Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

Calcium carbide (CaC) as an important raw material has been widely used in inorganic chemistry, nanomaterials, supramolecular and other fields. In recent years, calcium carbide has been applied as an inexpensive, safe, green, and sustainable acetylene source in organic synthesis. This mini-review summarizes the latest progress of calcium carbide as a surrogate of acetylene gas in organic reactions for the construction of C-C, C-N, C-S, and C-O bonds.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001601999200817111836
2021-03-01
2024-11-22
Loading full text...

Full text loading...

References

  1. HambergerM. LiebigS. FriedrichU. KorberN. RuschewitzU. Evidence of solubility of the acetylide ion C22−: syntheses and crystal structures of K2C22NH3, Rb2C22NH3, and Cs2C27NH3.Angew. Chem. Int. Ed.201251130061301010.1002/anie.20120634923161511
    [Google Scholar]
  2. TedeschiR.J. Acetylene-based chemicals from coal and other natural resources.1982United States.
    [Google Scholar]
  3. RodyginK.S. VikentevaY.A. AnanikovV.P. Calcium-based sustainable chemical technologies for total carbon recycling.ChemSusChem2019121483151610.1002/cssc.20180241230938099
    [Google Scholar]
  4. TrotuşI-T. ZimmermannT. SchüthF. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited.Chem. Rev.20141141761178210.1021/cr400357r24228942
    [Google Scholar]
  5. RodyginK.S. WernerG. KucherovF.A. AnanikovV.P. Calcium carbide: a unique reagent for organic synthesis and nanotechnology.Chem. Asian J.20161196597610.1002/asia.20150132326898248
    [Google Scholar]
  6. FuR. LiZ. GaoL. Direct synthesis of organic compounds using calcium carbide as the acetylene source.Prog. Chem.20193113031313
    [Google Scholar]
  7. VoroninV.V. LedovskayaM.S. BogachenkovA.S. RodyginK.S. AnanikovV.P. Acetylene in organic synthesis: recent progress and new uses.Molecules201823244210.3390/molecules2310244230250005
    [Google Scholar]
  8. ZhangW. WuH. LiuZ. ZhongP. ZhangL. HuangX. ChengJ. The use of calcium carbide in one-pot synthesis of symmetric diaryl ethynes.Chem. Commun.2006464826482810.1039/b607809e17345742
    [Google Scholar]
  9. ChuentragoolP. VongnamK. RashatasakhonP. SukwattanasinittM. WacharasindhuS. Calcium carbide as a cost-effective starting material for symmetrical diarylethynes via Pd-catalyzed coupling reaction.Tetrahedron2011678177818210.1016/j.tet.2011.08.042
    [Google Scholar]
  10. HosseiniA. PilevarA. HoganE. MogwitzB. SchulzeA.S. SchreinerP.R. Calcium carbide catalytically activated with tetra-n-butyl ammonium fluoride for Sonogashira cross coupling reactions.Org. Biomol. Chem.2017156800680710.1039/C7OB01334E28770930
    [Google Scholar]
  11. FuR. LiZ. Direct synthesis of symmetric diarylethynes from calcium carbide and arylboronic acids/esters.Eur. J. Org. Chem.201720176648665110.1002/ejoc.201701234
    [Google Scholar]
  12. GeyangS. ZhengL. One-pot multi-component synthesis of triarylacrylonitriles directly by using CaC2 as a concise acetylene source and K4[Fe(CN)6] as an eco-friendly cyanide source.Eur. J. Org. Chem.201820181326133210.1002/ejoc.201701711
    [Google Scholar]
  13. LuH. LiZ. Palladium-catalyzed one-pot four-component synthesis of α-Cyano-α,β-unsaturated ketones using calcium carbide as an acetylene source and potassium hexacyanoferrate(II) as an eco-friendly cyanide source.Adv. Synth. Catal.20193614474448210.1002/adsc.201900733
    [Google Scholar]
  14. LinZ. YuD. SumY.N. ZhangY. Synthesis of functional acetylene derivatives from calcium carbide.ChemSusChem2012562562810.1002/cssc.20110064922378645
    [Google Scholar]
  15. YuD. SumY.N. EanA.C.C. ChinM.P. ZhangY. Acetylide ion (C22−) as a synthon to link electrophiles and nucleophiles: a simple method for enaminone synthesis.Angew. Chem. Int. Ed.2013525125512810.1002/anie.20130101923576293
    [Google Scholar]
  16. TeongS.P. YuD. SumY.N. ZhangY. Copper catalysed alkynylation of tertiary amines with CaC2 via sp3 C-H activation.Green Chem.2016183499350210.1039/C6GC00872K
    [Google Scholar]
  17. GaoL. LiZ. Direct synthesis of 1-Arylprop-1-ynes with calcium carbide as an acetylene source.Synlett2019301580158410.1055/s‑0037‑1610718
    [Google Scholar]
  18. GaoL. LiZ. Synthesis of aromatic terminal allenes and aliphatic terminal alkynes from hydrazones using calcium carbide as an acetylene source.Org. Chem. Front.2020770270810.1039/C9QO01400D
    [Google Scholar]
  19. CoatsS.J. LinkJ.S. GauthierD. HlastaD.J. Trimethylsilyl-directed 1,3-dipolar cycloaddition reactions in the solid-phase synthesis of 1,2,3-triazoles.Org. Lett.200571469147210.1021/ol047637y15816729
    [Google Scholar]
  20. WuL.-Y. XieY.-X. ChenZ.-S. NiuY.-N. LiangY.-M. A convenient synthesis of 1-substituted 1,2,3-triazoles via CuI/Et3N catalyzed ‘Click Chemistry’ from azides and acetylene gas.Synlett200920091453145610.1055/s‑0029‑1216745
    [Google Scholar]
  21. JiangY. KuangC. YangQ. The use of calcium carbide in the synthesis of 1-monosubstituted aryl 1,2,3-triazole via click chemistry.Synlett200920093163316610.1055/s‑0029‑1218346
    [Google Scholar]
  22. GondaZ. LőrinczK. NovákZ. Efficient synthesis of deuterated 1,2,3-triazoles.Tetrahedron Lett.2010516275627710.1016/j.tetlet.2010.09.097
    [Google Scholar]
  23. YangQ. JiangY. KuangC. Facile one-pot synthesis of monosubstituted 1-Aryl-1H-1,2,3-triazoles from Arylboronic Acids and Prop-2-ynoic Acid (= Propiolic Acid) or Calcium Acetylide (= Calcium Carbide) as acetylene source.Helv. Chim. Acta20129544845410.1002/hlca.201100256
    [Google Scholar]
  24. LuH. LiZ. Synthesis of 1,2,3-triazolyl-based ketoximes using calcium carbide as an acetylene source.Eur. J. Org. Chem.2020202084585110.1002/ejoc.201901712
    [Google Scholar]
  25. FuR. LiZ. Direct synthesis of 2-Methylbenzofurans from calcium carbide and salicylaldehyde p-Tosylhydrazones.Org. Lett.2018202342234510.1021/acs.orglett.8b0067629633847
    [Google Scholar]
  26. HosseiniA. SchreinerP.R. Synthesis of exclusively 4-substituted β-Lactams through the kinugasa reaction utilizing calcium carbide.Org. Lett.2019213746374910.1021/acs.orglett.9b0119231059273
    [Google Scholar]
  27. SumY.N. YuD. ZhangY. Synthesis of acetylenic alcohols with calcium carbide as the acetylene source.Green Chem.2013152718272110.1039/c3gc41269e
    [Google Scholar]
  28. LiZ. HeL. FuR. SongG. SongW. XieD. YangJ. One-step construction of saturated six-membered rings directly using calcium carbide as an acetylene source: synthesis of 1,3,5-triaroylcyclohexanes.Tetrahedron2016724321432810.1016/j.tet.2016.05.071
    [Google Scholar]
  29. KaewchangwatN. SukatoR. VchirawongkwinV. VilaivanT. SukwattanasinittM. WacharasindhuS. Direct synthesis of aryl substituted pyrroles from calcium carbide: an underestimated chemical feedstock.Green Chem.20151746046510.1039/C4GC01615G
    [Google Scholar]
  30. YuY. HuangW. ChenY. GaoB. WuW. JiangH. Calcium carbide as the acetylide source: transition-metal-free synthesis of substituted pyrazoles via [1,5]-sigmatropic rearrangements.Green Chem.2016186445644910.1039/C6GC02776H
    [Google Scholar]
  31. YuY. ChenY. HuangW. WuW. JiangH. One-pot synthesis of spirocyclic or fused pyrazoles from cyclic ketones: calcium carbide as the carbon source in ring expansion.J. Org. Chem.2017829479948610.1021/acs.joc.7b0149628831796
    [Google Scholar]
  32. RodyginK.S. AnanikovV.P. An efficient metal-free pathway to vinyl thioesters with calcium carbide as the acetylene source.Green Chem.20161848248610.1039/C5GC01552A
    [Google Scholar]
  33. RattanangkoolE. VilaivanT. SukwattanasinittM. WacharasindhuS. An atom-economic approach for vinylation of indoles and phenols using calcium carbide as acetylene surrogate.Eur. J. Org. Chem.201620164347435310.1002/ejoc.201600666
    [Google Scholar]
  34. MatakeR. AdachiY. MatsubaraH. Synthesis of vinyl ethers of alcohols using calcium carbide under superbasic catalytic conditions (KOH/DMSO).Green Chem.2016182614261810.1039/C5GC02977E
    [Google Scholar]
  35. TeongS.P. ChuaA.Y.H. DengS. LiX. ZhangY. Direct vinylation of natural alcohols and derivatives with calcium carbide.Green Chem.2017191659166210.1039/C6GC03579E
    [Google Scholar]
  36. TeongS.P. LimJ. ZhangY. Vinylation of aryl ether (Lignin β-O-4 Linkage) and epoxides with calcium carbide through C−O bond cleavage.ChemSusChem2017103198320110.1002/cssc.20170115328730737
    [Google Scholar]
  37. LedovskayaM.S. VoroninV.V. RodyginK.S. PosvyatenkoA.V. EgorovaK.S. AnanikovV.P. Direct synthesis of deuterium-labeled O-, S-, N-vinyl derivatives from calcium carbide.Synthesis2019513001301310.1055/s‑0037‑1611518
    [Google Scholar]
  38. HosseiniA. SeidelD. MiskaA. SchreinerP.R. Fluoride-assisted activation of calcium carbide: a simple method for the ethynylation of aldehydes and ketones.Org. Lett.2015172808281110.1021/acs.orglett.5b0121925997788
    [Google Scholar]
  39. Samzadeh-KermaniA. Ethynylation of isoquinoline and quinoline derivatives with calcium carbide.Synlett2017282126213010.1055/s‑0036‑1590815
    [Google Scholar]
  40. LedovskayaM.S. RodyginK.S. AnanikovV.P. Calcium-mediated one-pot preparation of isoxazoles with deuterium incorporation.Org. Chem. Front.2018522623110.1039/C7QO00705A
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001601999200817111836
Loading
/content/journals/ccchem/10.2174/2666001601999200817111836
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): acetylene; Calcium carbide; copper; organic reaction; palladium; sustainable
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test