Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

Biginelli reaction is the most well-known and widely studied, multi-component reaction used for the direct synthesis of many biologically active 3,4-dihydropyrimidin-2(1H)-ones and their derivatives by reacting a β-keto ester/1,3-dicarbonyl compound, an aldehyde, and urea. It is catalyzed by different Bronsted and Lewis acids.

The catalytic effect of different metal chlorides, such as sodium, potassium, magnesium, stannous, ferric, manganese, cupric, nickel, cobalt, and zinc, in absence and presence of acetic acid were studied.

The zinc, ferric, cupric, and cobalt chlorides were found to be more effective catalysts for Biginelli reaction at room temperature. The yield of the reaction increased with temperature for all catalytic systems. Acetophenone, cyclohexanone, acetyl acetone, and different β-ketoesters formed tetrahedropyrimidine in moderate to good yield, by using zinc chloride catalyst at room temperature in acetic acid. The efficiency of the catalyst was studied by treating different substituted aldehydes with 1,3-dicarbonyl compounds and urea at room temperature.

The zinc chloride in acetic acid found to be an effective greener catalyst system for Biginelli reaction.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2665997201999200512110147
2021-03-01
2024-11-22
Loading full text...

Full text loading...

References

  1. (a) KappeC.O. 100 years of the Biginelli dihydropyrimidine synthesis.Tetrahedron199349326937696310.1016/S0040‑4020(01)87971‑0
    [Google Scholar]
  2. (b) KappeC.O. 4-Aryldihydropyrimidines via the Biginelli condensation: Aza-analogs of nifedipine-type calcium channel modulators.Molecules1998311910.3390/30100001
    [Google Scholar]
  3. O'reillyB.C. AtwalK.S. Synthesis of substituted 1, 2, 3, 4-tetrahydro-6-methyl-2-oxo-5-pyrimidinecarboxylic acid esters: The Biginelli condensation revisited.Heterocycles (Sendai)19872651185118810.3987/R‑1987‑05‑1185
    [Google Scholar]
  4. AshokM. HollaB.S. KumariN.S. Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities.Eur. J. Med. Chem.200742338038510.1016/j.ejmech.2006.09.00317070617
    [Google Scholar]
  5. HurstE.W. HullR. Two new synthetic substances active against viruses of the psittacosis-lymphogranuloma-trachoma group.J. Med. Chem.19603221522910.1021/jm50015a002
    [Google Scholar]
  6. SlimiH. MoussaouiY. ben Salem, R. Synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones via Biginelli reaction promoted by bismuth (III) nitrate or PPh3 without solvent.Arab. J. Chem.20169S510S51410.1016/j.arabjc.2011.06.010
    [Google Scholar]
  7. KolosovM.A. OrlovV.D. BeloborodovD.A. DotsenkoV.V. A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis.Mol. Divers.200913152510.1007/s11030‑008‑9094‑819082754
    [Google Scholar]
  8. KappeC.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey.Eur. J. Med. Chem.200035121043105210.1016/S0223‑5234(00)01189‑211248403
    [Google Scholar]
  9. KatoT. ChibaT. AbeY. Production of 5-Carbamoyl-6-methyl-4-substituted-1, 2, 3, 4-Tetrahydro-2-Thioxopyrimidine.Jpn Pat198459190974
    [Google Scholar]
  10. MayerT.U. KapoorT.M. HaggartyS.J. KingR.W. SchreiberS.L. MitchisonT.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen.Science1999286544197197410.1126/science.286.5441.97110542155
    [Google Scholar]
  11. BiginelliP. The condensation reaction described by Biginelli.Gazz. Chim. Ital.189323360416
    [Google Scholar]
  12. RaniV.R. SrinivasN. KishanM.R. KulkarniS.J. RaghavanK.V. Zeolite-catalyzed cyclocondensation reaction for the selective synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones.Green Chem.20013630530610.1039/b107612b
    [Google Scholar]
  13. BigiF. CarloniS. FrullantiB. MaggiR. SartoriG. A revision of the Biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF.Tet. Lett.199940173465346810.1016/S0040‑4039(99)00424‑4
    [Google Scholar]
  14. SalehiP. DabiriM. ZolfigolM.A. FardM.A.B. Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones.Tetrahedron Lett.200344142889289110.1016/S0040‑4039(03)00436‑2
    [Google Scholar]
  15. HeraviM.M. BakhtiariK. BamoharramF.F. 12-Molybdophosphoric acid: A recyclable catalyst for the synthesis of Biginelli-type 3, 4-dihydropyrimidine-2 (1H)-ones.Catal. Commun.20067637337610.1016/j.catcom.2005.12.007
    [Google Scholar]
  16. ZhangX. ShiF. YuX. LiuH. FuY. WangZ. JiangL. LiX. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface.J. Am. Chem. Soc.2004126103064306510.1021/ja039872215012132
    [Google Scholar]
  17. PashaM.A. SwamyN.R. JayashankaraV.P. One pot synthesis of 3, 4- dihydropyrimidin- 2 (1H)- ones/- thiones catalyzed by zinc chloride: An improved procedure for the Biginelli reaction using microwaves under solvent free conditions.Indian J. Chem.200544482382610.1002/chin.200534209
    [Google Scholar]
  18. SunQ. WangY.Q. GeZ.M. ChengT.M. LiR.T. A highly efficient solvent-free synthesis of dihydropyrimidinones catalyzed by zinc chloride.Synthesis20040710471051
    [Google Scholar]
  19. BoseD.S. IdreesM. An efficient and high yielding protocol for the synthesis of substituted dihydropyrimidin-2 (1h)-ones and spiro-fused heterocycles by involving tandem reactions.J. Heterocycl. Chem.200744121121410.1002/jhet.5570440133
    [Google Scholar]
  20. XueS. ShenY.C. LiY.L. ShenX.M. GuoQ.X. Synthesis of 4-aryl-3, 4-dihydropyrimidinones using microwave-assisted solventless Biginelli reaction.Chin. J. Chem.200220438538910.1002/cjoc.20020200417
    [Google Scholar]
  21. LiangB. WangX. WangJ.X. DuZ. New three-component cyclocondensation reaction: microwave-assisted one-pot synthesis of 5-unsubstituted-3, 4-dihydropyrimidin-2 (1H)-ones under solvent-free conditions.Tetrahedron20076391981198610.1016/j.tet.2006.12.062
    [Google Scholar]
  22. JennerG. Effect of high pressure on Biginelli reactions. Steric hindrance and mechanistic considerations.Tetrahedron Lett.200445326195619810.1016/j.tetlet.2004.05.106
    [Google Scholar]
  23. NiknamK. ZolfigolM.A. HossieninejadZ. DaneshvarN. Efficient synthesis of 3, 4-dihydropyrimidin-2 (1H)-one using metal hydrogen sulfates M (HSO4) n as catalyst under solvent-free conditions.Chin. J. Catal.200728759159510.1016/S1872‑2067(07)60051‑5
    [Google Scholar]
  24. ZhangM. LiY.Q. Facile one-pot synthesis of 3,4-Dihydropyrimidin-2 (1H)-one Catalyzed by Zn (NH2SO3) 2.Synth. Commun.200636783584110.1080/00397910500464228
    [Google Scholar]
  25. ZhangM. LiY.Q. ZhouM.Y. Rapid synthesis of 1, 2, 3, 4-Tetrahydropyrimidin-2-ones using Zn (NH2SO3) 2 as a catalyst under microwave irradiation.Chin. J. Chem.200624228228410.1002/cjoc.200690054
    [Google Scholar]
  26. HuiX. Yan-GuangW. A rapid and efficient Biginelli reaction catalyzed by zinc triflate.Chin. J. Chem.200321332733110.1002/cjoc.20030210321
    [Google Scholar]
  27. WangC.F. JiangH. GongH. WangM. WangZ.C. Biginelli condensation of aliphatic aldehydes catalyzed by inorganic zinc compounds.Youji Huaxue2006263333336
    [Google Scholar]
  28. ClarkJ.H. MacquarrieD.J. SherwoodJ. The combined role of catalysis and solvent effects on the Biginelli reaction: improving efficiency and sustainability.Chemistry201319165174518210.1002/chem.20120439623436300
    [Google Scholar]
  29. GohainM. PrajapatiD. SandhuJ.S. A novel Cu-catalysed three-component one-pot synthesis of dihydropyrimidin-2 (1H)-ones using microwaves under solvent-free conditions.Synlett20040235-023802
    [Google Scholar]
  30. KarthikeyanP. AswarS.A. MuskawarP.N. BhagatP.R. KumarS.S. Development and efficient 1-glycyl-3-methyl imidazolium chloride–copper (II) complex catalyzed highly enantioselective synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones.J. Organomet. Chem.201372315416210.1016/j.jorganchem.2012.06.022
    [Google Scholar]
  31. MahdaviniaG.H. SepehrianH. MCM-41 anchored sulfonic acid (MCM-41-R-SO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction.Chin. Chem. Lett.200819121435143910.1016/j.cclet.2008.09.028
    [Google Scholar]
  32. ElmaghrabyA.M. MousaI.A. HarbA.A. MahgoubM.Y. Three component reaction: an efficient synthesis and reactions of 3, 4-dihydropyrimidin-2 (1H)-ones and thiones using new natural catalyst.ISRN Org. Chem.20132013, 706437.10.1155/2013/70643724052868
    [Google Scholar]
  33. ArdS.G. LiA. MartinezO.Jr ShumanN.S. ViggianoA.A. GuoH. Experimental and theoretical kinetics for the H2O++ H2/D2 ® H3O+/H2DO++ H/D reactions: observation of the rotational effect in the temperature dependence.J. Phys. Chem. A201411849114851148910.1021/jp510399v25398042
    [Google Scholar]
  34. SafariJ. Gandomi-RavandiS. Titanium dioxide supported on MWCNTs as an eco-friendly catalyst in the synthesis of 3, 4-dihydropyrimidin-2-(1 H)-ones accelerated under microwave irradiation.New J. Chem.20143883514352110.1039/C3NJ01618H
    [Google Scholar]
  35. JiangC. YouQ.D. An efficient and solvent-free one-pot synthesis of dihydropyrimidinones under microwave irradiation.Chin. Chem. Lett.200718664765010.1016/j.cclet.2007.04.002
    [Google Scholar]
  36. PathakV.N. GuptaR. VarshneyB. An efficient, inexpensive'Green Chemistry'route to multicomponent Biginelli condensation catalyzed by CuCl2. 2H2O-HCl.Indian J. Chem.2008473434
    [Google Scholar]
  37. LuJ. MaH. Iron (III)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction.Synlett2000016364
    [Google Scholar]
  38. JankovićN. BugarčićZ. MarkovićS. Double catalytic effect of (PhNH3) 2CuCl4 in a novel, highly efficient synthesis of 2-oxo and thioxo-1, 2, 3, 4-tetra-hydopyrimidines.J. Serb. Chem. Soc.201580559560410.2298/JSC141028011J
    [Google Scholar]
  39. PrasadB.D. SastryV.G. RamanaH. DevilalJ. RaoA.S. Multicomponent Biginelli’s synthesis, antimycobacterial activity and molecular docking studies of dihydropyrimidine derivatives as thymidylate kinase protein targets.Pharmacologia20167256263
    [Google Scholar]
  40. TayebeeR. GhadamgahiM. Arab. J. Chem.2012101S757vS764
    [Google Scholar]
  41. ChitraS. PandiarajanK. Calcium fluoride: an efficient and reusable catalyst for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones and their corresponding 2 (1H) thione: an improved high yielding protocol for the Biginelli reaction.Tetrahedron Lett.200950192222222410.1016/j.tetlet.2009.02.162
    [Google Scholar]
  42. KumarS. SainiA. SandhuJ.S. Cobalt (II) chloride or manganese (II) chloride or tin (II) chloride promoted one pot synthesis of dihydropyrimidin-2 (1H)-ones using microwave irradiation.Indian J. Chem.200544B76276710.1002/chin.200534208
    [Google Scholar]
  43. MoradiL. TadayonM. Green synthesis of 3, 4-dihydropyrimidinones using nano Fe3O4@ meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation.J. Saudi Chem. Soc.2018221667510.1016/j.jscs.2017.07.004
    [Google Scholar]
  44. PatilS. JadhavS.D. ManeS.Y. Pineapple juice as a natural catalyst: an excellent catalyst for Biginelli reaction.Inter. Jour. of Org. Chem.20111312510.4236/ijoc.2011.13019
    [Google Scholar]
  45. GogoiP. DuttaA.K. SaikiaS. BorahR. Heterogenized hybrid catalyst of 1-sulfonic acid-3-methyl imidazolium ferric chloride over NaY zeolite for one-pot synthesis of 2-amino-4-arylpyrimidine derivatives: A viable approach.Appl. Catal. A Gen.201652332133110.1016/j.apcata.2016.06.015
    [Google Scholar]
  46. ShamimS. KhanK.M. SalarU. AliF. LodhiM.A. TahaM. KhanF.A. AshrafS. Ul-HaqZ. AliM. PerveenS. 5-Acetyl-6-methyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones: as potent urease inhibitors; synthesis, in vitro screening, and molecular modeling study.Bioorg. Chem.201876375210.1016/j.bioorg.2017.10.02129125971
    [Google Scholar]
  47. de FátimaÂ. TerraB.S. da Silva NetoL. BragaT.C. Organocatalyzed Biginelli reactions: a greener chemical approach for the synthesis of biologically active 3, 4-dihydropyrimidin-2 (1H)-ones/-thiones.In: Green Synthetic Approaches for Biologically Relevant Heterocycles2015317337
    [Google Scholar]
  48. RaniJ.W.S. KathingC. SinghN.G. NongrumR. RahmanN. KharmawlongG. NongkhlawR. One-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones catalysed by [BMIM] Br under solvent-free condition.2016484310
    [Google Scholar]
  49. SayyahiS. JahanbakhshiS. DehghaniZ. A green and efficient method for the preparation of 3, 4-dihydropyrimidin-2 (1H)-ones using quaternary ammonium-treated clay in water.J. Chem.2013510.1155/2013/605324
    [Google Scholar]
  50. LiuP. HaoJ. ZhangZ.A. General, efficient and green procedure for synthesis of dihydropyrimidine-5-carboxamides in low melting betaine hydrochloride/urea mixture.Chin. J. Chem.201634663764510.1002/cjoc.201500862
    [Google Scholar]
  51. TafuriJ. RobertsJ. Organophosphate poisoning.Ann. Emerg. Med.198716219320210.1016/S0196‑0644(87)80015‑X3541700
    [Google Scholar]
  52. MohamadpourF. MaghsoodlouM.T. HeydariR. LashkariM. Saccharin: a green, economical and efficient catalyst for the one-pot, multi-component synthesis of 3, 4-dihydropyrimidin-2-(1H)-one derivatives and 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives and substituted dihydro-2-oxypyrrole.J. Iran Chem. Soc.20161381549156010.1007/s13738‑016‑0871‑5
    [Google Scholar]
  53. WangH. CasalongueH.S. LiangY. DaiH. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials.J. Am. Chem. Soc.2010132217472747710.1021/ja102267j20443559
    [Google Scholar]
  54. KathingC. RaniJ.W.S. SinghN.G. TumtinS. NongrumR. NongkhlawR. One-pot synthesis of 3, 4-Dihydropyrimidin-2 (1H)-ones catalysed by cupric acetate under solvent-free conditions.J. Chin. Chem. Soc. (Taipei)201461111254125810.1002/jccs.201400041
    [Google Scholar]
  55. DesaiN.C. TrivediA.R. VaghaniH.V. SomaniH.C. BhattK.A. Synthesis and biological evaluation of 1, 3, 4-oxadiazole bearing dihydropyrimidines as potential antitubercular agents.Med. Chem. Res.201625232933810.1007/s00044‑015‑1485‑7
    [Google Scholar]
  56. DekaminM.G. MehdipoorF. YaghoubiA. 1, 3, 5-Tris (2-hydroxyethyl) isocyanurate functionalized graphene oxide: a novel and efficient nanocatalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones.New J. Chem.201741146893690110.1039/C7NJ00632B
    [Google Scholar]
  57. El-HamoulyW.S. El-KhamryA.M.A. AbbasE.M. Synthesis of new 4-aryl-isoxazolo [5, 4-d] pyrimidin-6-one (thione) and 4-aryl-pyrazolo [3, 4-d]-pyrimidin-6-one derivatives of potential antihypertensive activity.Indian J. Chem. B.200645920912098
    [Google Scholar]
  58. WangL. ZhouM. ChenQ. HeM.Y. Facile Biginelli-type reactions catalysed by super acidic ionic liquid under solvent-free conditions.J. Chem. Res.2012361271271410.3184/174751912X13518654161237
    [Google Scholar]
  59. AnastasP.T. KirchhoffM.M. Origins, current status, and future challenges of green chemistry.Acc. Chem. Res.200235968669410.1021/ar010065m12234198
    [Google Scholar]
  60. HuangY. YangF. ZhuC. Highly enantioselective Biginelli reaction using a new chiral ytterbium catalyst: asymmetric synthesis of dihydropyrimidines.J. Am. Chem. Soc.200512747163861638710.1021/ja056092f16305212
    [Google Scholar]
  61. KolosovM.A. KulykO.G. BeloborodovD.A. OrlovV.D. A simple and efficient one-pot synthesis of 4-alkyl-3, 4-dihydropyrimidin-2 (1 H)-ones.J. Chem. Res.201337211511810.3184/174751913X13573126386313
    [Google Scholar]
  62. MaliS.N. ChaudhariH.K. Molecular modelling studies on adamantane-based Ebola virus GP-1 inhibitors using docking, pharmacophore and 3D-QSAR.SAR QSAR Environ. Res.201930316118010.1080/1062936X.2019.157337730786763
    [Google Scholar]
  63. MaliS.N. SawantS. ChaudhariH.K. MandewaleM.C. In silico appraisal, synthesis, antibacterial screening and DNA cleavage for 1,2,5-thiadiazole derivative.Curr. Comput. Aided Drug Des.201915544545510.2174/157340991566619020614275630727910
    [Google Scholar]
  64. MishraV.R. GhanavatkarC.W. MaliS.N. QureshiS.I. ChaudhariH.K. SekarN. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives.Comput. Biol. Chem.20197833033710.1016/j.compbiolchem.2019.01.00330639681
    [Google Scholar]
  65. MishraV.R. GhanavatkarC.W. MaliS.N. ChaudhariH.K. SekarN. Synthesis, bioactivities, DFT and in-silico appraisal of azo clubbed benzothiazole derivatives.J. Mol. Struct.2019119216217110.1016/j.molstruc.2019.04.123
    [Google Scholar]
  66. MishraV.R. GhanavatkarC.W. MaliS.N. ChaudhariH.K. SekarN. Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study.J. Biomol. Struct. Dyn.201911410.1080/07391102.2019.162121331107179
    [Google Scholar]
  67. JadhavB.S. YamgarR.S. KennyR.S. MaliS.N. ChaudhariH.K. MandewaleM.C. Synthesis, in-silico and biological studies of thiazolyl-2h-chromen-2-one derivatives as potent antitubercular agents.Curr. Comput. Aided Drug Des.201915110.2174/138620732266619072216210031438831
    [Google Scholar]
  68. KshatriyaR. KambaleD. MaliS.N. JejurkarV.P. LokhandeP. ChaudhariH.K. SahaS.S. Brønsted acid catalyzed domino synthesis of functionalized 4H-chromens and their ADMET, molecular docking and antibacterial studies.ChemistrySelect201947943794810.1002/slct.201901775
    [Google Scholar]
  69. ShelkeP.B. MaliS.N. ChaudhariH.K. PratapA.P. Chitosan hydrochloride mediated efficient, green catalysis for the synthesis of perimidine derivatives.J. Heterocycl. Chem.201956113048305410.1002/jhet.3700
    [Google Scholar]
  70. KapaleS.S. MaliS.N. ChaudhariH.K. Molecular modelling studies for 4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives as anticancer agents.Med. Drug Discov.20192, 100008.10.1016/j.medidd.2019.100008
    [Google Scholar]
  71. AnuseD.G. ThoratB.R. SawantS. YamgarR.S. ChaudhariH.K. MaliS.N. Synthesis, SAR, molecular docking and anti-microbial study of substituted N-bromoamido-2-aminobenzothiazoles.Curr. Comput Aided Drug Des.201915110.2174/157340991566619090214364831475902
    [Google Scholar]
  72. JejurkarV.P. MaliS.N. KshatriyaR. ChaudhariH.K. SahaS. Synthesis, antimicrobial screening and in silico appraisal of iminocarbazole derivatives.ChemistrySelect20194329470947510.1002/slct.201901890
    [Google Scholar]
  73. AnuseD.G. MaliS.N. ThoratB.R. YamgarR.S. ChaudhariH.K. Synthesis, SAR, in-silico appraisal and anti-microbial study of substituted 2-aminobenzothiazoles derivatives.Curr. Comput. Aided Drug Des.201915110.2174/157340991566619121012564731820704
    [Google Scholar]
  74. DesaleV.J. MaliS.N. ChaudhariH.K. MaliM.C. ThoratB.R. YamgarR.S. Synthesis and anti-mycobacterium study of halo-substituted 2-aryloxyacetohydrazones.Curr. Comput. Aided Drug Des.201915110.2174/157340991566619101812061131648645
    [Google Scholar]
  75. ThoratB.R. RaniD. MaliS.N. YamgarR.S. Synthesis, in-silico and in-vitro analysis of hydrazones as potential antituberculosis agents.Curr. Comput. Aided Drug Des.2020In press10.2174/1573409916666200302120942
    [Google Scholar]
  76. ThoratB.R. RaniD. YamgarR.S. MaliS.N. Synthesis, spectroscopic, in-vitro and computational analysis of hydrazones as potential antituberculosis agents: (Part-I).Comb. Chem. High Throughput Screen.202023539240110.2174/138620732399920032512585832209038
    [Google Scholar]
  77. JadhavB.S. YamgarR.S. KennyR.S. MaliS.N. ChaudhariH.K. MandewaleM.C. Synthesis and in-silico identification of new bioactive 1,3,4-oxadiazole tagged 2,3-dihydroimidazo[1,2-a]pyridine derivatives.Curr. Bioact. Compd.2020In press
    [Google Scholar]
/content/journals/ccchem/10.2174/2665997201999200512110147
Loading
/content/journals/ccchem/10.2174/2665997201999200512110147
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test