphenylphosphine or triphenylarsine.Transition Met. Chem.19982333734110.1023/A:1006953224166
    [Google Scholar]
  19. PengH. XiongH. LiJ. XieM. LiuY. BaiC. ChenL. Vanillin cross-linked chitosan microspheres for controlled release of resveratrol.Food Chem.2010121232810.1016/j.foodchem.2009.11.085
    [Google Scholar]
  20. RaniS. KumarS. ChandraS. Spectroscopic and biological approach in the characterization of a novel14-membered [N4] macrocyclic ligand and its Palladium(II), Platinum(II),Ruthenium(III) and Iridium(III) complexes.Spectrochim. Acta, Part A.2014118244250
    [Google Scholar]
  21. CahitD. NeslihanB. Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives.Carbohydr. Polym.2018181812817
    [Google Scholar]
  22. VadivelT. DhamodaranM. KulathooranS. KavithaM. AmirthaganesanK. In vitro evaluation of antifungal activities by permeation of Ru(III)complexes derived from chitosan-schiff base ligand.Curr. Appl. Polym. Sci.2019321222010.2174/2452271603666191016130012
    [Google Scholar]
  23. ChethanP.D. VishalakshiB. SathishL. AnandaK. PoojaryB. Preparation of substituted quaternized arylfuran chitosan derivatives and their antimicrobial activity.Int. J. Biol. Macromol.201359158-16410.1016/j.ijbiomac.2013.04.04523608102
    [Google Scholar]
  24. ZengM. ZhangX. ShaoL. QiC. ZhangX-M. Highly porous chitosan microspheres supported palladium catalyst for coupling reactions in organic and aqueous solutions.J. Organomet. Chem.2012704293710.1016/j.jorganchem.2012.01.003
    [Google Scholar]
  25. AbdelaalM.Y. SobahiT.R. Al-ShareefH.F. Modification of chitosan derivatives of environmental and biological interest: A green chemistry approach.Int. J. Biol. Macromol.201355231-23910.1016/j.ijbiomac.2013.01.01323376358
    [Google Scholar]
  26. NeelakantanM.A. RusalrajF. DharmarajaJ. JohnsonrajaS. JeyakumarT. Sankaranarayana PillaiM. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes.Spectrochim. Acta A Mol. Biomol. Spectrosc.20087141599-160910.1016/j.saa.2008.06.00818656419
    [Google Scholar]
  27. EmaraA.A.A. TawabM.A. El-ghamryM.A. ElsabeeM.Z. Metal uptake by chitosan derivatives and structure studies of the polymermetal complexes.Carbohydr. Polym.20118319220210.1016/j.carbpol.2010.07.040
    [Google Scholar]
  28. MohanN. MuthumariS. RameshR. Synthesis, structure and anticancer activity of (h6- benzene) ruthenium(II) complexes containing aroylhydrazone ligands.J. Organomet. Chem.2016807455110.1016/j.jorganchem.2016.01.033
    [Google Scholar]
  29. TrimukheK.D. VarmaA.J. Metal complexes of crosslinked chitosans: Correlations between metal ioncomplexation values and thermal properties.Carbohydr. Polym.200975637010.1016/j.carbpol.2008.06.011
    [Google Scholar]
  30. KhanM.I. KhanA. HussainI. Ali KhanM. GulS. IqbalM. RahmanI.U. KhudaF. Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes.Inorg. Chem. Commun.201335104-10910.1016/j.inoche.2013.06.014
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001601666210527113042
Loading
/content/journals/ccchem/10.2174/2666001601666210527113042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test