Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Chitosan nanoparticles have been extensively studied and used due to their well-recognized applicability in various fields. Chitosan, a natural polysaccharide polymer, is extensively used in pharmaceuticals to deliver a wide variety of therapeutic agents. Chitosan is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of multi particles, particularly nano- and microparticles.

The main aim of the present study was to optimize the conditions for the preparation of chitosan nanoparticles to get optimal particle size, with optimal zeta potential and narrow polydispersity index and anti-bacterial activity.

Include the ionic gelation technique for chitosan nanoparticle preparation. The influence of formulation parameters and process parameters on the chitosan nanoparticles were investigated. Besides, the suspension stability of the prepared nanoparticles was also assessed on storage at 4°C.

The formulation and process parameters showed a significant effect on the physicochemical and morphological characteristics of the chitosan nanoparticles. The chitosan nanoparticles prepared under optimum conditions (chitosan concentration of 0.5% w/v, CS: TPP mass ratio of 1:3, initial pH of chitosan solution of 4.5, stirred at 750 rpm for 30 min) had shown a mean particle size of ~326.8±15 nm, zeta potential of +28.2 ± 0.5 mV, and PDI of 0.21 ± 0.02. The encapsulation of the clarithromycin slightly increased the polydispersity index, but the zeta potential of the unloaded nanoparticles was not affected while the particle size increased. Under optimum conditions, clarithromycin encapsulation efficiency into nanoparticles was found to be 70%. Additionally, chitosan-tripolyphosphate nanoparticles were shown to be stable for a minimum of fifteen days in deionized water at 4°C.

The current study concludes the optimal conditions to formulate the chitosan

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604999201029195547
2021-04-01
2024-12-26
Loading full text...

Full text loading...

References

  1. SahooS.K. LabhasetwarV. Nanotech approaches to drug delivery and imaging.Drug Discov. Today20038241112112010.1016/S1359‑6446(03)02903‑914678737
    [Google Scholar]
  2. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.38718654426
    [Google Scholar]
  3. CouvreurP. VauthierC. Nanotechnology: Intelligent design to treat complex disease.Pharm. Res.20062371417145010.1007/s11095‑006‑0284‑816779701
    [Google Scholar]
  4. ArmsteadA.L. LiB. Nanomedicine as an emerging approach against intracellular pathogens.Int. J. Nanomedicine201163281329322228996
    [Google Scholar]
  5. LozanoR. NaghaviM. ForemanK. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010.Lancet201238098592095212810.1016/S0140‑6736(12)61728‑023245604
    [Google Scholar]
  6. ElerakyN.E. AllamA. HassanS.B. OmarM.M. Nanomedicine fight against antibacterial resistance: An overview of the recent Pharmaceutical innovations.Pharmaceutics202012215110.3390/pharmaceutics1202014232046289
    [Google Scholar]
  7. PetersD.H. ClissoldS.P. Clarithromycin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic potential.Drugs199244111716410.2165/00003495‑199244010‑000091379907
    [Google Scholar]
  8. LangtryH.D. BrogdenR.N. Clarithromycin. A review of its efficacy in the treatment of respiratory tract infections in immunocompetent patients.Drugs1997536973100410.2165/00003495‑199753060‑000069179528
    [Google Scholar]
  9. SalemI.I. DüzgünesN. Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages.Int. J. Pharm.2003250240341410.1016/S0378‑5173(02)00552‑512527166
    [Google Scholar]
  10. LohitnavyM. LohitnavyO. Wittaya-areekulS. SareekanK. PolnokS. ChaiyaputW. Average bioequivalence of clarithromycin immediate released tablet formulations in healthy male volunteers.Drug Dev. Ind. Pharm.200329665365910.1081/DDC‑12002131412889783
    [Google Scholar]
  11. WhitmanM.S. TunkelA.R. Azithromycin and clarithromycin: Overview and comparison with erythromycin.Infect. Control Hosp. Epidemiol.199213635736810.2307/301471351320067
    [Google Scholar]
  12. LiuH. DuY. WangX. SunL. Chitosan kills bacteria through cell membrane damage.Int. J. Food Microbiol.200495214715510.1016/j.ijfoodmicro.2004.01.02215282127
    [Google Scholar]
  13. Vishu KumarA.B. VaradarajM.C. GowdaL.R. TharanathanR.N. Low molecular weight chitosans preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli.Biochim. Biophys. Acta20071770449550510.1016/j.bbagen.2006.12.00317240531
    [Google Scholar]
  14. PirasA.M. MaisettaG. SandreschiS. EsinS. GazzarriM. BatoniG. ChielliniF. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme.Int. J. Biol. Macromol.20146712413110.1016/j.ijbiomac.2014.03.01624661890
    [Google Scholar]
  15. PirasA.M. MaisettaG. SandreschiS. GazzarriM. BartoliC. GrassiL. EsinS. ChielliniF. BatoniG. Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis.Front. Microbiol.2015637210.3389/fmicb.2015.0037225972852
    [Google Scholar]
  16. SobhaniZ. Mohammadi SamaniS. MontaseriH. KhezriE. Nanoparticles of chitosan loaded ciprofloxacin: Fabrication and antimicrobial activity.Adv. Pharm. Bull.20177342743210.15171/apb.2017.05129071225
    [Google Scholar]
  17. AlqahtaniF.Y. AleanizyF.S. TahirE.E. AlquadeibB.T. AlsarraI.A. AlanaziJ.S. AbdelhadyH.G. Preparation, characterization, and antibacterial activity of diclofenac-loaded chitosan nanoparticles.Saudi Pharm. J.2019271828710.1016/j.jsps.2018.08.00130662310
    [Google Scholar]
  18. MirnejadR. JahromiM. Al-MusawiS. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo . Iranian J. Biotechnol.20141231810.15171/ijb.1012
    [Google Scholar]
  19. IbrahimH.M. El-BisiM.K. TahaG.M. El-AlfyE.A. Chitosan nanoparticles loaded antibiotics as drug delivery biomaterial.J. Appl. Pharm. Sci.2015510859010.7324/JAPS.2015.501015
    [Google Scholar]
  20. TakahashiC. AsakaT. AkachiY. Morphological study of efficacy of clarithromycin-loaded nanocarriers for treatment of biofilm infection disease.Med. Mol. Morphol.201627119723
    [Google Scholar]
  21. GolmohamadiM. GhorbaniH.R. OtadiM. Synthesis of chitosan nanoparticles loaded with antibiotics as drug carriers and the study of antibacterial activity.J Nanoana2019617279
    [Google Scholar]
  22. FazilM. MdS. HaqueS. KumarM. BabootaS. SahniJ.K. AliJ. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting.Eur. J. Pharm. Sci.201247161510.1016/j.ejps.2012.04.01322561106
    [Google Scholar]
  23. ShanmugaS.S. RekhaB. SridharS. SangeethaD. Fabrication of chitosan/TPP nanoparticles as a carrier towards the treatment of cancer.Int. J. Drug Deliv.201353542
    [Google Scholar]
  24. CalvoP. Remunan-LopezC. Vila-JatoJ.L. AlonsoM.J. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers.J. Appl. Polym. Sci.19976312513210.1002/(SICI)1097‑4628(19970103)63:1<125::AID‑APP13>3.0.CO;2‑4
    [Google Scholar]
  25. EsmaeiliF. AtyabiF. DinarvandR. Preparation and characterization of Estradiol-loaded PLGA nanoparticles using homogenization-solvent diffusion method.Daru2008164196202
    [Google Scholar]
  26. AvadiM.R. SadeghiA.M. MohammadpourN. AbedinS. AtyabiF. DinarvandR. Rafiee-TehraniM. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method.Nanomedicine (Lond.)201061586310.1016/j.nano.2009.04.00719447202
    [Google Scholar]
  27. WangX. ChiN. TangX. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting.Eur. J. Pharm. Biopharm.200870373574010.1016/j.ejpb.2008.07.00518684400
    [Google Scholar]
  28. HarshaS. RC. RaniS. Ofloxacin targeting to lungs by way of microspheres.Int. J. Pharm.20093801-212713210.1016/j.ijpharm.2009.07.02019646516
    [Google Scholar]
  29. Indian PharmacopieaGovernment of India, Ministry of Health and Family Welfare.Indian Pharmacopeia Commission, Ghaziabad 6th ed.1563
    [Google Scholar]
  30. ShoaibM.H. TazeenJ. MerchantH.A. YousufR.I. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC.Pak. J. Pharm. Sci.200619211912416751122
    [Google Scholar]
  31. GautamS. MahaveerS. In vitrodrug release characterization models. Int J Pharm Res2011217784
    [Google Scholar]
  32. BangaleG.S. ShindeG.V. RajeshK.S. Formulation and optimization of nanoparticale by 32 factorial design for colon targeting.Glob J Pharmaceu Sci201971115
    [Google Scholar]
  33. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.Wayne, PA: National Committee for Clinical Laboratory Standards2000
    [Google Scholar]
  34. BaurerA.W. Kirby SherrisJC TurckM Antibiotic susceptibility testing by a standardized disk method.American J Clion Path1996454493496
    [Google Scholar]
  35. WaniI.A. KhatoonS. GangulyA. AhmedJ. AhmadT. ManzoorN. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method.Colloids Surf. B Biointerfaces201310124325010.1016/j.colsurfb.2012.07.00123010026
    [Google Scholar]
  36. RajaM.A. KatasH. Jing WenT. Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-Linkers.PLoS One2015106e012896310.1371/journal.pone.012896326068222
    [Google Scholar]
  37. GanQ. WangT. CochraneC. McCarronP. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery.Colloids Surf. B Biointerfaces2005442-3657310.1016/j.colsurfb.2005.06.00116024239
    [Google Scholar]
  38. FanW. YanW. XuZ. NiH. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.Colloids Surf. B Biointerfaces201290212710.1016/j.colsurfb.2011.09.04222014934
    [Google Scholar]
  39. HuB. PanC. SunY. HouZ. YeH. ZengX. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins.J. Agric. Food Chem.200856167451745810.1021/jf801111c18627163
    [Google Scholar]
  40. LiuH. GaoC. Preparation and properties of ionically cross-linked chitosan nanoparticles.Polym. Adv. Technol.20092061361910.1002/pat.1306
    [Google Scholar]
  41. QunG. AjunW. Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution.Carbohydr. Polym.200664293610.1016/j.carbpol.2005.10.026
    [Google Scholar]
  42. ZahidH. SharizaS. Preparation, characterisation and colloidal stability of chitosan- tripolyphosphate nanoparticles: Optimisation of formulation and process parameters.Int. J. Pharm. Pharm. Sci.201683297308
    [Google Scholar]
  43. ZhuH.J. LiuX.M. YangnH. ShenX.D. Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in a polyol process.Ceram Interfaces2014406699670410.1016/j.ceramint.2013.11.131
    [Google Scholar]
  44. NazeriN. AvadiM.R. FaramarziM.A. SafarianS. TavoosidanaG. KhoshayandM.R. AmaniA. Effect of preparation parameters on ultra low molecular weight chitosan/hyaluronic acid nanoparticles.Int. J. Biol. Macromol.20136264264610.1016/j.ijbiomac.2013.09.04124099942
    [Google Scholar]
  45. HassaniS. LaouiniA. FessiH. CharcossetC. Preparation of chitosan-TPP nanoparticles using microengineered membranes–Effect of parameters and encapsulation of tacrine.Colloids Surf. A Physicochem. Eng. Asp.2015482344310.1016/j.colsurfa.2015.04.006
    [Google Scholar]
  46. WuY. YangW. WangC. HuJ. FuS. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate.Int. J. Pharm.20052951-223524510.1016/j.ijpharm.2005.01.04215848008
    [Google Scholar]
  47. MohanrajV.J. ChenY. Nanoparticles – a review.Trop. J. Pharm. Res.20065561573
    [Google Scholar]
  48. MengJ. SturgisT.F. YouanB.B. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion.Eur. J. Pharm. Sci.2011441-2576710.1016/j.ejps.2011.06.00721704704
    [Google Scholar]
  49. YuC.Y. CaoH. ZhangX.C. Hybrid nanospheres and vesicles based on pectin as drug carriers.Langmuir20092519117201172610.1021/la901389v19719161
    [Google Scholar]
  50. MainardesR.M. EvangelistaR.C. PLGA nanoparticles containing praziquantel: Effect of formulation variables on size distribution.Int. J. Pharm.20052901-213714410.1016/j.ijpharm.2004.11.02715664139
    [Google Scholar]
  51. FonsecaC. SimõesS. GasparR. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitroanti-tumoral activity. J. Control. Release200283227328610.1016/S0168‑3659(02)00212‑212363453
    [Google Scholar]
  52. TripathiR. GuptaS.A. Saraf. PLGA nanoparticles of antitubercular drug: Drug loading and release studies of a water in-soluble drug.Int. J. Pharm. Tech. Res.2010221162123
    [Google Scholar]
  53. HadipourM.P. RamezaniV. EsfandiE. Development of a nano–micro carrier system for sustained pulmonary delivery of clarithromycin.Powder Technol.201323947848310.1016/j.powtec.2013.02.025
    [Google Scholar]
  54. DashM. ChielliniF. OttenbriteR.M. ChielliniE. Chitosan-A versatile semi-synthetic polymer in biomedical applications.Prog. Polym. Sci.2011368981101410.1016/j.progpolymsci.2011.02.001
    [Google Scholar]
  55. MohammadiG. NokhodchiA. Barzegar-JalaliM. LotfipourF. AdibkiaK. EhyaeiN. ValizadehH. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system.Colloids Surf. B Biointerfaces2011881394410.1016/j.colsurfb.2011.05.05021752610
    [Google Scholar]
  56. TsaiM.L. ChenR.H. BaiS.W. ChenW.Y. The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer.Carbohydr. Polym.20118475676110.1016/j.carbpol.2010.04.040
    [Google Scholar]
/content/journals/caps/10.2174/2452271604999201029195547
Loading
/content/journals/caps/10.2174/2452271604999201029195547
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test