Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

C-Methylation of organic substrates was accomplished with a number of methylating agents other than methane, methanol, and methyl metals. They include methyl halides (MeX, X = I, Br, Cl, F), methyl-containing halogenated reagents, methyl peroxides, dimethyl carbonate (DMC), dimethylsulfoxide (DMSO), N,N-dimethyl formamide (DMF), diazomethane, formate salts, trioxane, CO/H, CO/H, and dimethyl ether (DME). Under particular conditions, some methyl-containing molecules such as polymethylbenzenes, methylhydrazine, tris(diethylamino) sulfonium difluorotrimethylsilicate, methyl tosylate, long-chain alkyl alcohols, and acetic acid unexpectedly -methylated a variety of organic substrates. A few cases of -methylation were only reported to occur in the absence of catalysts. Otherwise, transition metal complexes as catalysts in conjunction with specific ligands and bases were ubiquitously present in most -methylation reactions. Of the reactions, Suzuki-Miyaura-type cross-coupling remained of paramount importance in making 11CH-bearing positron emission tomography tracers (PETs), one of the best applications of such methylation. Methylation proceeded at C(aromatic)-X, C(sp3)-X C(sp2)-X, and C(sp)-X of substrates (X = H, halogen). -methylation was regioselectively observed with aromatic substrates when they bear moieties such as pyridyl, pyrimidyl, amide, and imine functionalities, which were accordingly coined ‘-directing groups’.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001601666210804114443
2021-08-04
2025-03-15
Loading full text...

Full text loading...

References

  1. BrahmachariG. Design for carbon-carbon bond forming reactions under ambient conditions.RSC Advances2016669646766472510.1039/C6RA14399G
    [Google Scholar]
  2. NicolaouK.C. VourloumisD. WinssingerN. BaranP.S. The art and science of total synthesis at the dawn of the twenty-first century.Angew. Chem. Int. Ed. Engl.20003914412210.1002/(SICI)1521‑3773(20000103)39:1<44:AID‑ANIE44>3.0.CO;2‑L 10649349
    [Google Scholar]
  3. MoulayS. C-Methylation of organic substrates: A comprehensive overview. Part I. Methane as a methylating agent.Mini Rev. Org. Chem.202017780581310.2174/1570193X16666191023143652
    [Google Scholar]
  4. JinJ. MacMillanD.W.C. Alcohols as alkylating agents in heteroarene C-H functionalization.Nature20155257567879010.1038/nature14885 26308895
    [Google Scholar]
  5. MoulayS. C-methylation of organic substrates: A comprehensive overview. Part III. Methanol as a methylating agent other than methane, methanol, and methyl metals.Curr. Chinese Chem.202112e040821195251
    [Google Scholar]
  6. MoulayS. C-Methylation of organic substrates: A comprehensive overview. Part II. Methyl metals as methylating agents.Chem. Africa2020384588010.1007/s42250‑020‑00172‑1
    [Google Scholar]
  7. MoulayS. O-Methylation of hydroxyl-containing organic substrates: A comprehensive overview.Curr. Org. Chem.201822201986201610.2174/1385272822666180910140543
    [Google Scholar]
  8. MoulayS. N-methylation of nitrogen-containing organic substrates: A comprehensive overview.Curr. Org. Chem.201923161695173710.2174/1385272823666190823114547
    [Google Scholar]
  9. DongolK.G. KohH. SauM. ChaiC.L.L. Iron‐catalysed sp3-sp3 cross‐coupling reactions of unactivated alkyl halides with alkyl Grignard reagents.Adv. Synth. Catal.200734971015101810.1002/adsc.200600383
    [Google Scholar]
  10. YanG. BorahA.J. WangL. YangM. Recent advances in transition metal‐catalyzed methylation reactions.Adv. Synth. Catal.201535771333135010.1002/adsc.201400984
    [Google Scholar]
  11. GiriR. ThapaS. KafleA. Palladium‐catalysed, directed C-H coupling with organometallics.Adv. Synth. Catal.201435671395141110.1002/adsc.201400105
    [Google Scholar]
  12. JianboD. YuegangC. ZhiweiZ. Recent progress of photocatalytic methylation of arenes.Youji Huaxue202040113646365510.6023/cjoc202006079
    [Google Scholar]
  13. HuA. GuoJ-J. PanH. ZuoZ. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis.Science2018361640366867210.1126/science.aat9750 30049785
    [Google Scholar]
  14. SambiagioC. SchönbauerD. BlieckR. Dao-HuyT. PototschnigG. SchaafP. WiesingerT. ZiaM.F. Wencel-DelordJ. BessetT. MaesB.U.W. SchnürchM. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry.Chem. Soc. Rev.201847176603674310.1039/C8CS00201K 30033454
    [Google Scholar]
  15. HuL. LiuY.A. LiaoX. Recent progress in methylation of (hetero) arenes by cross-coupling or C-H activation.Synlett201829437538210.1055/s‑0037‑1609093
    [Google Scholar]
  16. KhakeS.M. ChataniN. Chelation-assisted nickel-catalyzed C-H functionalizations.Trends Chem.20191552453910.1016/j.trechm.2019.06.002
    [Google Scholar]
  17. AnoY. ChataniN. Ortho-directed C-H alkylation of substituted benzenes. Organic Reactions; John Wiley & Sons: Hoboken, 2019, 100, pp. 622-650.
  18. Ghorbani‐ChoghamaraniA. AghavandiH. MohammadiM. Boehmite@SiO2@ Tris (hydroxymethyl)aminomethane‐Cu(I): A novel, highly efficient and reusable nanocatalyst for the C‐C bond formation and the synthesis of 5‐substituted 1H‐tetrazoles in green media.Appl. Organomet. Chem.20203410e580410.1002/aoc.5804
    [Google Scholar]
  19. TamoradiT. MousaviS.M. MohammadiM. C-C and C-S Coupling catalyzed by supported Cu(II) on nano CoFe2O4.ChemistrySelect20205175077508110.1002/slct.202000084
    [Google Scholar]
  20. MohammadiM. Ghorbani-ChoghamaraniA. L-Methionine-Pd complex supported on hercynite as a highly efficient and reusable nanocatalyst for C-C cross-coupling reactions.New J. Chem.20204472919292910.1039/C9NJ05325E
    [Google Scholar]
  21. MohammdiM. KhodamoradyM. TahmasbiB. BahramiK. Ghorbani-ChoghamaraniA. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis.J. Ind. Eng. Chem.20219717810.1016/j.jiec.2021.02.001
    [Google Scholar]
  22. NewberneP.M. RogersA.E. Labile methyl groups and the promotion of cancer.Annu. Rev. Nutr.1986640743210.1146/annurev.nu.06.070186.002203 2425831
    [Google Scholar]
  23. WajedS.A. LairdP.W. DeMeesterT.R. DNA methylation: an alternative pathway to cancer.Ann. Surg.20012341102010.1097/00000658‑200107000‑00003 11420478
    [Google Scholar]
  24. MurakamiA. KoshimizuK. OhigashiH. KuwaharaS. KukiW. TakahashiY. HosotaniK. KawaharaS. MatsuokaY. Characteristic rat tissue accumulation of nobiletin, a chemopreventive polymethoxyflavonoid, in comparison with luteolin.Biofactors2002163-4738210.1002/biof.5520160303 14530595
    [Google Scholar]
  25. MorleyK.L. FergusonP.J. KoropatnickJ. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells.Cancer Lett.2007251116817810.1016/j.canlet.2006.11.016 17197076
    [Google Scholar]
  26. ThakkerD.R. CrevelingC.R. O-methylation.Conjugation reactions in drug metabolism: an integrated approach. GerardJ.M. New YorkTaylor & Francis1990191230
    [Google Scholar]
  27. BarreiroE.J. KümmerleA.E. FragaC.A.M. The methylation effect in medicinal chemistry.Chem. Rev.201111195215524610.1021/cr200060g 21631125
    [Google Scholar]
  28. SchönherrH. CernakT. Profound methyl effects in drug discovery and a call for new C-H methylation reactions.Angew. Chem. Int. Ed. Engl.20135247122561226710.1002/anie.201303207 24151256
    [Google Scholar]
  29. RoseK.D. FranciscoM.A. Characterization of acidic heteroatoms in heavy petroleum fractions by phase-transfer methylation and NMR spectroscopy.Energy Fuels19871323323910.1021/ef00003a001
    [Google Scholar]
  30. SvelleS. KolboeS. OlsbyeU. SwanO. A theoretical investigation of the methylation of methylbenzenes and alkenes by halomethanes over acidic zeolites.J. Phys. Chem. B2003107225251526010.1021/jp030101u
    [Google Scholar]
  31. BradleyW. RobinsonR. The hydrolytic fission of some substituted dibenzoylmethanes.J. Chem. Soc.19261292356236710.1039/JR9262902356
    [Google Scholar]
  32. WeygandC. Über eine verbesserte methode zur C‐methylierung von 1.3‐diketonen (mit H. Forkel) und über das methyl‐p‐methoxy‐dibenzoylmethan (1‐p‐methoxyphenyl‐2‐methyl‐3‐phenyl‐propan‐dion‐1.3).Ber. Dtsch. Chem. Ges.192861468769010.1002/cber.19280610416
    [Google Scholar]
  33. PeakD.A. RobinsonR. Experiments on the synthesis of substances related to the sterols. Part XVIII.J. Chem. Soc.19371581159110.1039/jr9370001581
    [Google Scholar]
  34. CookJ.W. LawrenceC.A. The synthesis of polyterpenoid compounds. Part III.J. Chem. Soc.193781782710.1039/jr9370000817
    [Google Scholar]
  35. McGinnisN.A. RobinsonR. Experiments on the synthesis of substances related to the sterols. Part XXXIV. Some thiopyranophenanthrene derivatives.J. Chem. Soc.194140440810.1039/jr9410000404
    [Google Scholar]
  36. JohnsonW.S. Introduction of the angular methyl group. The preparation of cis- and trans-9-methyldecalone-1.J. Am. Chem. Soc.19436571317132410.1021/ja01247a018
    [Google Scholar]
  37. BickelC.L. The methylation of p-methoxy dibenzoylmethane.J. Am. Chem. Soc.194567112045204610.1021/ja01227a503
    [Google Scholar]
  38. McArthurC.R. WorsterP.M. JiangJ-L. LeznoffC.C. Polymer supported enantioselective reactions. II. α-Methylation of cyclohexanone.Can. J. Chem.198260141836184110.1139/v82‑254
    [Google Scholar]
  39. DoomesE. CromwellN.H. Azetidinyl ketone chemistry. C‐Methylation reactions and stereostructure‐spectra relationships.J. Heterocycl. Chem.19696215315810.1002/jhet.5570060202
    [Google Scholar]
  40. KatoK. KikuchiT. NengakiN. AraiT. ZhangM-R. Tetrabutylammonium fluoride-promoted α-[11C]methylation of α-arylesters: A simple and robust method for the preparation of 11C-labeled ibuprofen.Tetrahedron Lett.201051455908591110.1016/j.tetlet.2010.09.007
    [Google Scholar]
  41. MahmoodA. TeixeiraE.S. LongoR.L. Understanding the reactivity and regioselectivity of methylation of nitronates [R1 R2 CNO2]− by CH 3I in the gas phase.J. Org. Chem.201580168198820510.1021/acs.joc.5b01273 26181145
    [Google Scholar]
  42. OlahG.A. DeMemberJ.R. MoY.K. SvobodaJ.J. SchillingP. OlahJ.A. Onium ions. VII. Dialkylhalonium ions.J. Am. Chem. Soc.197496388489210.1021/ja00810a038
    [Google Scholar]
  43. OlahG.A. The role of carbocations in cationic polymerization (polycondensation) of π‐, σ‐, and n‐donor monomers.Makromol. Chem.197417541039106910.1002/macp.1974.021750402
    [Google Scholar]
  44. OlahG.A. Olah, J.A. Aromatic substitution. XXXVII. Stannic and aluminum chloride catalyzed Friedel-Crafts alkylation of naphthalene with alkyl halides. Differentiation of kinetically and thermodynamically controlled product compositions, and the isomerization of alkylnaphthalenes.J. Am. Chem. Soc.19769871839184210.1021/ja00423a032
    [Google Scholar]
  45. TremontS.J. RahmanH.U. Ortho-alkylation of acetanilides using alkyl halides and palladium acetate.J. Am. Chem. Soc.1984106195759576010.1021/ja00331a073
    [Google Scholar]
  46. McCallumJ.S. GasdaskaJ.R. LiebeskindL.S. TremontS.J. Palladium-mediated 2,6-dialkylation of N-benzilidine imines: Preparation of 2,6-dialkylbenzaldehydes.Tetrahedron Lett.198930314085408810.1016/S0040‑4039(00)99328‑6
    [Google Scholar]
  47. JangM.J. YounS.W. Pd-catalyzed ortho-methylation of acetanilides via directed C-H activation.Bull. Korean Chem. Soc.20113282865286610.5012/bkcs.2011.32.8.2865
    [Google Scholar]
  48. WangX. NiuS. XuL. ZhangC. MengL. ZhangX. MaD. Pd-catalyzed dimethylation of tyrosine-derived picolinamide for synthesis of (S)-N-boc-2,6-dimethyltyrosine and its analogues.Org. Lett.201719124624910.1021/acs.orglett.6b03548 28026185
    [Google Scholar]
  49. McLeanS. HaynesP. Substitution in the cyclopentadienide anion series: Methylation of the cyclopentadienide and methylcyclopentadienide anions.Tetrahedron19652192313232710.1016/S0040‑4020(01)93886‑4
    [Google Scholar]
  50. ToyotaK. AbeK. HorikawaK. YoshifujiM. Preparation, methylation, and coupling reaction of 1,2-dithienyl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutenes.Bull. Chem. Soc. Jpn.20047771377138810.1246/bcsj.77.1377
    [Google Scholar]
  51. LevitinI.Y. VolkovaL.G. UshakovaT.M. SiganA.L. Vol’pinM.E. Methylation of olefins with organic reagents in the presence of rhodium compounds.Russ. Chem. Bull.1973221156115610.1007/BF00854286
    [Google Scholar]
  52. IshiyamaT. AbeS. MiyauraN. SuzukiA. Palladium-catalyzed alkyl-alkyl cross-coupling reaction of 9-alkyl-9-BBN derivatives with iodoalkanes possessing β-hydrogens.Chem. Lett.199221469169410.1246/cl.1992.691
    [Google Scholar]
  53. TeraoJ. KambeN. Cross-coupling reaction of alkyl halides with organometallic reagents using transition-metal catalysts J.Synt. Org. Chem.200462121192120410.5059/yukigoseikyokaishi.62.1192
    [Google Scholar]
  54. PretzeM. Grosse-GehlingP. MamatC. Cross-coupling reactions as valuable tool for the preparation of PET radiotracers.Molecules20111621129116510.3390/molecules16021129 21270732
    [Google Scholar]
  55. ItsenkoO. Goméz-VallejoV. LlopJ. KoziorowskiJ. On 11C chemistry reviews - Surveying and filling the gaps.Curr. Org. Chem.201317192067209610.2174/13892029113149990101
    [Google Scholar]
  56. GomzinaN.A. KuznetsovaO.F. VaulinaD.D. Methylation as a method for synthesis of radiopharmaceuticals for positron emission tomography.Russ. Chem. Bull.20156471536154610.1007/s11172‑015‑1038‑8
    [Google Scholar]
  57. AnderssonY. ChengA. LångströmB. Palladium-promoted coupling reactions of [11C]methyl iodide with organotin and organoboron compounds.Acta Chem. Scand.19954968368810.3891/acta.chem.scand.49‑0683
    [Google Scholar]
  58. SuzukiM. DoiH. BjörkmanM. AnderssonY. LångströmB. WatanabeY. NoyoriR. Rapid coupling of methyl iodide with aryltributylstannanes mediated by palladium(0) complexes: A general protocol for the synthesis of 11CH 3‐labeled PET tracers.Chemistry19973122039204210.1002/chem.19970031219
    [Google Scholar]
  59. HosoyaT. WakaoM. KondoY. DoiH. SuzukiM. Rapid methylation of terminal acetylenes by the Stille coupling of methyl iodide with alkynyltributylstannanes: a general protocol potentially useful for the synthesis of short-lived 11CH 3-labeled PET tracers with a 1-propynyl group.Org. Biomol. Chem.200421242710.1039/b311532a 14737654
    [Google Scholar]
  60. HosoyaT. SumiK. DoiH. WakaoM. SuzukiM. Rapid methylation on carbon frameworks useful for the synthesis of 11CH 3-incorporated PET tracers: Pd(0)-mediated rapid coupling of methyl iodide with an alkenyltributylstannane leading to a 1-methylalkene.Org. Biomol. Chem.20064341041510.1039/b515215a 16446798
    [Google Scholar]
  61. SuzukiM. SumiK. KoyamaH. SiqinH. HosoyaT. Takashima-HiranoM. DoiH. Palladium(0)-mediated rapid coupling between methyl iodide and heteroarylstannanes: an efficient and of a positron-emitting 11C radionuclide into heteroaromatic frameworks.Chemistry20091545124891249510.1002/chem.200901145 19821458
    [Google Scholar]
  62. SuzukiM. HosoyaT. Method of rapid methylation of alkene compound and kit for PET tracer preparation using the same. US Patent 2009/0238759 A12009
    [Google Scholar]
  63. SuzukiM. DoiH. Pd0-mediated rapid C-[11C]methylations and C-[18F]fluoromethylations: Revolutionary new methodologies for the synthesis of short-lived PET molecular probes.J. Synth. Org. Chem. Jpn.201068111195120610.5059/yukigoseikyokaishi.68.1195
    [Google Scholar]
  64. SuzukiM. KoyamaH. Takashima-HiranoM. DoiH. Pd0-mediated rapid C-11C]methylation and C-[18F]fluoromethylation: Revolutionary advanced methods for general incorporation of short-lived positron-emitting 11C and 18F radionuclides in an organic framework. In: Positron Emission Tomography-Current Clinical and Research Aspects; Hsieh, C.-H., Ed.; InTech, 2012, pp. 115-152.
  65. SuzukiM. DoiH. KoyamaH. ZhangZ. HosoyaT. OnoeH. WatanabeY. Pd0-mediated rapid cross-coupling reactions, the rapid C-[11C]methylations, revolutionarily advancing the syntheses of short-lived PET molecular probes.Chem. Rec.201414351654110.1002/tcr.201400002 24946731
    [Google Scholar]
  66. SuzukiM. DoiH. KoyamaH. Method for rapidly methylating heteroaromatic arene and method for producing tracer for use in PET. US Patent 9.012,632 B2, 2015.
  67. BourdierT. HuibanM. HuetA. SobrioF. FouquetE. PerrioC. BarreL. Tetra- and monoorganotin reagents in palladium-mediated cross-coupling reactions for the labeling with carbon-11 of PET tracers.Synthesis20086978984
    [Google Scholar]
  68. DoiH. Pd-mediated rapid cross-couplings using [(11) C]methyl iodide: groundbreaking labeling methods in (11) C radiochemistry.J. Labelled Comp. Radiopharm.2015583738510.1002/jlcr.3253 25712596
    [Google Scholar]
  69. WuestF. BerndtM. KniessT. Carbon-11 labeling chemistry based upon [11C]methyl iodide.Ernst Schering Res. Found. Workshop200762183273
    [Google Scholar]
  70. WuestF.R. BerndtM. 11C–C bond formation by palladium-mediated cross-coupling of alkenylzirconocenes with [11C]methyl iodide.J. Labelled Comp. Radiopharm.20064929110010.1002/jlcr.1044
    [Google Scholar]
  71. NakajimaS. TakayaH. NakamuraM. Iron-catalyzed methylation of arylboron compounds with iodomethane.Chem. Lett.201746571171410.1246/cl.170079
    [Google Scholar]
  72. HaydlA.M. HartwigJ.F. Palladium-catalyzed methylation of aryl, heteroaryl, and vinyl boronate esters.Org. Lett.20192151337134110.1021/acs.orglett.9b00025 30763109
    [Google Scholar]
  73. CastleP.L. WiddowsonD.A. New developments in palladium catalysed cross coupling: The coupling of alkyl iodides with alkyl Grignard reagents.Tetrahedron Lett.198627496013601610.1016/S0040‑4039(00)85386‑1
    [Google Scholar]
  74. HossainK.M. TakagiK. Novel Rh(I)-catalyzed reaction of arylzinc compounds with methyl halides.Chem. Lett.199928111241124210.1246/cl.1999.1241
    [Google Scholar]
  75. KealeyS. PasschierJ. HuibanM. Negishi coupling reactions as a valuable tool for [11C]methyl-arene formation; first proof of principle.Chem. Commun. (Camb.)20134996113261132810.1039/c3cc47203e 24158034
    [Google Scholar]
  76. HuL. LiuX. LiaoX. Nickel-catalyzed methylation of aryl halides with deuterated methyl iodide.Angew. Chem. Int. Ed. Engl.201655339743974710.1002/anie.201604406 27381725
    [Google Scholar]
  77. JungkH. SmootC.R. BrownH.C. Kinetics of methylation and ethylation of benzene and toluene in 1,2,4-trichlorobenzene under the influence of aluminum bromide; Mechanism of the alkylation reaction.J. Am. Chem. Soc.195678102185219010.1021/ja01591a045
    [Google Scholar]
  78. HückelW. WartiniM. Reduktionen in flüssigem ammoniak, XVII. 2-Methyl-naphthalin und 1.2.4-trimethyl-naphthalin.Liebigs Ann. Chem.19656861405010.1002/jlac.19656860106
    [Google Scholar]
  79. HückelW. WolferingJ. Reduktionen in flüssigem ammoniak, XVI.Dimethyldihydronaphtaline. Liebigs Ann. Chem.19656861343910.1002/jlac.19656860105
    [Google Scholar]
  80. RabideauP.W. Harvey, R.G. Metal-ammonia reduction. IX. A novel metal effect in the reductive methylation of naphthalene.Tetrahedron Lett.197011484139414210.1016/S0040‑4039(01)98687‑3
    [Google Scholar]
  81. HarveyR.G. FuP.P. Rabideau. P.W. Metal-ammonia reduction. 15. Regioselectivity of reduction and reductive methylation in the fluorene series.J. Org. Chem.197641162706271010.1021/jo00878a010
    [Google Scholar]
  82. ZhangY-Y. LiY-F. ChenL. AuC-T. YinS-F. A new catalytic process for the synthesis of para-xylene through benzene methylation with CH 3Br.Catal. Commun.20145461010.1016/j.catcom.2014.05.013
    [Google Scholar]
  83. ZhangP. LeC.C. MacMillanD.W.C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: A unique pathway for cross-electrophile coupling.J. Am. Chem. Soc.2016138268084808710.1021/jacs.6b04818 27263662
    [Google Scholar]
  84. MillerV.A. LovellW.G. Methylation of olefins with methyl chloride.Ind. Eng. Chem.19484061138115010.1021/ie50462a030
    [Google Scholar]
  85. KutzW.M. CorsonB.B. Vapor phase methylation of aromatic hydrocarbons over solid catalysts.J. Am. Chem. Soc.19456781312131510.1021/ja01224a032
    [Google Scholar]
  86. DeHaanF.P. BrownH.C. HillJ.C. Catalytic halides. XXXII. Directive effects in aromatic substitution. 60. Kinetics of the gallium chloride-catalyzed methylation of toluene and the xylenes in excess methyl chloride. Partial rate factors for the methylation reaction.J. Am. Chem. Soc.196991174850485410.1021/ja01045a045
    [Google Scholar]
  87. DeHaanF.P. BrownH.C. Kinetics of the gallium chloride-catalyzed methylation of benzene in excess methyl chloride.J. Am. Chem. Soc.196991174844485010.1021/ja01045a044
    [Google Scholar]
  88. LiJ.Z. QiY. ZhangD.Z. LiuZ.M. Propylene production by co-reaction of ethylene and chloromethane over SAPO-34.Stud. Surf. Sci. Catal.20071701578158210.1016/S0167‑2991(07)81033‑0
    [Google Scholar]
  89. LiJ. QiY. LiuZ. LiuG. ZhangD. Co-reaction of ethene and methylation agents over SAPO-34 and ZSM-22.Catal. Lett.200812130331010.1007/s10562‑007‑9338‑8
    [Google Scholar]
  90. OlahG.A. DeMemberJ.R. SchlosbergR.H. HalpernY. Friedel-Crafts chemistry. VII. Methyl and ethyl fluoride-antimony pentafluoride complexes. Structure and alkylating ability. Evidence for the intermediacy of the ethyl cation.J. Am. Chem. Soc.197294115616410.1021/ja00756a027
    [Google Scholar]
  91. OlahG.A. Halonium ions.New YorkWiley-Interscience1975
    [Google Scholar]
  92. AlderR.W. PhillipsJ.G.E. Dimethyliodonium hexafluoroantimonate. Encyclopedia of reagents for organic synthesis; Paquette, L.A., Ed.; John Wiley & Sons, 1995, 3, pp. 2087-2088.
  93. HämmerlingS. ThieleG. SteinhauerS. BeckersH. MüllerC. RiedelS. A very strong methylation agent [Me2Cl]. [Al(OTeF5)4].Angew. Chem. Int. Ed. Engl.201958299807981010.1002/anie.201904007 31050103
    [Google Scholar]
  94. SperanzaM. PepeN. CipolliniR. Gas-phase alkylation and halogenomethylation by free dialkylhalogenonium and halogenomethylium ions.J. Chem. Soc. Perkin Trans. II197991179118610.1039/p29790001179
    [Google Scholar]
  95. PepeN. SperanzaM. Gas-phase methylation of phenol and anisole by CH 3XCH 3+(X = F, Cl, or Br) ions.J. Chem. Soc. Perkin Trans. II1981111430143610.1039/p29810001430
    [Google Scholar]
  96. StoneJ.A. LinM.S. VarahJ. The gas phase reactivity of the dimethylchloronium ion with alkylbenzenes.Can. J. Chem.198159152412241610.1139/v81‑348
    [Google Scholar]
  97. Sen SharmaD.K. KebarleP. Chloronium ions as alkylating agents in the gas-phase ion-molecule reactions with negative temperature dependence.J. Am. Chem. Soc.19821041192410.1021/ja00365a005
    [Google Scholar]
  98. ColosimoM. BucciR. Gas-phase methylation of toluene with tritium labelled dimethylhalogenonium ions.Bull. Soc. Chim. Belg.198291541541510.1002/bscb.19820910574
    [Google Scholar]
  99. ColosimoM. BucciR. The reactions of cyclopropyl(methyl)bromonium ion with benzene in the gas phase.J. Chem. Soc. Perkin Trans. II1982446146410.1039/p29820000461
    [Google Scholar]
  100. ColosimoM. BucciR. Gas-phase methylation of toluene by CT3YCH 3+ (Y = F, CI, and Br) ions.J. Chem. Soc. Perkin Trans. II1983793393610.1039/p29830000933
    [Google Scholar]
  101. Isern-FlechaI. CooksI.R.G. WoodK.V. Gas phase methylation of the dihydroxybenzenes.Int. J. Mass Spectrom. Ion Process.1984621738710.1016/0168‑1176(84)80070‑1
    [Google Scholar]
  102. CacaceF. De PetrisG. FornariniS. GiacomelloP. Gas-phase cationic methylation of biphenyl and methylbiphenyls. A mass spectrometric and radiolytic study.J. Am. Chem. Soc.1986108247495750110.1021/ja00284a010 22283248
    [Google Scholar]
  103. O’HairR.A.J. FreitasM.A. SchmidtJ.A.R. HatleyM.E. Gas-phase methylation of the 2-hydroxypyridine/2-pyridone system by the dimethylchlorinium ion.Eur. Mass Spectrom.19951545746310.1255/ejms.105
    [Google Scholar]
  104. ZhdankinV.V. StangP.J. Chemistry of polyvalent iodine.Chem. Rev.2008108125299535810.1021/cr800332c 18986207
    [Google Scholar]
  105. ZhdankinV.V. Hypervalent iodine(III) reagents in organic synthesis.ARKIVOC20092009116210.3998/ark.5550190.0010.101
    [Google Scholar]
  106. SinghF.V. WirthT. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions.Chem. Asian J.20149495097110.1002/asia.201301582 24523252
    [Google Scholar]
  107. YoshimuraA. ZhdankinV.V. Advances in synthetic applications of hypervalent iodine compounds.Chem. Rev.201611653328343510.1021/acs.chemrev.5b00547 26861673
    [Google Scholar]
  108. WuT. ZhangH.G. LiuG. Organocatalyzed arylalkylation of activated alkenes via decarboxylation of PhI(O2CR)2: Efficient synthesis of oxindoles.Tetrahedron201268265229523310.1016/j.tet.2012.03.051
    [Google Scholar]
  109. XieJ. XuP. LiH. XueQ. JinH. ChengY. ZhuC. A room temperature decarboxylation/C-H functionalization cascade by visible-light photoredox catalysis.Chem. Commun. (Camb.)201349505672567410.1039/c3cc42672f 23682360
    [Google Scholar]
  110. XueW. SuY. WangK-H. ZhangR. FengY. CaoL. HuangD. HuY. Visible-light induced decarboxylative alkylation of quinoxalin-2(1H)-ones at the C3-position.Org. Biomol. Chem.201917276654666110.1039/C9OB01169B 31237605
    [Google Scholar]
  111. XieL-Y. JiangL-L. TanJ.X. WangY. XuX-Q. ZhangB. CaoZ. HeW-M. Visible-light-initiated decarboxylative alkylation of quinoxalin-2(1H)-ones with phenyliodine(III) dicarboxylates in recyclable Ruthenium(II) catalytic system.ACS Sustain. Chem.& Eng.2019716141531416010.1021/acssuschemeng.9b02822
    [Google Scholar]
  112. LuS-C. LiH-S. GongY-L. ZhangS.P. ZhangJ.G. XuS. Combination of PhI(OAc)2 and 2-nitropropane as the source of methyl radical in room-temperature metal-free oxidative decarboxylation/cyclization: Construction of 6-methyl phenanthridines and 1-methyl isoquinolines.J. Org. Chem.20188324154151542510.1021/acs.joc.8b02701 30463409
    [Google Scholar]
  113. KentJ.A. NormanR.O.C. The homolytic methylation of naphthalene.J. Chem. Soc.19591724172610.1039/jr9590001724
    [Google Scholar]
  114. CowleyB.R. NormanR.O.C. WatersW.A. A quantitative study of homolytic methylation of some monosubstituted benzenes.J. Chem. Soc.19591799180310.1039/jr9590001799
    [Google Scholar]
  115. ZhangY. FengJ. LiC-J. Palladium-catalyzed methylation of aryl C-H bond by using peroxides.J. Am. Chem. Soc.2008130102900290110.1021/ja0775063 18269282
    [Google Scholar]
  116. AbramovitchR.A. KenaschuK. Aromatic substitution. XV. The homolytic methylation of pyridine and 3- and 4-picoline.Can. J. Chem.196745550951310.1139/v67‑086
    [Google Scholar]
  117. BassK.C. NababsingP. Homolytic substitution of heteroaromatic compounds. Part II. Homolytic methylation of pyridine, quinoline, and isoquinoline in acidic and non-acidic media.J. Chem. Soc. C1970162169217210.1039/j39700002169
    [Google Scholar]
  118. LiG. YangS. LvB. HanQ. MaX. SunK. WangZ. ZhaoF. LvY. WuH. Metal-free methylation of a pyridine N-oxide C-H bond by using peroxides.Org. Biomol. Chem.20151346111841118810.1039/C5OB01900A 26478119
    [Google Scholar]
  119. GuoS. WangQ. JiangY. YuJ.T. tert -Butyl peroxybenzoate-promoted α -methylation of 1,3-dicarbonyl compounds.J. Org. Chem.20147922112851128910.1021/jo502204a 25331571
    [Google Scholar]
  120. RongG. LiuD. LuL. YanH. ZhengY. ChenJ. MaoJ. Iron-catalyzed decarboxylative methylation of α,β-unsaturated acids under ligand-free conditions.Tetrahedron201470345033503710.1016/j.tet.2014.06.014
    [Google Scholar]
  121. BaoX. YokoeT. HaT.M. WangQ. ZhuJ. Copper-catalyzed methylative difunctionalization of alkenes.Nat. Commun.20189372510.1038/s41467‑018‑06246‑6
    [Google Scholar]
  122. DaiQ. YuJ. JiangY. GuoS. YangH. ChengJ. The carbomethylation of arylacrylamides leading to 3-ethyl-3-substituted indolin-2-one by cascade radical addition/cyclization.Chem. Commun. (Camb.)201450293865386710.1039/c4cc01053a 24589915
    [Google Scholar]
  123. DaiQ. YuJ-T. FengX. JiangY. YangH. Di Cheng, J. -tert butyl peroxide-promoted sequential methylation and intramolecular aromatization of isonitriles.Adv. Synth. Catal.2014356163341334610.1002/adsc.201400660
    [Google Scholar]
  124. XuZ. YanC. LiuZ-Q. A free-radical cascade methylation/cyclization of N-arylacrylamides and isocyanides with dicumyl peroxide.Org. Lett.201416215670567310.1021/ol502738a 25318059
    [Google Scholar]
  125. FanJ.H. ZhouM.B. LiuY. WeiW.T. OuyangX.H. SongR.J. LiJ.H. Iron-catalyzed oxidative arylmethylation of activated alkenes using a peroxide as the methyl source.Synlett20142550657-066010.1002/chin.201437124
    [Google Scholar]
  126. TanF-L. SongR-J. HuM. LiJ-H. Metal-free oxidative 1,2-arylmethylation cascades of n-(arylsulfonyl)acrylamides using peroxides as the methyl resource.Org. Lett.201618133198320110.1021/acs.orglett.6b01419 27286238
    [Google Scholar]
  127. LiZ-L. CaiC. Pd/Ni-catalyzed selective N-H/C-H methylation of amides by using peroxides as the methylating reagents via a radical process.Org. Chem. Front.20174112207221010.1039/C7QO00625J
    [Google Scholar]
  128. LiZ-L. WuP-W. CaiC. Cobalt-catalyzed regioselective C-H methylation/acetoxylation of anilides: new routes for C-C and C-O bond formation.Org. Chem. Front.20196122043204710.1039/C9QO00411D
    [Google Scholar]
  129. KuboT. ChataniN. Dicumyl peroxide as a methylating reagent in the Ni-catalyzed methylation of ortho C-H bonds in aromatic amides.Org. Lett.20161871698170110.1021/acs.orglett.6b00658 26991045
    [Google Scholar]
  130. LiQ. LiY. HuW. HuR. LiG. LuH. Cobalt-catalyzed C(sp2)-H methylation by using dicumyl peroxide as both the methylating reagent and hydrogen acceptor.Chemistry20162235122861228910.1002/chem.201602445 27272646
    [Google Scholar]
  131. MinisciF. GalliR. CecereM. MalatestaV. CaronnaT. Nucleophilic character of alkyl radicals: New syntheses by alkyl radicals generated in redox processes.Tetrahedron Lett.19689545609561210.1016/S0040‑4039(00)70732‑5
    [Google Scholar]
  132. MinisciF. Novel applications of free-radical reactions in preparative organic chemistry.Synthesis1973112410.1055/s‑1973‑22123
    [Google Scholar]
  133. MinisciF. Recent aspects of homolytic aromatic substitutions. Synthetic and mechanistic organic chemistry. Topics in Current Chemistry; Eds. Minisci, F.; Hendrickson, J.B.; Wentrup, C. Springer: Heidelberg, 1976, 62, pp. 1-48.10.1007/BFb0046046
  134. GiordanoC. MinisciF. FortelliV. VismaraE. Polar effects in the homolytic methylation of pyrimidine: orientation and polysubstitution.J. Chem. Soc. Perkin Trans. II1984229329510.1039/p29840000293
    [Google Scholar]
  135. MinisciF. VismaraE. FontanaF. Homolytic alkylation of protonated heteroaromatic bases by alkyl iodides, hydrogen peroxide, and dimethyl sulfoxide.J. Org. Chem.198954225224522710.1021/jo00283a011
    [Google Scholar]
  136. PuntaC. MinisciF. Minisci reaction: a Friedel-Crafts type process with opposite reactivity and selectivity. Selective homolytic alkylation, acylation, carboxylation and carbamoylation of heterocyclic aromatic bases.Trends Heterocycl. Chem.200813168
    [Google Scholar]
  137. DunctonM.A.J. Minisci reactions: Versatile CH-functionalizations for medicinal chemists.MedChemComm20112121135116110.1039/c1md00134e
    [Google Scholar]
  138. RongX. JinL. GuY. LiangG. XiaQ. Transition-metal-free radical C-H methylation of quinoxalinones with TBHP.Asian J. Org. Chem.20202020910.1002/ajoc.201900758
    [Google Scholar]
  139. DiroccoD.A. DykstraK. KrskaS. VachalP. ConwayD.V. TudgeM. Late-stage functionalization of biologically active heterocycles through photoredox catalysis.Angew. Chem. Int. Ed. Engl.201453194802480610.1002/anie.201402023 24677697
    [Google Scholar]
  140. ZhangP-Z. LiJ-A. ZhangL. ShoberuA. ZouJ-P. ZhangW. Metal-free radical C-H methylation of pyrimidinones and pyridinones with dicumyl peroxide.Green Chem.201719491992310.1039/C6GC03355E
    [Google Scholar]
  141. ItokawaH. KameyamaS. InabaT. TazakiT. HarutaR. KawazoeY. MaedaM. Radical methylation and radical hydroxymethylation of n -substituted quinoline derivatives.Chem. Pharm. Bull. (Tokyo)19782641015102010.1248/cpb.26.1015
    [Google Scholar]
  142. ItokawaH. InabaT. HarutaR. KameyamaS. Radical methylation and radical hydroxymethylation of nicotine and quinine.Chem. Pharm. Bull. (Tokyo)19782641295129710.1248/cpb.26.1295
    [Google Scholar]
  143. MaedaM. NushiK. KawazoeY. Studies on chemical alterations of nucleic acids and their components-VII: C-Alkylation of purine bases through free radical process catalyzed by ferrous ion.Tetrahedron197430162677268210.1016/S0040‑4020(01)97428‑9
    [Google Scholar]
  144. ArakiM. MaedaM. KawazoeY. Chemical alteration of nucleic acids and their components-XIII: Reaction of nucleosides with diacyl peroxides.Tetrahedron197632333734010.1016/0040‑4020(76)80046‑4
    [Google Scholar]
  145. ZadyM.F. WongJ.L. Kinetics and mechanism of carbon-8 methylation of purine bases and nucleosides by methyl radical.J. Am. Chem. Soc.197799155096510110.1021/ja00457a033 17622
    [Google Scholar]
  146. ZylberJ. Ouazzani-ChahdiL. ChiaroniA. RicheC. Controlled C-5 methylation of caffeine by benzoyloxy radical addition at C-8.Tetrahedron Lett.198829172055205710.1016/S0040‑4039(00)87833‑8
    [Google Scholar]
  147. LamoureuxG. AgüeroC. A comparison of several modern alkylating agents.ARKIVOC20092009125126410.3998/ark.5550190.0010.108
    [Google Scholar]
  148. AricòF. TundoP. Dimethyl carbonate: A modern green reagent and solvent.Russ. Chem. Rev.201079647948910.1070/RC2010v079n06ABEH004113
    [Google Scholar]
  149. KimK.H. LeeE.Y. Environmentally-benign dimethyl carbonate-mediated production of chemicals and biofuels from renewable bio-oil.Energies2017101111510.3390/en10111790
    [Google Scholar]
  150. TundoP. MusolinoM. AricòF. The reactions of dimethyl carbonate and its derivatives.Green Chem.2018201288510.1039/C7GC01764B
    [Google Scholar]
  151. FioraniG. PerosaA. SelvaM. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables.Green Chem.201820228832210.1039/C7GC02118F
    [Google Scholar]
  152. ChaemchuenS. SemyonovO.V. DingemansJ. XuW. ZhuiykovS. KhanA. VerpoortF. Progress on catalyst development for direct synthesis of dimethyl carbonate from CO2 and methanol.Chem. Africa2019253354910.1007/s42250‑019‑00082‑x
    [Google Scholar]
  153. TalebA.B. JennerG. Scope of the N-alkylation of amides and the C-alkylation of malonates by methyl formate and dimethyl carbonate.J. Mol. Catal.1993842L131L13610.1016/0304‑5102(93)85044‑T
    [Google Scholar]
  154. SelvaM. MarquesC.A. TundoP. Selective mono-methylation of arylacetonitriles and methyl arylacetates by dimethyl carbonate.J. Chem. Soc. Perkin Trans. I1994101323132810.1039/p19940001323
    [Google Scholar]
  155. BombenA. MarquesC.A. SelvaM. TundoP. A new synthesis of 2-aryloxypropionic acids derivatives via selective mono- C -methylation of methyl aryloxyacetates and aryloxyacetonitriles with dimethyl carbonate.Tetrahedron19955142115731158010.1016/0040‑4020(95)00718‑N
    [Google Scholar]
  156. TundoP. SelvaM. MarquesC.A. Green Chemistry; Anastas, P.; Williamson, T.C., Eds.; ACS Symposium SeriesAmerican Chemical Society: Washington, DC, 1996, pp. 81-91.
  157. BombenA. SelvaM. TundoP. Dimethyl carbonate as a methylating agent. the selective mono-C-methylation of alkyl aryl sulfones.J. Chem. Res. (S)19971244844910.1039/a703510a
    [Google Scholar]
  158. TundoP. SelvaM. BombenA. Mono-C-methylation of arylacetonitriles and methyl arylacetates by dimethyl carbonate: a general method for the synthesis of pure 2-arylpropionic acids. 2-phenylpropionic acid.Org. Synth.19997616917510.15227/orgsyn.076.0169
    [Google Scholar]
  159. TundoP. Selective monomethylation reactions of methylene-active compounds with dimethylcarbonate. An example of clean synthesis.Pure Appl. Chem.20007291793179710.1351/pac200072091793
    [Google Scholar]
  160. TundoP. SelvaM. PerosaA. MemoliS. Selective mono-C-methylations of arylacetonitriles and arylacetates with dimethylcarbonate: a mechanistic investigation.J. Org. Chem.20026741071107710.1021/jo0057699 11846646
    [Google Scholar]
  161. CampeloJ.M. LunaD. LuqueR. MarinasJ.M. RomeroA.A. Cyclohexene conversion and toluene methylation with dimethyl carbonate over AI-MCM-41 catalysts. Studies in Surface Science and Catalysis; Čejka, J.; Žilkovà, N.; P. Nachtigall, P., 2005, 158, pp. 1383-1390.
  162. XueB. LiY. DengL. Selective synthesis of p-xylene by alkylation of toluene with dimethyl carbonate over MgO-modified MCM-22.Catal. Commun.200910121609161410.1016/j.catcom.2009.04.028
    [Google Scholar]
  163. AlgueróM. BoschJ. CastañerJ. CastelláJ. CastellsJ. MestresR. PascualJ. SerratosaF. The reaction of diazomethane with double bonds-I: Direct methylation of trisubstituted ethylenes.Tetrahedron196218121381139410.1016/S0040‑4020(01)99293‑2
    [Google Scholar]
  164. ArgabrightP.A. HofmannJ.E. SchriesheimA. Methylation of simple unsaturated hydrocarbons by dimethyl sulfoxide.J. Org. Chem.19653093233323510.1021/jo01020a525
    [Google Scholar]
  165. RussellG.A. WeinerS.A. Methylation of aromatic hydrocarbons by dimethyl sulfoxide in the presence of base.J. Org. Chem.196631124825110.1021/jo01339a056
    [Google Scholar]
  166. ThapliyalP.C. Selective methylation of 1, 4-quinones & coumarins using dimethyl sulfoxide.Indian J. Chem. Sect. B199938B6726727
    [Google Scholar]
  167. Garza-SanchezR.A. PatraT. Tlahuext-AcaA. Strieth-KalthoffF. GloriusF. DMSO as a switchable alkylating agent in heteroarene C-H functionalization.Chemistry20182440100641006810.1002/chem.201802352 29750378
    [Google Scholar]
  168. CaporasoR. MannaS. ZinkenS. KochnevA.R. LukyanenkoE.R. KurkinA.V. AntonchickA.P. Radical trideuteromethylation with deuterated dimethyl sulfoxide in the synthesis of heterocycles and labelled building blocks.Chem. Commun. (Camb.)20165284124861248910.1039/C6CC07196A 27711354
    [Google Scholar]
  169. ZhangR. ShiX. YanQ. LiZ. WangZ. YuH. WangX. QiJ. JiangM. Free-radical initiated cascade methylation or trideuteromethylation of isocyanides with dimethyl sulfoxides.RSC Advances2017762388303883310.1039/C7RA08484F
    [Google Scholar]
  170. LiZ-J. CuiX. NiuL. RenY. BianM. YangX. YangB. YanQ-Q. ZhaoJ. An iron(II) chloride-promoted radical cascade methylation or α-chloro-β-methylation of N-arylacrylamides with dimethyl sulfoxide.Adv. Synth. Catal.2017359224624910.1002/adsc.201601001
    [Google Scholar]
  171. MetzgerH. KonigH. SeelertK. Methylierung mit dimethyl-oxo-sulfoniummethylid.Tetrahedron Lett.196451586786810.1016/S0040‑4039(00)90397‑6
    [Google Scholar]
  172. TraynelisV.J. McSweeneyJ.V.Sr Ylide methylation of aromatic nitro compounds.J. Org. Chem.196631124324710.1021/jo01339a055
    [Google Scholar]
  173. KitanoM. OhashiN. Synthesis of 3,6-disubstituted-2-nitrotoluenes by methylation of aromatic nitrocompounds with dimethylsulfonium methylide.Synth. Commun.200030234247425410.1080/00397910008087046
    [Google Scholar]
  174. HaissP. ZellerK-P. The mechanism of the ortho-methylation of nitrobenzenes by dimethylsulfonium methylide.Eur. J. Org. Chem.2011229510.1002/ejoc.201001091
    [Google Scholar]
  175. TrostB.M. An unusual aromatic substitution reaction.Tetrahedron Lett.19667465761576610.1016/S0040‑4039(01)84192‑7
    [Google Scholar]
  176. LiuY-Y. YangX-H. HuangX-C. WeiW-T. SongR-J. LiJ-H. Palladium-catalyzed methylation of alkynyl C(sp)-H bonds with dimethyl sulfonium ylides.J. Org. Chem.20137820104211042610.1021/jo401851m 24053535
    [Google Scholar]
  177. SimkóD.C. ElekesP. PázmándiV. NovákZ. Sulfonium salts as alkylating agents for palladium-catalyzed direct ortho-alkylation of anilides and aromatic ureas.Org. Lett.201820367667910.1021/acs.orglett.7b03813 29327592
    [Google Scholar]
  178. LiY. XueD. LuW. WangC. LiuZ-T. XiaoJ. DMF as carbon source: Rh-catalyzed α-methylation of ketones.Org. Lett.2014161666910.1021/ol403040g 24295498
    [Google Scholar]
  179. XiaH-M. ZhangF-L. YeT. WangY-F. Selective α -monomethylation by an amine-borane/N, N -dimethylformamide system as the methyl source.Angew. Chem. Int. Ed. Engl.20185736117701177510.1002/anie.201804794 29968283
    [Google Scholar]
  180. SekiyaM. YanaiharaC. Formic acid reduction. III. Barbituric acid derivatives. New 5-methylation reaction of barbituric acid derivatives with formate and course of the reaction.Chem. Pharm. Bull. (Tokyo)196917473874610.1248/cpb.17.738
    [Google Scholar]
  181. WatanabeY. ShimizuY. TakatsukiK. TakegamiY. Rhodium catalyzed α-methylation of ketones with carbon monoxide-water-formaldehyde system.Chem. Lett.19787221521610.1246/cl.1978.215
    [Google Scholar]
  182. FujitaS-I. HiyoshiN. TakezawaN. Vapor phase methylation of pyridine with CO-H2 over metal catalysts.Appl. Catal. A Gen.1999185232332710.1016/S0926‑860X(99)00189‑1
    [Google Scholar]
  183. FujitaS-i. HiyoshiN. TakezawaN. Vapor phase methylation of pyridine with CO-H2 and CO2-H2 over a Ni catalyst.React. Kinet. Catal. Lett.199967191210.1007/BF02475820
    [Google Scholar]
  184. LiY. YanT. JungeK. BellerM. Catalytic methylation of C-H bonds using CO2 and H2.Angew. Chem. Int. Ed. Engl.20145339104761048010.1002/anie.201405779 25078761
    [Google Scholar]
  185. ChenS-J. HuaR. InCl3·4H2O-catalyzed trioxane as a new methylating agent for multi-methylated aromatics affording hexamethyl benzene.Lett. Org. Chem.201071616310.2174/157017810790533959
    [Google Scholar]
  186. WangP. NishimuraD. KomatsuT. KobiroK. Simple, non-catalytic permethylation of catechol derivatives in subcritical and supercritical water.J. Supercrit. Fluids201158336036410.1016/j.supflu.2011.07.009
    [Google Scholar]
  187. SvelleS. KolboeS. SwangO. OlsbyeU. Methylation of alkenes and methylbenzenes by dimethyl ether or methanol on acidic zeolites.J. Phys. Chem. B200510926128741287810.1021/jp051125z 16852598
    [Google Scholar]
  188. MaihomT. BoekfaB. SirijaraensreJ. NanokT. ProbstM. LimtrakulJ. Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over H-ZSM-5: An ONIOM study.J. Phys. Chem. C2009113166654666210.1021/jp809746a
    [Google Scholar]
  189. HillI.M. Al HashimiS. BhanA. Kinetics and mechanism of olefin methylation reactions on zeolites.J. Catal.2012285111512310.1016/j.jcat.2011.09.018
    [Google Scholar]
  190. HillI. MalekA. BhanA. kinetics and mechanism of benzene, toluene, and xylene methylation over H-MFI.ACS Catal.2013391992200110.1021/cs400377b
    [Google Scholar]
  191. DeLucaM. KravchenkoP. HoffmanA. HibbittsD. Mechanism and kinetics of methylating C6-C12 methylbenzenes with methanol and DME in H-MFI zeolites.ACS Catal.2019976444646010.1021/acscatal.9b00650
    [Google Scholar]
  192. CerfontainH. Koeberg-TeldeA. Methylation of polymethylbenzenesulfonic acids by hexamethylbenzene and pentamethylbenzenesulfonic acid in concentrated sulfuric acid.Can. J. Chem.198866116216710.1139/v88‑025
    [Google Scholar]
  193. AlexanderR. BastowT.P. FisherS.J. KagiR.I. Geosynthesis of organic compounds: II. Methylation of phenanthrene and alkylphenanthrenes.Geochim. Cosmochim. Acta199559204259426610.1016/0016‑7037(95)00285‑8
    [Google Scholar]
  194. BastowT.P. AlexanderR. KagiR.I. Geosynthesis of organic compounds IV. Methylation of 1,2,7-trimethylnaphthalene.Polycycl. Aromat. Compd.199691-417718310.1080/10406639608031216
    [Google Scholar]
  195. BastowT.P. AlexanderR. FisherS.J. SinghR.K. van, Aarssen; Ben, G.K.; Kagi, R.I. Geosynthesis of organic compounds. Part V-Methylation of alkylnaphthalenes.Org. Geochem.200031652353410.1016/S0146‑6380(00)00038‑3
    [Google Scholar]
  196. EllisL. SinghR.K. AlexanderR. KagiR.I. Geosynthesis of organic compounds: IlI Formation of alkyltoluenes and alkylxylenes in sediments.Geochim. Cosmochim. Acta199559245133514010.1016/0016‑7037(95)00352‑5
    [Google Scholar]
  197. HagenG.P. HungD.T. Selective production of 2,6-dimethylnaphthalene. US Patent 5,670,704, 1997.
  198. BrechtelsbauerC. EmigG. Transalkylation of biphenyl over zeolites: Optimizing the reaction conditions and kinetic modeling.Chem. Eng. Technol.199720958258810.1002/ceat.270200903
    [Google Scholar]
  199. MinisciF. BernardiR. BertiniF. GalliR. PerchinummoM. Nucleophilic character of alkyl radicals-VI: A new convenient selective alkylation of heteroaromatic bases.Tetrahedron197127153575357910.1016/S0040‑4020(01)97768‑3
    [Google Scholar]
  200. BertiniF. CaronnaT. GalliR. MinisciF. PortaO. New processes for the homolytic alkylation of protonated heteroaromatic bases.Chim. Ind. (Milan)197254425426
    [Google Scholar]
  201. MinisciF. PortaO. Advances in homolytic substitution of heteroaromatic compounds.Adv. Heterocycl. Chem.19741612318010.1016/S0065‑2725(08)60461‑4
    [Google Scholar]
  202. PanF. LeiZ-Q. WangH. LiH. SunJ. ShiZ.J. Rhodium(I)-catalyzed redox-economic cross-coupling of carboxylic acids with arenes directed by N-containing groups.Angew. Chem. Int. Ed. Engl.20135272063206710.1002/anie.201208362 23307746
    [Google Scholar]
  203. ZhangL. XueX. XuC. PanY. ZhangG. XuL. LiH. ShiZ. Rhodium-catalyzed decarbonylative direct C2-arylation of indoles with aryl carboxylic acids.ChemCatChem20146113069307410.1002/cctc.201402534
    [Google Scholar]
  204. HuangQ. ZardS.Z. Inexpensive radical methylation and related alkylations of heteroarenes.Org. Lett.20182051413141610.1021/acs.orglett.8b00190 29441790
    [Google Scholar]
  205. ReineckeM.G. KrayL.R. The α-methylation of pyridines by primary alcohols and raney nickel.J. Am. Chem. Soc.196486235355535610.1021/ja01077a077
    [Google Scholar]
  206. BröringM. KleebergC. The α-methylation of pyridines by primary alcohols and raney nickel.Synth. Commun.2008382136723682
    [Google Scholar]
  207. ManansalaC. TranmerG.K. Flow synthesis of 2-Methylpyridines via.Molecules2015209157971580610.3390/molecules200915797 26334262
    [Google Scholar]
  208. SunQ. YoshikaiN. Cobalt-catalyzed directed ortho-methylation of arenes with methyl tosylate.Org. Chem. Front.20185142214221810.1039/C8QO00438B
    [Google Scholar]
  209. XiaoT. LiL. LinG. WangQ. ZhangP. MaoZ-W. ZhouL. Synthesis of 6-substituted phenanthridines by metal-free, visible-light induced aerobic oxidative cyclization of 2-isocyanobiphenyls with hydrazines.Green Chem.20141652418242110.1039/C3GC42517G
    [Google Scholar]
  210. SatoY. NakamuraK. SumidaY. HashizumeD. HosoyaT. OhmiyaH. Generation of alkyl radical through direct excitation of boracene-based alkylborate.J. Am. Chem. Soc.2020142229938994310.1021/jacs.0c04456 32396733
    [Google Scholar]
  211. HatanakaY. HiyamaT. Pentacoordinate organosilicate as an alkylating reagent: Palladium catalyzed methylation of aryl halides.Tetrahedron Lett.1988291979810.1016/0040‑4039(88)80026‑1
    [Google Scholar]
  212. UemuraT. YamaguchiM. ChataniN. Phenyltrimethylammonium salts as methylation reagents in the nickel-catalyzed methylation of C-H bonds.Angew. Chem. Int. Ed. Engl.20165593162316510.1002/anie.20151119726821872
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001601666210804114443
Loading
/content/journals/ccchem/10.2174/2666001601666210804114443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test