Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

The extreme toxicity of cyanide ions to living organisms encourages the researcher to develop new chemosensors for their sensitive and selective detection. Among various classes of chemosensors, chalcones are believed to be a promising candidate for designing new chemosensors for anions due to easy modification in their skeleton and conjugation system.

Despite having various medical applications and properties, the recognition ability of chalcone derivatives is not widely explored. The traditional methods known for the sensing of cyanide ions are ion chromatography or cyanide selective electrodes. However, these methods need skilled operators and are found to be expensive and time-consuming. Also, the available methods for the detection of cyanide ions are not suitable for on-site monitoring and show interference from other competitive anions, such as fluoride, acetate, and hydroxide ions. Hence, this encouraged us to explore the chalcone derivatives as chemical sensors that are capable of detecting the cyanide ions in the presence of competitive anions, such as fluoride, acetate, and hydroxide ions.

The development of new chalcone analogs (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one () and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (), which are particularly important for the future development of chemosensors for the detection of cyanide ions in the presence of various interfering ions, such as fluoride, acetate, and hydroxide ions.

The sensing behavior of chalcone derivatives (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one () and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one () have been investigated toward various anions (CN-, F-, Cl-, Br-, NO-, SO2-, PO2-, OH-, OAc-) using UV-vis spectroscopy. Interestingly, among various anions tested, derivatives (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one () and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one () function as highly selective chemosensors for the detection of cyanide ions.

We have synthesized two chalcone based derivatives (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one () and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one () with simple condensation reaction for the detection of cyanide ions. The various results indicated the quick response of (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one () and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one () toward cyanide anions. These two chalcone derivatives showed not only spectral change with selectivity but also showed sensitivity for the detection of cyanide anions. The developed chalcone derivatives detect cyanide ions in the presence of various interfering ions, such as fluoride, acetate, and hydroxide ions. The chemosensors (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one () and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one () for the detection of cyanide ions are particularly smart due to their real-time analysis, simplicity, and low cost in comparison to other closely related processes, such as fluorescence.

The sensitivity studies show the high reactivity of derivative 1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one () as compared to (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (). The detection limit for derivatives (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one () and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one () was 1.2 µM and 300 µM, respectively. The results of (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one () and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one () for cyanide detection were satisfying, suggesting their potential application for cyanide detection.

The goal of further research of this field is to develop water-soluble chalcone-based probes, which show emission in the Near Infra-Red (NIR) region to provide favorable conditions for biological applications.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001601666211005125825
2021-10-05
2025-03-15
Loading full text...

Full text loading...

References

  1. UdhayakumariD. VelmathiS. ChenW.C. WuS.P. A dual-mode chemosensor: Highly selective colorimetric fluorescent probe for Cu2+ and F- ions.Sens. Actuators B Chem.201420437538110.1016/j.snb.2014.07.109
    [Google Scholar]
  2. VelmathiS. ReenaV. SuganyaS. AnandanS. Pyrrole based Schiff bases as colorimetric and fluorescent chemosensors for fluoride and hydroxide anions.J. Fluoresc.201222115516210.1007/s10895‑011‑0942‑z21837384
    [Google Scholar]
  3. BaiB. MaoX. WeiJ. WeiZ. WangH. LiM. Selective anion-responsive organogel based on a gelator containing hydrazide and azobenzene units.Sens. Actuators B Chem.201521126827410.1016/j.snb.2015.01.111
    [Google Scholar]
  4. KaurN. KumarS. Colorimetric metal ion sensors.Tetrahedron2011679233926410.1016/j.tet.2011.09.003
    [Google Scholar]
  5. ZhuM. YuanM. LiuX. XuJ. LvJ. HuangC. LiuH. LiY. WangS. ZhuD. Visible near-infrared chemosensor for mercury ion.Org. Lett.20081071481148410.1021/ol800197t18336033
    [Google Scholar]
  6. ChengC.C. ChenZ.S. WuC.Y. LinC.C. YangC.R. YenY.P. Azo dyes featuring a pyrene unit: New selective chromogenic and fluorogenic chemodosimeters for Hg(II).Sens. Actuators B Chem.200914228028710.1016/j.snb.2009.07.020
    [Google Scholar]
  7. DingY. ZhuW.H. XieY. Development of ion chemosensors based on porphyrin analogues.Chem. Rev.201711742203225610.1021/acs.chemrev.6b0002127078087
    [Google Scholar]
  8. CaoZ. CaoY. KubotaR. SasakiY. AsanoK. LyuX. ZhangZ. ZhouQ. ZhaoX. XuX. WuS. MinamiT. LiuY. Fluorescence anion chemosensor array based on pyrenylboronic acid.Front Chem.2020841410.3389/fchem.2020.0041432548089
    [Google Scholar]
  9. KaurN. KaurG. FegadeU.A. SinghA. SahooS.K. KuwarA.S. Anion sensing with chemosensors having multiple NH recognition units.TrAC. Trends Analyt. Chem.2017958610910.1016/j.trac.2017.08.003
    [Google Scholar]
  10. AmuthakalaS. SelvanD.S.A. RahimanA.K. 4-Functionalized terpyridine derivative as dual responsive chemosensor for biologically important inorganic cations and fluoride anion.J. Iran. Chem. Soc.2020171237124810.1007/s13738‑019‑01851‑8
    [Google Scholar]
  11. YanF. SunJ. ZangY. SunZ. ZhangH. WangX. Benzothiazole applications as fluorescent probes for analyte detection.J. Iran. Chem. Soc.202010.1007/s13738‑020‑01998‑9
    [Google Scholar]
  12. WangF. WangL. ChenX. YoonJ. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions.Chem. Soc. Rev.201443134312432410.1039/c4cs00008k24668230
    [Google Scholar]
  13. LiZ. DaiY. LuZ. PeiY. SongY. ZhangL. A Photoswitchable triple chemosensor for cyanide anion based on dicyanovinyl-functionalized dithienylethene.Eur. J. Org. Chem.201920193614362110.1002/ejoc.201900369
    [Google Scholar]
  14. SunY. ShanY. SunN. LiZ. WuX. GuanR. CaoD. ZhaoS. ZhaoX. Cyanide and biothiols recognition properties of a coumarin chalcone compound as red fluorescent probe.Spectrochim. Acta A Mol. Biomol. Spectrosc.201820551451910.1016/j.saa.2018.07.07130064116
    [Google Scholar]
  15. XuZ. ChenX. KimH.N. YoonJ. Sensors for the optical detection of cyanide ion.Chem. Soc. Rev.201039112713710.1039/B907368J20023843
    [Google Scholar]
  16. KoenigR. Environmental disasters. Wildlife deaths are a grim wake-up call in Eastern Europe.Science200028754591737173810.1126/science.287.5459.173710755922
    [Google Scholar]
  17. CardosoA.P. MirioneE. ErnestoM. MassazaF. CliffJ. Rezaul HaqueM. Processing of cassava roots to remove cyanogens.J. Food Compos. Anal.20051845146010.1016/j.jfca.2004.04.002
    [Google Scholar]
  18. ThanayupongE. SuttisintongK. SukwattanasinittM. NiamnontN. Turn-on fluorescent sensor for the detection of cyanide based on a novel dicyanovinyl phenylacetylene.New J. Chem.2017414058406410.1039/C6NJ03794A
    [Google Scholar]
  19. ZhangC. JiK. WangX. WuH. LiuC. A reversible and selective chemosensor based on intramolecular NH···NH hydrogen bonding for cyanide and pH detection.Chem. Commun. (Camb.)201551388173817610.1039/C5CC01280E25873106
    [Google Scholar]
  20. WeiT.B. LiW.T. LiQ. SuJ.X. QuW.J. LinQ. A turn-on fluorescent chemosensor selectively detects cyanide in pure water and food sample.Tetrahedron Lett.2016572767277110.1016/j.tetlet.2016.05.028
    [Google Scholar]
  21. LeeM. MoonJ.H. SwamyK.M.K. JeongY. KimG. ChoiJ. A new bis-pyrene derivative as a selective colorimetric and fluorescent chemosensor for cyanide and fluoride and anion-activated CO2 sensing.Sens. Actuators B Chem.201419936937610.1016/j.snb.2014.04.005
    [Google Scholar]
  22. WangJ. HaC.S. Ratiometric, colorimetric and fluorescent chemosensor for “turn-on” detection of cyanide (CN-).Analyst (Lond.)201113681627163110.1039/c0an00932f21373670
    [Google Scholar]
  23. ShiB. ZhangP. WeiT. YaoH. LinQ. ZhangY. Highly selective fluorescent sensing for CN- in water: utilization of the supramolecular self-assembly.Chem. Commun. (Camb.)201349717812781410.1039/c3cc44056g23884287
    [Google Scholar]
  24. OuX. JinY. ChenX. GongC. MaX. WangY. Colorimetric test paper for cyanide ion determination in real-time.Anal. Methods201575239524410.1039/C5AY01033K
    [Google Scholar]
  25. MahapatraA.K. MaitiK. MajiR. MannaS.K. MondalS. AliS.S. Ratiometric fluorescent and chromogenic chemodosimeter for cyanide detection in water and its application in bioimaging.RSC Advances20155242742428010.1039/C4RA17199C
    [Google Scholar]
  26. FitrianaA.S. PranowoH.D. PurwonoB. Chalcone based colorimetric sensor for anions: Experimental and TD-DFT study.Indones. J. Chem.201616808610.22146/ijc.21181
    [Google Scholar]
  27. YeapG.Y. HrishikesanE. ChanY.H. MahmoodW.A.K. A New emissive chalcone-based chemosensor armed by coumarin and naphthol with fluorescence “turn-on” properties for selective detection of f- ions.J. Fluoresc.201727110511010.1007/s10895‑016‑1938‑527679994
    [Google Scholar]
  28. GuptaA. GargS. SinghH. Development of chalcone-based derivatives for sensing applications.Anal. Methods202012425022504510.1039/D0AY01603A33103673
    [Google Scholar]
  29. HosoyaT. NakataA. YamasakiF. AbasF. ShaariK. LajisN.H. MoritaH. Curcumin-like diarylpentanoid analogues as melanogenesis inhibitors.J. Nat. Med.201266116617610.1007/s11418‑011‑0568‑021830091
    [Google Scholar]
  30. SinghP.K. SinghV.K. Highly enantioselective Friedel-Crafts reaction of indoles with 2-enoylpyridine 1-oxides catalyzed by chiral pyridine 2,6-bis(5′,5′-diphenyloxazoline)-Cu(II) complexes.Org. Lett.200810184121412410.1021/ol801692918722459
    [Google Scholar]
  31. LeeH.J. ParkS.J. SinH.J. NaY.J. Kim, C. A selective colorimetric chemosensor with an electron-withdrawing group for multi-analytes CN- and F-.New J. Chem.2015393900390710.1039/C5NJ00169B
    [Google Scholar]
  32. SongE.J. KimS. ParkG.J. ParkS.J. ChoiY.W. KimC. Selective colorimetric assay of cyanide ions using a thioamide-based probe containing phenol and pyridyl groups.Tetrahedron Lett.2014556965696810.1016/j.tetlet.2014.09.049
    [Google Scholar]
  33. KimS.M. KangM. ChoiI. LeeJ.J. KimC. A highly selective colorimetric chemosensor for cyanide and sulfide in aqueous solution: Experimental and theoretical studies.New J. Chem.2016407768777810.1039/C6NJ01832G
    [Google Scholar]
  34. TangY.H. QuY. SongZ. HeX.P. XieJ. HuaJ. ChenG.R. Discovery of a sensitive Cu(II)-cyanide “off-on” sensor based on new C-glycosyl triazolyl bis-amino acid scaffold.Org. Biomol. Chem.201210355556010.1039/C1OB06242E22101917
    [Google Scholar]
  35. MoH.J. ShenY. YeB.H. Selective recognition of cyanide anion via formation of multipoint NH and phenyl CH hydrogen bonding with acyclic ruthenium bipyridine imidazole receptors in water.Inorg. Chem.201251137174718410.1021/ic300217v22716094
    [Google Scholar]
  36. SunJ. LiuY. JinL. ChenT. YinB. Coordination-induced gelation of an L-glutamic acid Schiff base derivative: the anion effect and cyanide-specific selectivity.Chem. Commun. (Camb.)201652476877110.1039/C5CC07903A26568259
    [Google Scholar]
  37. LinY.D. PengY.S. SuW. TuC.H. SunC.H. ChowT.J. A highly selective colorimetric and turn-on fluorescent probe for cyanide anion.Tetrahedron2012682523252610.1016/j.tet.2012.01.026
    [Google Scholar]
  38. PengL. WangM. ZhangG. ZhangD. ZhuD. A fluorescence turn-on detection of cyanide in aqueous solution based on the aggregation-induced emission.Org. Lett.20091191943194610.1021/ol900376r19344183
    [Google Scholar]
  39. SunS. ShuQ. LinP. LiY. JinS. ChenX. Triphenylamine based lab-on-a-molecule for the highly selective and sensitive detection of Zn2+ and CN- in aqueous solution.RSC Advances20166938269383110.1039/C6RA17354C
    [Google Scholar]
  40. MahapatraA.K. MannaS.K. PramanikB. MaitiK. MondalS. AliS.S. Colorimetric and ratiometric fluorescent chemodosimeter for selective sensing of fluoride and cyanide ions: Tuning selectivity in proton transfer and C-Si bond cleavage.RSC Advances20155107161072210.1039/C4RA12910E
    [Google Scholar]
  41. KimM.S. YunD. ChaeJ.B. SoH. LeeH. KimK.T. KimM. LimM.H. KimC. A novel thiophene-based fluorescent chemosensor for the detection of Zn2+ and CN-: imaging applications in live cells and zebrafish.Sensors (Basel)20191924545810.3390/s1924545831835755
    [Google Scholar]
  42. BarareB. BabahanI. HijjiY.M. BonyiE. TadesseS. AslanK. A highly selective sensor for cyanide in organic media and on solid surfaces.Sensors (Basel)201616327110.3390/s1603027126927099
    [Google Scholar]
  43. LongC. HuJ.H. FuQ.Q. NiP.W. A new colorimetric and fluorescent probe based on Rhodamine B hydrazone derivatives for cyanide and Cu2+ in aqueous media and its application in real life.Spectrochim. Acta A Mol. Biomol. Spectrosc.201921929730610.1016/j.saa.2019.04.05231051424
    [Google Scholar]
  44. XuY. DaiX. ZhaoB.X. A coumarin-indole based colorimetric and “turn on” fluorescent probe for cyanide.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513816416810.1016/j.saa.2014.11.01325490042
    [Google Scholar]
  45. ZhuT. LiZ. FuC. ChenL. ChenX. GaoC. Development of an anthraquinone-based cyanide colorimetric sensor with activated C–H group: Large absorption red shift and application in food and water samples.Tetrahedron202076, 131479.10.1016/j.tet.2020.131479
    [Google Scholar]
  46. ThakerB.T. KanojiyaJ.B. Synthesis, Characterization and Mesophase Behavior of New Liquid Crystalline Compounds Having Chalcone as a Central Linkage.Mol. Cryst. Liq. Cryst.201154284/[606]98/[620]10.1080/15421406.2011.570123
    [Google Scholar]
  47. SchmidtM.W. BaldridgeK.K. BoatzJ.A. ElbertS.T. GordonM.S. JensenJ.H. General atomic and molecular electronic structure system.J. Comput. Chem.1993141347136310.1002/jcc.540141112
    [Google Scholar]
  48. GordonM.S. SchmidtM.W. Chapter 41 - Advances in electronic structure theory: GAMESS a decade later.Elsevier20051167118910.1016/B978‑044451719‑7/50084‑6
    [Google Scholar]
  49. ParkS. KimH.J. Highly activated Michael acceptor by an intramolecular hydrogen bond as a fluorescence turn-on probe for cyanide.Chem. Commun. (Camb.)201046489197919910.1039/c0cc03910a21042601
    [Google Scholar]
  50. SunY. ChenH. CaoD. LiuZ. ChenH. DengY. Chalcone derivatives as fluorescence turn-on chemosensors for cyanide anions.J. Photochem. Photobiol. Chem.2012244657010.1016/j.jphotochem.2012.06.012
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001601666211005125825
Loading
/content/journals/ccchem/10.2174/2666001601666211005125825
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Chalcone; chemosensor; cyanide; michael reaction; photophysical; UV-vis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test