Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

COVID-19 (SARS-CoV-2 infection) has affected almost every region of the world. Presently, there is no defined line of treatment available for it. Triphala is already proven to have a safe biological window, which is well known for its antioxidant and immunomodulatory properties.

The present work has been carried out to study Triphala's effectiveness in the treatment of COVID-19.

The Receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein is responsible for the invasion into the host cell, which leads to further infection. The molecular docking (MD) was performed to explore the binding affinities () of Triphala's chemical constituents and compared them with the existing drugs under investigation for the treatment of COVID-19 epidemiology.

Chebulinic acid binding affinity -8.5 with the formation of 10 hydrogen bonds. Almost all the major chemical constituents have formed two or more hydrogen bonds with RBD of SARS-CoV-2 Spike Glycoprotein.

The present study showed that Triphala might perform vital roles in the treatment of COVID-19 and expand its usefulness to physicians to treat this illness. There is a need to complete the , biological testing of Triphala on SARS-CoV-2 disease to create more quality data. The binding mode of Chebulinic acid in the allosteric cavity allows a better understanding of RBD of SARS-CoV-2 Spike Glycoprotein target and provides insight for the design of new inhibitors. Triphala is already proven to have a safe biological window, which indicates that we can skip the pre-clinical trials. Apart from this, Triphala is well known for its antioxidant properties, which ultimately improve the immunity of the COVID-19 patient.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001601666210322121802
2021-03-22
2025-03-15
Loading full text...

Full text loading...

References

  1. WuD. WuT. LiuQ. YangZ. The SARS-CoV-2 outbreak: What we know.Int. J. Infect. Dis.202094444810.1016/j.ijid.2020.03.00432171952
    [Google Scholar]
  2. WangL. WangY. YeD. LiuQ. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence.Int. J. Antimicrob. Agents202055610594810.1016/j.ijantimicag.2020.10594832201353
    [Google Scholar]
  3. LiX. GengM. PengY. MengL. LuS. Molecular immune pathogenesis and diagnosis of COVID-19.J. Pharm. Anal.202010210210810.1016/j.jpha.2020.03.00132282863
    [Google Scholar]
  4. DhandR. LiJ. Coughs and Sneezes: Their role in transmission of respiratory viral infections, including SARS-CoV-2.Am. J. Respir. Crit. Care Med.2020202565165910.1164/rccm.202004‑1263PP32543913
    [Google Scholar]
  5. SinghalT. A Review of coronavirus disease-2019 (COVID-19).Indian J. Pediatr.202087428128610.1007/s12098‑020‑03263‑632166607
    [Google Scholar]
  6. KumarD. Corona Virus: A Review of COVID-19.Eurasian J. Med. Oncol.20204182510.14744/ejmo.2020.51418
    [Google Scholar]
  7. ZuZ.Y. JiangM.D. XuP.P. ChenW. NiQ.Q. LuG.M. ZhangL.J. Coronavirus Disease 2019 (COVID-19): A Perspective from China.Radiology20202962E15E2510.1148/radiol.202020049032083985
    [Google Scholar]
  8. MaginnisM.S. Virus-Receptor Interactions: The Key to cellular invasion.J. Mol. Biol.2018430172590261110.1016/j.jmb.2018.06.02429924965
    [Google Scholar]
  9. BourgonjeA.R. AbdulleA.E. TimensW. HillebrandsJ.L. NavisG.J. GordijnS.J. BollingM.C. DijkstraG. VoorsA.A. OsterhausA.D.M.E. van der VoortP.H.J. MulderD.J. van GoorH. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).J. Pathol.2020251322824810.1002/path.547132418199
    [Google Scholar]
  10. RothanH.A. ByrareddyS.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J. Autoimmun.202010910243310.1016/j.jaut.2020.10243332113704
    [Google Scholar]
  11. GuoY.R. CaoQ.D. HongZ.S. TanY.Y. ChenS.D. JinH.J. TanK.S. WangD.Y. YanY. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status.Mil. Med. Res.2020711110.1186/s40779‑020‑00240‑032169119
    [Google Scholar]
  12. MusarratF. ChouljenkoV. DahalA. NabiR. ChouljenkoT. JoisS.D. KousoulasK.G. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections.J. Med. Virol.202092102087209510.1002/jmv.2598532374457
    [Google Scholar]
  13. RavishankarB. ShuklaV.J. Indian systems of medicine: a brief profile.Afr. J. Tradit. Complement. Altern. Med.20074331933710.4314/ajtcam.v4i3.3122620161896
    [Google Scholar]
  14. PandeyM.M. RastogiS. RawatA.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation.Evid. Based Complement. Alternat. Med.2013201337632710.1155/2013/37632723864888
    [Google Scholar]
  15. TazeenA. DeebaF. AlamA. AliR. IshratR. AhmedA. AliS. Virtual screening of potential therapeutic inhibitors against spike, helicase and polymerase of SARS-CoV-2 (COVID-19).Coronaviruses2020111-2210.2174/2666796701999200826114306
    [Google Scholar]
  16. González-pazL.A. LossadaC.A. MoncayoL.S. RomeroF. Vera-villalobosJ. PérezA.E. San-blasE. AlvaradoY.J. Molecular docking and molecular dynamic study of two viral proteins associated with SARS-CoV-2 with ivermectin.Preprints202010.20944/preprints202004.0334.v1
    [Google Scholar]
  17. CostanzoM. De GiglioM.A.R. RovielloG.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus.Curr. Med. Chem.202027274536454110.2174/092986732766620041613111732297571
    [Google Scholar]
  18. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. DuanY. YuJ. WangL. YangK. LiuF. YouT. LiuX.X. YangX. BaiF. LiuH. LiuX.X. GuddatL.W. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure-based drug design, virtual screening and high-throughput screening rapidly identify antiviral leads targeting COVID-19.bioRxiv202010.1101/2020.02.26.964882
    [Google Scholar]
  19. CalyL. DruceJ.D. CattonM.G. JansD.A. WagstaffK.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro.Antiviral Res.202017810478710.1016/j.antiviral.2020.10478732251768
    [Google Scholar]
  20. ElfikyA.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study.Life Sci.202025311759210.1016/j.lfs.2020.11759232222463
    [Google Scholar]
  21. SinghA.K. SinghA. ShaikhA. SinghR. MisraA. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries.Diabetes Metab. Syndr.202014324124610.1016/j.dsx.2020.03.01132247211
    [Google Scholar]
  22. NgO.W. TanY.J. Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks - Implications for coronavirus vaccine development.Hum. Vaccin. Immunother.201713118618910.1080/21645515.2016.122850027644155
    [Google Scholar]
  23. WeichungJ. Shih, Chen Yao, T. X. Data monitoring for the chinese clinical trials of remdesivir in treating patients with COVID-19 during the pandemic crisis.Ther. Innov. Regul. Sci.202012010.1007/s43441‑020‑00159‑7
    [Google Scholar]
  24. LiuC. ZhouQ. LiY. GarnerL.V. WatkinsS.P. CarterL.J. SmootJ. GreggA.C. DanielsA.D. JerveyS. AlbaiuD. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases.ACS Cent. Sci.20206331533110.1021/acscentsci.0c0027232226821
    [Google Scholar]
  25. LengauerT. RareyM. Computational methods for biomolecular docking.Curr. Opin. Struct. Biol.19966340240610.1016/S0959‑440X(96)80061‑38804827
    [Google Scholar]
  26. MengX-Y. ZhangH-X. MezeiM. CuiM. Molecular docking: a powerful approach for structure-based drug discovery.Curr Comput Aided Drug Des20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  27. MorrisG.M. Lim-WilbyM. Molecular docking.Methods Mol. Biol.200844336538210.1007/978‑1‑59745‑177‑2_1918446297
    [Google Scholar]
  28. PetersonC.T. DennistonK. ChopraD. Therapeutic uses of triphala in ayurvedic medicine.J. Altern. Complement. Med.201723860761410.1089/acm.2017.008328696777
    [Google Scholar]
  29. TarasiukA. MosińskaP. FichnaJ. Triphala: current applications and new perspectives on the treatment of functional gastrointestinal disorders.Chin. Med.20181313910.1186/s13020‑018‑0197‑630034512
    [Google Scholar]
  30. BorraS.K. GurumurthyP. MahendraJ. Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models.J. Med. Plants Res.20137362680269010.5897/JMPR2013.5094
    [Google Scholar]
  31. RasoolM. SabinaE.P. Antiinflammatory effect of the Indian Ayurvedic herbal formulation Triphala on adjuvant-induced arthritis in mice.Phytother. Res.200721988989410.1002/ptr.218317533629
    [Google Scholar]
  32. ReddyT.C. AparoyP. BabuN.K. KumarK.A. KalangiS.K. ReddannaP. Kinetics and docking studies of a COX-2 inhibitor isolated from Terminalia bellerica fruits.Protein Pept. Lett.201017101251125710.2174/09298661079223153720441561
    [Google Scholar]
  33. M.R.Analgesic Antipyretic and Ulcerogenic Effects of Indian Ayurvedic Herbal Formulation Triphala.Res. J. Med. Plant200712545910.3923/rjmp.2007.54.59
    [Google Scholar]
  34. GuptaS.K. KalaiselvanV. SrivastavaS. AgrawalS.S. SaxenaR. Evaluation of anticataract potential of Triphala in selenite-induced cataract: In vitro and in vivo studies.J. Ayurveda Integr. Med.20101428028610.4103/0975‑9476.7442521731375
    [Google Scholar]
  35. BaligaM.S. MeeraS. MathaiB. RaiM.P. PawarV. PalattyP.L. Scientific validation of the ethnomedicinal properties of the Ayurvedic drug Triphala: a review.Chin. J. Integr. Med.2012181294695410.1007/s11655‑012‑1299‑x23239004
    [Google Scholar]
  36. ChandranU. MehendaleN. TilluG. PatwardhanB. Network pharmacology of ayurveda formulation Triphala with special reference to anti-cancer property.Comb. Chem. High Throughput Screen.201518984685410.2174/138620731866615101909360626477351
    [Google Scholar]
  37. ShivakumarA. Paramashivaiah, S.; Anjaneya, R.S. J. H. and S. R. Pharmacognostic evaluation of triphala herbs and establishment of chemical stability of Triphala Caplets.Int. J. Pharm. Sci. Res.20167124425110.13040/IJPSR.0975‑8232.7(1).244‑51
    [Google Scholar]
  38. PavaniP. RohiniP. KhasimS.M. BhagyasreeP. Phytochemical investigation and comparative evaluation of various market samples of Triphala powder from India with references to their free scavenging and anti-diabetic activity: An In Vitro Approach.Medicinal Plants.Biodiversity, Sustainable Utilization and Conservation202059760810.1007/978‑981‑15‑1636‑8_36
    [Google Scholar]
  39. BirlaN. DasP.K. Phytochemical and anticarcinogenic evaluation of Triphala powder extract, against melanoma cell line induced skin cancer in rats.Pharm. Biol. Eval.201633366370
    [Google Scholar]
  40. ItankarP. NagulwarD.B. BhatlawandeB. Physical, phytochemical and chromatographic evaluation of triphala guggul tablets.Int. J. Pharm. Phytopharm. Res.201546306309
    [Google Scholar]
  41. AshokkumarD. Pharmacognostical investigations on triphala churnam.Anc. Sci. Life2007263404422557240
    [Google Scholar]
  42. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_1925618350
    [Google Scholar]
  43. MiyataT. Discovery studio modeling environment.Ensemble201517298104
    [Google Scholar]
  44. RappéA.K. CasewitC.J. ColwellK.S. GoddardW.A. SkiffW.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations.J. Am. Chem. Soc.199211425100241003510.1021/ja00051a040
    [Google Scholar]
  45. LoganathanS.K. SchleicherK. MalikA. QuevedoR. LangilleE. TengK. OhR.H. RathodB. TsaiR. Samavarchi-TehraniP. PughT.J. GingrasA.C. SchramekD. Rare driver mutations in head and neck squamous cell carcinomas converge on NOTCH signaling.Science202036764831264126910.1126/science.aax090232165588
    [Google Scholar]
  46. KhanS.L. SiddiquiF.A. JainS.P. SonwaneG.M. Discovery of potential inhibitors of SARS-CoV-2 (COVID-19) main protease (mpro) from nigella sativa (black seed) by molecular docking study.Coronaviruses20212338440210.2174/2666796701999200921094103
    [Google Scholar]
  47. PruijssersA.J. GeorgeA.S. SchäferA. LeistS.R. GralinksiL.E. DinnonK.H.III YountB.L. AgostiniM.L. StevensL.J. ChappellJ.D. LuX. HughesT.M. GullyK. MartinezD.R. BrownA.J. GrahamR.L. PerryJ.K. Du PontV. PittsJ. MaB. BabusisD. MurakamiE. FengJ.Y. BilelloJ.P. PorterD.P. CihlarT. BaricR.S. DenisonM.R. SheahanT.P. Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice.Cell Rep.202032310794010.1016/j.celrep.2020.10794032668216
    [Google Scholar]
  48. FantiniJ. Di ScalaC. ChahinianH. YahiN. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 Infection.Int. J. Antimicrob. Agents202055510596010.1016/j.ijantimicag.2020.105960
    [Google Scholar]
  49. KapteinS.J.F. JacobsS. LangendriesL. SeldeslachtsL. Ter HorstS. LiesenborghsL. HensB. VergoteV. HeylenE. BarthelemyK. MaasE. De KeyzerC. BervoetsL. RymenantsJ. Van BuytenT. ZhangX. AbdelnabiR. PangJ. WilliamsR. ThibautH.J. DallmeierK. BoudewijnsR. WoutersJ. AugustijnsP. VerougstraeteN. CawthorneC. BreuerJ. SolasC. WeynandB. AnnaertP. SprietI. Vande VeldeG. NeytsJ. Rocha-PereiraJ. DelangL. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity.Proc. Natl. Acad. Sci. USA202011743269552696510.1073/pnas.201444111733037151
    [Google Scholar]
  50. YamamotoN. YangR. YoshinakaY. AmariS. NakanoT. CinatlJ. RabenauH. DoerrH.W. HunsmannG. OtakaA. TamamuraH. FujiiN. YamamotoN. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus.Biochem. Biophys. Res. Commun.2004318371972510.1016/j.bbrc.2004.04.08315144898
    [Google Scholar]
  51. CaoB. WangY. WenD. LiuW. WangJ. FanG. RuanL. SongB. CaiY. WeiM. LiX. XiaJ. ChenN. XiangJ. YuT. BaiT. XieX. ZhangL. LiC. YuanY. ChenH. LiH. HuangH. TuS. GongF. LiuY. WeiY. DongC. ZhouF. GuX. XuJ. LiuZ. ZhangY. LiH. ShangL. WangK. LiK. ZhouX. DongX. QuZ. LuS. HuX. RuanS. LuoS. WuJ. PengL. ChengF. PanL. ZouJ. JiaC. WangJ. LiuX. WangS. WuX. GeQ. HeJ. ZhanH. QiuF. GuoL. HuangC. JakiT. HaydenF.G. HorbyP.W. ZhangD. WangC. A trial of Lopinavir-Ritonavir in adults hospitalized with severe Covid-19.N. Engl. J. Med.2020382191787179910.1056/NEJMoa200128232187464
    [Google Scholar]
  52. GuptaP.C. Biological and pharmacological properties of Terminalia Chebula Retz. (Haritaki)- An Overview.Int. J. Pharm. Pharm. Sci.20126268
    [Google Scholar]
  53. BhatnagarS. RaniA. KumariR. Therapeutic potential of triphala against human diseases.Int. J. Pharm. Sci. Rev. Res.2015312513
    [Google Scholar]
  54. KesharwaniA. PolachiraS.K. NairR. AgarwalA. MishraN.N. GuptaS.K. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids.BMC Complement. Altern. Med.201717111010.1186/s12906‑017‑1620‑828196487
    [Google Scholar]
  55. BiradarY.S. SinghR. SharmaK. DhalwalK. BodhankarS.L. KhandelwalK.R. Evaluation of anti-diarrhoeal property and acute toxicity of Triphala Mashi, an Ayurvedic formulation.J. Herb. Pharmacother.200773-420321210.1080/1522894080215286918928142
    [Google Scholar]
  56. PhetkateP. KummalueT. RinthongP. orn; Kietinun, S.; Sriyakul, K. Study of the safety of oral Triphala aqueous extract on healthy volunteers.J. Integr. Med.202018135-4010.1016/j.joim.2019.10.00231680053
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001601666210322121802
Loading
/content/journals/ccchem/10.2174/2666001601666210322121802
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test