Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Background

Fungi of the genus . before the maturation of spores are not damaged by microorganisms, insects, mollusks, and animals. Such resistance correlates with the period when the basidiomes of these fungi are filled with milky juice, which contains substances of various chemical nature that provide their protection.

Objective

The aim of our work is to present the results of our recent and previously published studies on the identification and toxicological characteristics of substances available in the milky juice of fungi of the genus and used for protection against predator and parasite organisms. The possibility of using these substances to suppress tumor cells is also discussed.

Methods

The biological effect of the juice of , , and , as well as methylene chloride, extracts obtained from fresh, frozen and dried basidiomes of was studied. Purification of individual fractions of hexane extract from the basidiomes was performed by chromatography on a silica gel column and their analysis by done by thin layer chromatography and gas chromatography mass spectrometry.

Results

The sesquiterpene aldehydes were shown to be the main component of the chemical protection system of . These agents are present in the milky juice of the fungi, and they are easily oxidized by oxygen in the air. The milky juice of these mushrooms is also rich in higher fatty acids and phthalates. Phthalates possess an insecticidal effect, while higher fatty acids are capable of forming adducts with sesquiterpenes that provide emulsion stability. Water-soluble substances, in particular, the polyphenol oxidase enzyme, whose activity correlates with the content of milky juice in basidiomes, also play a protective role.

Conclusion

Milky juice of mushrooms of . genus is a stable balanced emulsion containing a large number of substances. One part is responsible for the toxic effects on other organisms, while the other part determines the chemical stability of the emulsion. Altogether, they create an effective system of protection of fungi of the genus against microorganisms, insects, mollusks, and animals.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121702666220822125947
2023-09-23
2025-01-31
Loading full text...

Full text loading...

References

  1. BessetteA.E. HarrisD.B. BessetteA.R. Milky Mushrooms of North America: A Field Identification Guide to the Genus Lactarius. Syracuse, New York:Syracuse University Press2009
    [Google Scholar]
  2. GadH.A. RamadanG.R.M. El-BakryA.M. AbdelgaleilS.A.M. Monoterpenes: Promising natural products for public health insect control- A review.Int. J. Trop. Insect Sci.2022421059107510.1007/s42690‑021‑00692‑4
    [Google Scholar]
  3. De BernardiM. GarlaschelliL. TomaL. VidariG. Vita-FinziP. The chemical basis of hot-tasting and yellowing of the mushrooms Lactarius chrysorrheus and L. scrobiculatus.Tetrahedron19934971489150410.1016/S0040‑4020(01)90201‑7
    [Google Scholar]
  4. SternerO. BergmannR. KihlbergJ. WickbergB. The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defense system.J. Nat. Prod.198548227928810.1021/np50038a013
    [Google Scholar]
  5. KramerR. AbrahamW-R. Volatile sesquiterpenes from fungi: What are they good for?Phytochem. Rev.2012111153710.1007/s11101‑011‑9216‑2
    [Google Scholar]
  6. GustinasariK. SługockiŁ CzerniawskiR PandebesieES HermanaJ. Acute toxicity and morphology alterations of glyphosate-based herbicides to Daphnia magna and Cyclops vicinus.Toxicol. Res.202037219720710.1007/s43188‑020‑00054‑133868977
    [Google Scholar]
  7. U.S. Environmental Protection AgencyMethods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms.6th edWashington2002
    [Google Scholar]
  8. TsivinskaM.V. AntonyukV.O. PanchakL.V. KlyuchivskaO.Yu. StoikaR.S. Biologically active substances of methanol extracts of dried Lactarius quietus and Lactarius volemus basidiomes mushrooms: Identification and potential functions.Biotechnol. Acta201522586810.15407/biotech8.02.058
    [Google Scholar]
  9. VidariG. Vita-FinziP. Sesquiterpenes and other secondary metabolites of genus Lactarius (Basidiomycetes): Chemistry and biological activity.Stud Nat Prod Chem19951715320610.1016/S1572‑5995(05)80084‑5
    [Google Scholar]
  10. JonassohnM. Sesquiterpenoid unsaturated dialdehydes Structural properties that affect reactivity and bioactivity.Department of Organic Chemistry, Lund University, Sweden,199680Available from: https://www.elibrary.ru/item.asp?id=6877787
    [Google Scholar]
  11. LuoD.Q. WangF. BianX.Y. LiuJ.K. Rufuslactone, a new antifungal sesquiterpene from the fruiting bodies of the basidiomycete Lactarius rufus.J. Antibiot.200558745645910.1038/ja.2005.6016161484
    [Google Scholar]
  12. TsivinskaM.V. PanchakL.V. StoikaR.S. AntonyukV.O. Isolation, characteristics, and antioxidant activity of low volecular compounds of fruit bodies Lactarius pergamenus (Fr.) Fr mushrooms.J. Adv. Biol.20156310231035
    [Google Scholar]
  13. TsivinskaM.V. PanchakL.V. StoikaR.S. AntonyukV.O. Identification of componentsof the milky juice of Lactarius pergamenus (Fr.) Fr fungi by gas-liquid chromatography/mass-spectrometry.Ukr. Biochem. J.201385517017610.15407/ubj85.05.170
    [Google Scholar]
  14. PanchakL.V. TsivinskaM.V. AntonyukV.O. StoikaR.S. Chemical composition of the frozen methanol extracts from genuine mushrooms basidiomes.Biotechnology (Kyiv)2011459096
    [Google Scholar]
  15. PanchakL.V. AntonyukV.O. Standartization of Lactarius pergamenus (Fr.)Fr raw matherial and biological active substance.Phytother Chasopys201424548
    [Google Scholar]
  16. PanchakL.V. KlyuchivskaO.Y. TsivinskaM.V. StoikaR.S. LesykR.B. AntonyukV.O. The chemical composition and antiproliferative activity of fraction of the methanol extract from the basidiomes of Lactarius pergamenus (Fr.) Fr.Biotechnology2012517885
    [Google Scholar]
  17. PanchakL.V. AntonyukV.O. Purification of a lectin from fruit bodies of Lactarius pergamenus (Fr.) Fr. and studies of its properties.Biochemistry201176443844910.1134/S000629791104006721585319
    [Google Scholar]
  18. ListP.H. HackenbergH. Velleral und iso- velleral, scharf schmeckende stoffe aus lactarius vellereus fries.Arch Pharm1969302212514310.1002/ardp.19693020208
    [Google Scholar]
  19. AntonyukV.O. PanchakL.V. TsivinskaM.V. StoikaR.S. Biologically active aldehydes in extracts of Lactarius pergamenus (Fr.) Fr fresh fruiting bodies.Methods Objects Chem Analy202015312513110.17721/moca.2020.125‑131
    [Google Scholar]
  20. GuoC. ZhangS. TengS. NiuK. Simultaneous determination of sesquiterpene lactones isoalantolactone and alantolactone isomers in rat plasma by liquid chromatography with tandem mass spectrometry: Application to a pharmacokinetic study.J. Sep. Sci.201437895095610.1002/jssc.20140011924520052
    [Google Scholar]
  21. HanssonT. PangZ. SternerO. The conversion of [12-2H3]-labelled velutinal in injured fruit bodies of Lactarius vellereus. Further insight into the biosynthesis of the Russulaceae sesquiterpenes.Acta Chem. Scand.19934740340510.3891/acta.chem.scand.47‑0403
    [Google Scholar]
  22. TsivinskaM.V. AntonyukV.O. StoikaR.S. Isolation and properties of polyphenol oxidase from basidiocarps of Lactarius pergamenus Fr. (Fr.) fungi.Ukr. Biochem. J.2015872566510.15407/ubj87.02.05626255339
    [Google Scholar]
  23. ClericuzioM. HanF. PanF. PangZ. SternerO. The sesquiterpenoid contents of fruit bodies of Russula delica.Acta Chem. Scand.1998521333133710.3891/acta.chem.scand.52‑1333
    [Google Scholar]
  24. VelhsekJ. CejpekK. Pigments of higher fungi: A review.Czech J. Food Sci.20112928710210.17221/524/2010‑CJFS
    [Google Scholar]
  25. Feussi TalaM. QinJ. NdongoJ.T. LaatschH. New azulene-type sesquiterpenoids from the fruiting bodies of Lactarius deliciosus.Nat. Prod. Bioprospect.20177326927310.1007/s13659‑017‑0130‑128493207
    [Google Scholar]
  26. Favre-BonvinJ. Gluchoff-FlassonK. BernillonJ. Structure du stearyl-velutinal, sequiterpenoide naturel de Lactarius velutinus bert.Tetrahedron Lett.198223181907190810.1016/S0040‑4039(00)87218‑4
    [Google Scholar]
  27. HanssonT. SternerO StridA. Chemotaxonomic evidence for a division of Lactarius vellereus and L. bertillonii as different species.Phytochemistry199539236336510.1016/0031‑9422(94)00875‑T
    [Google Scholar]
  28. RoelP.L.B. Total synthesis of lactarane and marasmane sesquiterpenes.2000119Available from: https://edepot.wur.nl/121247
    [Google Scholar]
  29. MarszałekR ParadowskaK WawerI. Biologically active compounds of mushrooms genus Lactarius.Herbalism201814657310.32094/HERB‑2018‑06
    [Google Scholar]
  30. DaniewskiW.M. GumulkaM. PrzesmyckaD. PtaszyńskaK BłoszykE DroźdźB. Sesquiterpenes of Lactarius origin, antifeedant structure-activity relationships.Phytochemistry19953851161116810.1016/0031‑9422(94)00781‑N
    [Google Scholar]
  31. HansonJ.R. Pseudo-natural products, some artefacts formed during the isolation of terpenoids.J. Chem. Res.201741949750310.3184/174751917X15021050367558
    [Google Scholar]
  32. OpenderK. Insect antifeedants. Boca Raton, Florida: CRC Press LLC200510.1201/9780203414569
  33. ParuchE. Natural and synthetic insect antifidants (Part 1).Chemical News2001551-293118Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztecharticle-BUS1-0010-0005
    [Google Scholar]
  34. ParuchE. Natural and synthetic insect antifidants (Part 2).Chemical News2001551-2119149Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztecharticle-BUS1-0010-0006
    [Google Scholar]
  35. OlatunjiT.L. OdebunmiC.A. AdetunjiA.E. Biological activities of limonoids in the Genus Khaya (Meliaceae): A review.Fut J Pharm Sci2021717410.1186/s43094‑021‑00197‑4
    [Google Scholar]
  36. PridgeonJ.W. BernierU.R. BecnelJ.J. Toxicity comparison of eight repellents against four species of female mosquitoes.J. Am. Mosq. Control Assoc.200925216817310.2987/08‑5837.119653498
    [Google Scholar]
  37. RamalakshmiS. MuthuchelianK. Anlaysis of bioactive constituents from the leaves of Mallotus tetracoccus (Roxb.) Kurz by gas chromatography-mass spectrometry.Int. J. Pharm. Sci. Res.20112614491454
    [Google Scholar]
  38. HabibM.R. KarimM.R. Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol- 3-acetate Isolated from Calotropis gigantea (Linn.) flower.Mycobiology2009371313610.4489/MYCO.2009.37.1.03123983504
    [Google Scholar]
  39. LandkoczY. PoupinP. AtienzarF. VasseurP. Transcriptomic effects of di-(2-ethylhexyl)-phthalate in Syrian hamster embryo cells: An important role of early cytoskeleton disturbances in carcinogenesis?BMC Genomics201112252454010.1186/1471‑2164‑12‑52422026506
    [Google Scholar]
  40. VolcãoL.M. HalickiP.C.B. Christ-RibeiroA. Mushroom extract of Lactarius deliciosus (L.) Sf. Gray as biopesticide: Antifungal activity and toxicological analysis.J. Toxicol. Environ. Health A2022852435510.1080/15287394.2021.197006534459359
    [Google Scholar]
  41. MayerA.M. Polyphenol oxidases in plants and fungi: Going places? A review.Phytochemistry200667212318233110.1016/j.phytochem.2006.08.00616973188
    [Google Scholar]
  42. FlurkeyW.H. InlowJ.K. Proteolytic processing of polyphenol oxidase from plants and fungi.J. Inorg. Biochem.2008102122160217010.1016/j.jinorgbio.2008.08.00718829115
    [Google Scholar]
  43. GramsG. GüntherTh. FritscheW. Spot tests for oxidative enzymes in ectomycorrhizal, wood-, and litter decaying fungi.Mycol. Res.19981021677210.1017/S095375629700436X
    [Google Scholar]
/content/journals/vat/10.2174/2666121702666220822125947
Loading
/content/journals/vat/10.2174/2666121702666220822125947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test