Skip to content
2000
Volume 2, Issue 3
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

Bacteria cause various infections and are a threat to the health system. This threat is increased due to the resistance of bacteria towards antibacterial drugs. Plants are an important source of drugs including antibacterial agents. is one important plant known for its different medicinal uses. It contains different phytoconstituents responsible for its medicinal properties.

In cholera, ToxT (PDB ID: 3GBG) regulates the expression of virulence factors in . FtsZ (PDB ID: 6RVN) is a protein involved in cell division and septal wall synthesis in bacteria. MurA (PDB ID: 3SWQ) is critical for the biosynthesis of the bacterial cell wall. Flavin mononucleotide (FMN) (PDB ID: 3F2Q) is involved in the biosynthesis and transport of several protein cofactors. In most of the studies on phytoconstituents, the mechanism of action is not described. Therefore, in this study, the above target proteins were selected and specific target inhibitors were used as standard drugs. In light of the above-mentioned facts, we have proposed a mechanism of antibacterial action of phytoconstituents of based on molecular docking studies.

To propose a mechanism of antibacterial action of phytoconstituents of based on molecular docking studies.

Molecular docking studies of phytoconstituents of were performed using the Maestro 12.8 module of Schrodinger software.

Molecular docking results indicated that many constituents including rutin and phloridzin had better dock scores than standard drugs against different antibacterial targets.

From the molecular docking, different constituents may act as good inhibitors of different proteins like phloridzin may act as potent inhibitors of 3GBG, 6RVN, and 3SWQ, which can be used further for the development of new antibacterial agents.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001602666220722112558
2022-09-16
2025-03-15
Loading full text...

Full text loading...

References

  1. KavidayalH. UniyalN. A survey on traditional knowledge and the status of medicinal plants in Garhwal and Kumaon regions of Uttarakhand.Biosci. Trends20201396101
    [Google Scholar]
  2. SharmaI.P. KantaC. SemwalS. GoswamiN. Wild fruits of Uttarakhand (India): Ethnobotanical and medicinal uses.Int. J. Complement. Altern. Med.2017831810.15406/ijcam.2017.08.00260
    [Google Scholar]
  3. AmitS. SwetaN. DheerajJ. AmanK. Evaluation of antibacterial activity of combined plant extract of Pyracantha crenulata and Zanthoxylum armatum. UJPAH2020229323610.51129/ujpah‑2020‑29‑2(5)
    [Google Scholar]
  4. RawatN. UpadhayaM.L. Diversity of the medicinal plants of Almora district, Uttarakhand and their Ethno-medicinal use.J. Med. Plants2020889101
    [Google Scholar]
  5. SaklaniS. ChandraS. MishraA. Evaluation of antioxidant activity, quantitative estimation of phenols, anthocyanins and flavonoids of wild edible fruits of Garhwal Himalaya.J. Pharm. Res.2011440834086
    [Google Scholar]
  6. OtsukaH. FujiokaS. KomiyaT. GotoM. HiramatsuY. FujimuraH. Studies on anti-inflammatory agents. V. A new anti-inflammatory constituent of Pyracantha crenulata roem.Chem. Pharm. Bull.198129113099310410.1248/cpb.29.30997337925
    [Google Scholar]
  7. DwivediT. KantaC. SinghL.R. PrakashI. A list of some important medicinal plants with their medicinal uses from Himalayan State Uttarakhand, India.J. Med. Plants20197106116
    [Google Scholar]
  8. KumarS. LekshmiM. ParvathiA. OjhaM. WenzelN. VarelaM.F. Functional and structural roles of the major facilitator superfamily bacterial multidrug efflux pumps.Microorganisms20208226610.3390/microorganisms802026632079127
    [Google Scholar]
  9. Monserrat,-Martinez, M.A.; Gambin, Y.; Sierecki, E. Thinking outside the bug: Molecular targets and strategies to overcome antibiotic resistance.Int. J. Mol. Sci.2019206125510.3390/ijms2006125530871132
    [Google Scholar]
  10. BoakyeY.D. OsafoN. DanquahC.A. AduF. AgyareC. Antimicrobial agents: Antibacterial agents, anti-biofilm agents, antibacterial natural compounds, and antibacterial chemicals. Antimicrob. Antibiot. Resist. Antibiofilm. Strategies. Act. Methods.20191375
    [Google Scholar]
  11. AcharyaR. ChackoS. BoseP. LapennaA. PattanayakS.P. Structure-based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer.Sci. Rep.2019911574310.1038/s41598‑019‑52162‑031673107
    [Google Scholar]
  12. AzamS.S. AbbasiS.W. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines.Theor. Biol. Med. Model.20131016310.1186/1742‑4682‑10‑6324156411
    [Google Scholar]
  13. LowdenM.J. SkorupskiK. PellegriniM. ChiorazzoM.G. TaylorR.K. KullF.J. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes.Proc. Natl. Acad. Sci.201010772860286510.1073/pnas.091502110720133655
    [Google Scholar]
  14. HuecasS. Canosa-VallsA.J. Araújo-BazánL. RuizF.M. LaurentsD.V. Fernández-TorneroC. AndreuJ.M. Nucleotide-induced folding of cell division protein FtsZ from Staphylococcus aureus. FEBS J.2020287184048406710.1111/febs.1523531997533
    [Google Scholar]
  15. ZhuJ.Y. YangY. HanH. BetziS. OlesenS.H. MarsilioF. SchönbrunnE. Functional consequence of covalent reaction of phosphoenolpyruvate with UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA).J. Biol. Chem.201228716126571266710.1074/jbc.M112.34272522378791
    [Google Scholar]
  16. SerganovA. HuangL. PatelD.J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch.Nature200945823323
    [Google Scholar]
  17. KumarS. SinghJ. NarasimhanB. ShahS.A.A. LimS.M. RamasamyK. ManiV. Reverse pharmacophore mapping and molecular docking studies for discovery of GTPase HRas as promising drug target for bis-pyrimidine derivatives.Chem. Cent. J.201812110610.1186/s13065‑018‑0475‑530345469
    [Google Scholar]
  18. DriesscheG.V.D. FourchesD. Adverse drug reactions triggered by the common HLA-B57:01 variant: A molecular docking study.ChemInform20179117
    [Google Scholar]
  19. DiehrM.C. ChernerM. WolfsonT.J. MillerS.W. GrantI. HeatonR.K. HIV Neurobehavioral Research Center, The 50 and 100-item short forms of the Paced Auditory Serial Addition Task (PASAT). Demographically corrected norms and comparisons with the full PASAT in normal and clinical samples.J. Clin. Exp. Neuropsychol.200325457158510.1076/jcen.25.4.571.1387612911108
    [Google Scholar]
  20. SharmaV. SharmaP.C. KumarV. In silico molecular docking analysis of natural pyridoacridines as anticancer agents.Adv. Chem.2016201619
    [Google Scholar]
  21. SinghJ. KumarM. MansuriR. SahooG.C. DeepA. Inhibitor designing, virtual screening, and docking studies for methyltransferase: A potential target against dengue virus.J. Pharm. Bioallied Sci.20168318819410.4103/0975‑7406.17168227413346
    [Google Scholar]
  22. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o17034125
    [Google Scholar]
  23. LenselinkE.B. LouvelJ. FortiA.F. van VeldhovenJ.P.D. de VriesH. Mulder-KriegerT. McRobbF.M. NegriA. GooseJ. AbelR. van VlijmenH.W.T. WangL. HarderE. ShermanW. IJzermanA.P. BeumingT. Predicting binding affinities for GPCR ligands using free-energy perturbation.ACS Omega20161229330410.1021/acsomega.6b0008630023478
    [Google Scholar]
  24. KalraS. JoshiG. MunshiA. KumarR. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors.Eur. J. Med. Chem.201714242445810.1016/j.ejmech.2017.08.07128911822
    [Google Scholar]
  25. PandaP. TavitiA.C. SatpatiS. KarM.M. DixitA. BeuriaT.K. Doxorubicin inhibits E. coli division by interacting at a novel site in FtsZ.Biochem. J.2015471333534610.1042/BJ2015046726285656
    [Google Scholar]
  26. SchlünzenF. ZarivachR. HarmsJ. BashanA. TociljA. AlbrechtR. YonathA. FranceschiF. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria.Nature2001413685881482110.1038/3510154411677599
    [Google Scholar]
  27. CruzJ.V. NetoM.F.A. SilvaL.B. da S Ramos, R.; da S Costa, J.; Brasil, D.S.B.; Lobato, C.C.; da Costa, G.V.; Bittencourt, J.A.H.M.; da Silva, C.H.T.P.; Leite, F.H.A.; Santos, C.B.R. Identification of novel protein kinase receptor type 2 inhibitors using pharmacophore and structure-based virtual screening.Molecules201823245310.3390/molecules2302045329463017
    [Google Scholar]
  28. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  29. ShahbaziS. SahrawatT.R. RayM. DashS. KarD. SinghS. Drug targets for cardiovascular-safe anti-inflammatory: In silico rational drug studies.PLoS One2016116e015615610.1371/journal.pone.015615627258084
    [Google Scholar]
  30. ClarkD.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration.J. Pharm. Sci.199988881582110.1021/js980402t10430548
    [Google Scholar]
  31. KatariaR. KhatkarA. Molecular docking, synthesis, kinetics study, structure-activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors.BMC Chem.20191314510.1186/s13065‑019‑0562‑231384793
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001602666220722112558
Loading
/content/journals/ccchem/10.2174/2666001602666220722112558
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 3F2Q; 3GBG; 6RVN; antibacterial; molecular docking; Pyracantha crenulata
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test