Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

Plastics are indispensable for our society. The extensive use of petroleum-based plastic and dumping of the same in soil and water body greatly affects our environment and biodiversity. However, biodegradable plastics can reduce the volume of waste in packaging materials. Therefore, biomass-derived polymers are promising alternatives to the petroleum-based non-degradable polymer to address the environmental issues.

A large number of reports on the synthesis and characterization of starch-based bioplastic are available in the literature. However, a detailed biodegradation study of the starch-based bioplastic is rarely reported. We have prepared potato starch-based bioplastic with the combination of various plasticizers (glycerol, sorbitol, and xylitol) through hydrogel formation and carried out their biodegradation study.

Present study investigated the biodegradation of potato starch-based bioplastic in the natural environment, in cultured bacteria, and with fungal α-amylase.

Starch-based plastic is completely degraded in the natural environment within two months. Bacteria culture in solid media resulted in various types of bacterial colonies. Among the various bacterial colonies, the white circular colony was the major bacteria that degrade starch-based plastic. Furthermore, we screened the starch-based plastic degrading bacteria and isolated the pure culture through the streak plate method.

In the presence of cultured bacteria and with fungal α-amylase, starch-based plastic is completely degraded within 96 h and 48 h, respectively.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001601666210419110711
2021-04-19
2025-03-15
Loading full text...

Full text loading...

References

  1. LuckachanG.E. PillaiC.K.S. Biodegradable Polymers - A Review on Recent Trends and Emerging Perspectives.J. Polym. Environ.20111963767610.1007/s10924‑011‑0317‑1
    [Google Scholar]
  2. JambeckJ.R. GeyerR. WilcoxC. Marine pollution. Plastic waste inputs from land into the ocean.Science2015347622376877110.1126/science.126035225678662
    [Google Scholar]
  3. GeyerR. JambeckJ.R. LawK.L. Production, use, and fate of all plastics ever made.Sci. Adv.201737: e1700782.10.1126/sciadv.170078228776036
    [Google Scholar]
  4. HaiderT.P. VölkerC. KrammJ. LandfesterK. WurmF.R. Plastics of the future? the impact of biodegradable polymers on the environment and on society.Angew. Chem. Int. Ed. Engl.2019581506210.1002/anie.20180576629972726
    [Google Scholar]
  5. RaphaelI. YangA. Plastics production from biomass: Assessing feedstock requirement.Biomass Conv. Bioref.2013331932610.1007/s13399‑013‑0094‑2
    [Google Scholar]
  6. JerezA. PartalP. MartinezI. GallegosC. GuerreroA. Protein-based bioplastics: Effect of thermo-mechanical processing.Rheol. Acta20074671172010.1007/s00397‑007‑0165‑z
    [Google Scholar]
  7. LeeD-H. Bio-based economies in Asia: Economic analysis of development of bio-based industry in China, India, Japan, Korea, Malaysia and Taiwan.Int. J. Hydrogen Energy2016414333434610.1016/j.ijhydene.2015.10.048
    [Google Scholar]
  8. AltskarA. AnderssonR. BoldizarA. Some effects of processing on the molecular structure and morphology of thermoplastic starch.Carbohydr. Polym.20167591597
    [Google Scholar]
  9. NakajimaH. DijkstraP. LoosK. The recent developments in biobased polymers toward general and engineering applications: Polymers that are upgraded from biodegradable polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed.Polymers (Basel)201791052310.3390/polym910052330965822
    [Google Scholar]
  10. BabuR.P. O’ConnorK. SeeramR. Current progress on bio-based polymers and their future trends.Prog. Biomater.201321810.1186/2194‑0517‑2‑829470779
    [Google Scholar]
  11. ShaghalehH. XuX. WangS. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives.RSC Advances2018882584210.1039/C7RA11157F
    [Google Scholar]
  12. HyeonJ.E. KimS.W. ParkC. HanS.O. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface.Chem. Commun.20155150102021020510.1039/C5CC00832H26017299
    [Google Scholar]
  13. IsmailaN.A. TahirbS.M. YahyacN. Synthesis and Characterization of Biodegradable Starch-based Bioplastics.Mater. Sci. Forum201584667367810.4028/www.scientific.net/MSF.846.673
    [Google Scholar]
  14. WhiteJ.L. Fourth in a Series: Pioneers of polymer processing alexander parkes.Int. Polym. Process.19981332610.3139/217.980326
    [Google Scholar]
  15. DiGregorioB.E. Biobased performance bioplastic: Mirel.Chem. Biol.20091611210.1016/j.chembiol.2009.01.00119171300
    [Google Scholar]
  16. ShafqatA. Al-ZaqriN. TahirA. AlsalmeA. Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers.Saudi J. Biol. Sci.20212831739174910.1016/j.sjbs.2020.12.01533732057
    [Google Scholar]
  17. LarotondaF. MatsuiK. SoldiV. LaurindoJ.V. Biodegradable films made from raw and acetylated cassava starch.Braz. Arch. Biol. Technol.20044747748410.1590/S1516‑89132004000300019
    [Google Scholar]
  18. TeeraphatpornchaiT. Nakajima-KambeT. Shigeno-AkutsuY. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics.Biotechnol. Lett.2003251232810.1023/A:102171371116012882301
    [Google Scholar]
  19. JareratA. PranamudaH. TokiwaY. Macromol Poly (L-lactide) degrading activity in various actinomycetes.Biosci20022420428
    [Google Scholar]
  20. SukkhumS. TokuyamaS. TamuraT. KitpreechavanichV. GenJ. A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization.J. Gen. Appl. Microbiol.200955645946710.2323/jgam.55.45920118610
    [Google Scholar]
  21. HoangK-C. LeeC-Y. TsengM. ChuW.S. Polyester-degrading actinomycetes isolated from the Touchien River of Taiwan.World J. Microbiol. Biotechnol.20062320120510.1007/s11274‑006‑9212‑7
    [Google Scholar]
  22. AccinelliC. SaccàM.L. MencarelliM. VicariA. Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative.Chemosphere201289213614310.1016/j.chemosphere.2012.05.02822717162
    [Google Scholar]
  23. LiM. WittT. XieF. WarrenF.J. HalleyP.J. GilbertR.G. Biodegradation of starch films: the roles of molecular and crystalline structure.Carbohydr. Polym.201512211512210.1016/j.carbpol.2015.01.01125817650
    [Google Scholar]
  24. YoshidaN. YeL. LiuF. LiZ. KatayamaA. Evaluation of biodegradable plastics as solid hydrogen donors for the reductive dechlorination of fthalide by Dehalobacter species.Bioresour. Technol.201313047848510.1016/j.biortech.2012.11.13923313696
    [Google Scholar]
  25. GarlottaD. A Literature Review of Poly(Lactic Acid).J. Polym. Environ.20019638410.1023/A:1020200822435
    [Google Scholar]
  26. JemK.J. TanB. The development and challenges of poly (lactic acid) and poly (glycolic acid).Adv Industr Eng Polymer Res.20203607010.1016/j.aiepr.2020.01.002
    [Google Scholar]
  27. ZhaoX. HuH. WangX. YuX. ZhouW. PengS. Super tough poly(lactic acid) blends: A comprehensive review.RSC Advances202010133161336810.1039/D0RA01801E
    [Google Scholar]
  28. SiracusaV. RocculiP. RomaniS. RosaM.D. Biodegradable polymers for food packaging: a review.Trends Food Sci. Technol.20081963464310.1016/j.tifs.2008.07.003
    [Google Scholar]
  29. FakhouriF.M. MartelliS.M. CaonT. VelascoJ.I. MeiL.H.I. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes.Postharvest Biol. Technol.2015109576410.1016/j.postharvbio.2015.05.015
    [Google Scholar]
  30. BiloF. PandiniS. SartoreL. A sustainable bioplastic obtained from rice straw.J. Clean. Prod.2018200357368
    [Google Scholar]
  31. PerottoG. CeseracciuL. SimonuttiR. Bioplastics from vegetable waste via an eco-friendly water-based process.Green Chem.20182089490210.1039/C7GC03368K
    [Google Scholar]
  32. SavielloD. CespiD. SharmaV. MiaoS. CuccinielloR. The frontier of biobased polymers: synthesis, characterization, application, and sustainability assessment.Int. J. Polym. Sci.2017: 5638598.10.1155/2017/5638598
    [Google Scholar]
  33. Zárate-RamírezL.S. RomeroA. BengoecheaC. PartalP. GuerreroA. Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics.Carbohydr. Polym.2014112243110.1016/j.carbpol.2014.05.05525129712
    [Google Scholar]
  34. Gonzalez-GutierrezJ. PartalP. Garcia-MoralesM. GallegosC. Development of highly-transparent protein/starch-based bioplastics.Bioresour. Technol.201010162007201310.1016/j.biortech.2009.10.02519900806
    [Google Scholar]
  35. MekonnenT. MussoneP. KhalilbH. BresslerD. Progress in bio-based plastics and plasticizing modifications.J. Mater. Chem. A Mater. Energy Sustain.20131133791339810.1039/c3ta12555f
    [Google Scholar]
  36. BasiakE. LenartA. DebeaufortF. How glycerol and water contents affect the structural and functional properties of starch-based edible films.Polymers201810441210.3390/polym1004041230966447
    [Google Scholar]
  37. FakhouriF.M. CostaD. YamashitaF. Comparative study of processing methods for starch/gelatin films.Carbohydr. Polym.201395268168910.1016/j.carbpol.2013.03.02723648030
    [Google Scholar]
  38. KrishnamurthyA. AmritkumarP. Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources.SN Applied Sciences20191143210.1007/s42452‑019‑1460‑x
    [Google Scholar]
  39. WinklerH. VorwergW. RihmR. Thermal and mechanical properties of fatty acid starch esters.Carbohydr. Polym.201410294194910.1016/j.carbpol.2013.10.04024507367
    [Google Scholar]
  40. EmadianS.M. OnayT.T. DemirelB. Biodegradation of bioplastics in natural environments.Waste Manag.20175952653610.1016/j.wasman.2016.10.00627742230
    [Google Scholar]
  41. TachibanaK. HashimotoK. YoshikawaM. OkawaH. Isolation and characterization of microorganisms degrading nylon 4 in the composted soil.Polym. Degrad. Stabil.20109591291710.1016/j.polymdegradstab.2010.03.031
    [Google Scholar]
  42. GudeangadiP.G. UchidaK. TateishiA. Poly(alanine-nylon-alanine) as a bioplastic: chemoenzymatic synthesis, thermal properties and biological degradation effects.Polym. Chem.2020114920492710.1039/D0PY00137F
    [Google Scholar]
  43. IsmailaN.A. TahirbS.M. YahyacN. Synthesis and characterization of biodegradable starch-based bioplastics.Mater. Sci. Forum201684667367810.4028/www.scientific.net/MSF.846.673
    [Google Scholar]
  44. BalaguerM.P. Gómez-EstacaJ. GavaraR. Hernandez-MunozP. Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde.J. Agric. Food Chem.201159126689669510.1021/jf200477a21598964
    [Google Scholar]
  45. ChenM-J. ShiQ-S. Transforming sugarcane bagasse into bioplastics via homogeneous modification with phthalic anhydride in ionic liquid.ACS Sustain. Chem. & Eng.201532510251510.1021/acssuschemeng.5b00685
    [Google Scholar]
  46. AzevedoL.C.D. RovaniS. SantosJ.J. Biodegradable films derived from corn and potato starch and study of the effect of silicate extracted from sugarcane waste ash.ACS Appl. Polym. Mater.202022160216910.1021/acsapm.0c00124
    [Google Scholar]
  47. BasuS. BoseC. OjhaN. Evolution of bacterial and fungal growth media.Bioinformation201511418218410.6026/9732063001118226124557
    [Google Scholar]
  48. TagaM.E. XavierK.B. Methods for analysis of bacterial autoinducer2 production.Curr. Protoc. Microbiol.20112311C10.1002/9780471729259.mc01c01s23
    [Google Scholar]
  49. HuqA. HaleyB.J. TavianiE. ChenA. HasanN.A. ColwellR.R. detection, isolation, and identification of vibrio cholerae from the environment.Curr. Protoc. Microbiol.20122616a5
    [Google Scholar]
  50. MoyesR.B. ReynoldsJ. BreakwelD.P. Differential staining of bacteria: Gram Stain.Curr. Protoc. Microbiol.2009151A-3C
    [Google Scholar]
  51. SandersE.R. Aseptic laboratory techniques: Plating methods.J. Vis. Exp.20126363: e3064.22617405
    [Google Scholar]
  52. LederbergJ. LederbergE.M. Replica plating and indirect selection of bacterial mutants.J. Bacteriol.195263339940610.1128/JB.63.3.399‑406.195214927572
    [Google Scholar]
  53. StevensonB. Common bacterial culture techniques and media.Curr. Protoc. Microbiol.200611A-4A10.1002/9780471729259.mca04as00
    [Google Scholar]
  54. MayerF. HillebrandtJ.O. Potato pulp: microbiological characterization, physical modification, and application of this agricultural waste product.Appl. Microbiol. Biotechnol.199748443544010.1007/s0025300510769390450
    [Google Scholar]
  55. TaniguchiH. OdashimaF. IgarashiM. MaruyamaY. NakamuraM. Characterization of a potato starch-digesting bacterium and its production of amylase. Agric Bioi Chem 1982; 46:2107-2115.56. McAllister TA, Cheng K-J, Rode LM, Forsber CW. Digestion of Barley, Maize, and Wheat by Selected Species of Ruminal Bacteria.Appl. Environ. Microbiol.19905631463153
    [Google Scholar]
  56. BharathiV. RekavK. Isolation and identification of microorganisms from goat intestine.J Chem Pharm20157117123
    [Google Scholar]
  57. WoesteS. A template for the streak plate isolation technique for laboratory classrooms.J. Biol. Educ.201030171810.1080/00219266.1996.9655470
    [Google Scholar]
  58. MotR. AndriesK. VerachtertH. Comparative Study of Starch Degradation and Amylase Production by Ascomycetous Yeast Species.Syst. Appl. Microbiol.1984510611810.1016/S0723‑2020(84)80055‑7
    [Google Scholar]
  59. MeereboerK.W. MisraM. MohantyA.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites.Green Chem.2020225519555810.1039/D0GC01647K
    [Google Scholar]
  60. SamantarayP.K. LittleA. HaddletonD.M. Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications.Green Chem.2020224055408110.1039/D0GC01394C
    [Google Scholar]
  61. BakerP.J. NumataK. Chemoenzymatic synthesis of poly(L-alanine) in aqueous environment.Biomacromolecules201213494795110.1021/bm201862z22380731
    [Google Scholar]
  62. GoyalN. GuptaS.J. SoniK. A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch.Enzyme Microb. Technol.20053572373410.1016/j.enzmictec.2005.04.017
    [Google Scholar]
  63. CatherineL.M. WilliamT.K. FogartyM. Production and properties of the raw starch-digesting α-amylase of Bacillus sp. IMD 435.Process Biochem.199935273110.1016/S0032‑9592(99)00028‑X
    [Google Scholar]
  64. ItkorP. ShidaO. TsukagoshiN. UdakaS. Screening for raw starch digesting bacteria.Agric. Biol. Chem.2014531989
    [Google Scholar]
  65. AraújoM.A. CunhaA.M. MotaM. Enzymatic degradation of starch-based thermoplastic compounds used in protheses: identification of the degradation products in solution.Biomaterials200425132687269310.1016/j.biomaterials.2003.09.09314751755
    [Google Scholar]
  66. ParandooshS. HudsonS.M. The acetylation and enzymatic degradation of starch films.Appl Polym19934878778910.1002/app.1993.070480504
    [Google Scholar]
  67. FrancoC.M.L. PretoS.J. CiaccoD.C.F. Factors that Affect the Enzymatic Degradation of Natural Starch Granules Effect of the Size of the Granules.Starch19924442242610.1002/star.19920441106
    [Google Scholar]
  68. LiM-C. LeeJ.K. ChoU.R. Synthesis, characterization, and enzymatic degradation of starch-grafted poly(methyl methacrylate) copolymer films.Appl Polym201212540541410.1002/app.35620
    [Google Scholar]
  69. VikmanM. HullemanS.H.D. ZeeM.V.D. MyllarinenP. FeilH. Morphology and enzymatic degradation of thermoplastic starch-polycaprolactone blends.Appl Polym1999742594260410.1002/(SICI)1097‑4628(19991209)74:11<2594::AID‑APP5>3.0.CO;2‑R
    [Google Scholar]
  70. SarianF.D. van der KaaijR.M. KraljS. Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A.Appl. Microbiol. Biotechnol.201293264565410.1007/s00253‑011‑3436‑721732245
    [Google Scholar]
  71. TianY. MeiX. LiangQ. WuD. RenN. XingD. Biological degradation of potato pulp waste and microbial community structure in microbial fuel Cells.RSC Advances201778376838010.1039/C6RA27385H
    [Google Scholar]
  72. YerushalmiL. VoleskyB. Culture conditions for growth and solvent biosynthesis by a modified Clostridium acetobutylicum.Appl. Microbiol. Biotechnol.19872551352010.1007/BF00252009
    [Google Scholar]
  73. BertaniG. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems.J. Bacteriol.2004186359560010.1128/JB.186.3.595‑600.200414729683
    [Google Scholar]
  74. KhoramnejadianS. ZavarehJ.J. KhoramnejadianS. Effect of potato starch on thermal & mechanical properties of low density polyethylene.Curr. World Environ.2013821522010.12944/CWE.8.2.06
    [Google Scholar]
  75. MunegumiT. InutsukaM. HayafujiY. Investigating the hydrolysis of starch using α-amylase contained in dishwashing detergent and human saliva.J. Chem. Educ.2016931401140510.1021/acs.jchemed.5b00545
    [Google Scholar]
  76. da LuzJ.M.R. PaesS.A. BazzolliD.M.S. TótolaM.R. DemunerA.J. KasuyaM.C.M. Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus.PLoS One2014911: e107438.10.1371/journal.pone.010743825419675
    [Google Scholar]
  77. FolinoA. KarageorgiouA. CalabròP.S. KomilisD. Biodegradation of wasted bioplastics in natural and industrial environments: A Review.Sustainability202012603010.3390/su12156030
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001601666210419110711
Loading
/content/journals/ccchem/10.2174/2666001601666210419110711
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bacteria; Biodegradation; bioplastic; biopolymer; starch; α-amylase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test