Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Background

Hemolytic uremic syndrome associated with Shiga-toxin produced by is a serious worldwide foodborne disease. Nowadays, no treatment is available, only supportive care can be provided, and 50% of the patients require a period of dialysis. Recently, a therapy based on Neutralizing Equine Anti Shiga Toxin (NEAST) antibodies has been developed. NEAST is composed of F(ab’)2 fragments from equine immunoglobulins.

Objective

The purpose of this study was to develop an ELISA to measure serum concentrations of NEAST in mice and rabbits, and to validate it according to international recommendations. The validated method was further used to analyze the NEAST PK during preclinical studies.

Methods

A sandwich ELISA was developed, the performance of the calibration curve was assessed, and it was validated based on the parameters as accuracy, precision, specificity, selectivity, stability of the analyte, and dilutional linearity.

Results

This immunoassay was specific, sensitive, accurate and precise in a dynamic range from 7.81 to 500 ng/mL and from 15.63 to 500 ng/mL for mice and rabbits, respectively. This method was successfully applied to PK studies of NEAST after intravenous administration.

Conclusion

The results obtained are expected for a robust ELISA used for macromolecule analysis. Since NEAST is an equine F(ab′)2, this immunoassay would serve for the evaluation of the PK profile of any biological product based on molecules with similar characteristics. This immunoassay may be useful for current and future preclinical trials conducted for registration purposes.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121702666220427081107
2022-08-01
2025-03-13
Loading full text...

Full text loading...

References

  1. RosalesA. HoferJ. ZimmerhacklL-B. German-Austrian HUS Study GroupNeed for long-term follow-up in enterohemorrhagic Escherichia coli-associated hemolytic uremic syndrome due to late-emerging sequelae.Clin. Infect. Dis.201254101413142110.1093/cid/cis196 22412065
    [Google Scholar]
  2. MostafaviA. FoziM.A. KoshkooiehA.E. MohammadabadiM. BabenkoO.I. KlopenkoN.I. Effect of LCORL gene polymorphism on body size traits in horse populations.Acta Sci. Anim. Sci.201942e4748310.4025/actascianimsci.v42i1.47483
    [Google Scholar]
  3. MoazemiI. MohammadabadiM.R. MostafaviA. Polymorphism of DMRT3 gene and its association with body measurements in horse breeds.Russ. J. Genet.202056101232124010.1134/S1022795420100087
    [Google Scholar]
  4. AsadollahpourN. NosratiM. MohammadabadiM. Genetic structure analysis of akhal-teke horse population and comparison with other horse breeds by using whole genome sequencing data.MGJ202116299307
    [Google Scholar]
  5. LangJ. AttanathP. QuiambaoB. Evaluation of the safety, immunogenicity, and pharmacokinetic profile of a new, highly purified, heat-treated equine rabies immunoglobulin, administered either alone or in association with a purified, Vero-cell rabies vaccine.Acta Trop.199870331733310.1016/S0001‑706X(98)00038‑2 9777717
    [Google Scholar]
  6. QuiambaoB.P. DytiocoH.Z. DizonR.M. CrisostomoM.E. LaotT.M. TeuwenD.E. Rabies post-exposure prophylaxis in the Philippines: Health status of patients having received purified equine F(ab’)(2) fragment rabies immunoglobulin (Favirab).PLoS Negl. Trop. Dis.200825e24310.1371/journal.pntd.0000243 18509475
    [Google Scholar]
  7. HerbreteauC.H. JacquotF. RithS. Specific polyclonal F(ab’)2 neutralize a large panel of highly pathogenic avian influenza A viruses (H5N1) and control infection in mice.Immunotherapy20146669970810.2217/imt.14.40 24673720
    [Google Scholar]
  8. BalC. HerbreteauC.H. BuchyP. Safety, potential efficacy, and pharmacokinetics of specific polyclonal immunoglobulin F(ab’)₂ fragments against avian influenza A (H5N1) in healthy volunteers: A single-centre, randomised, double-blind, placebo-controlled, phase 1 study.Lancet Infect. Dis.201515328529210.1016/S1473‑3099(14)71072‑2 25662592
    [Google Scholar]
  9. LopardoG. BellosoW.H. NanniniE. INM005 Study GroupRBD-specific polyclonal F(ab´)2 fragments of equine antibodies in patients with moderate to severe COVID-19 disease: A randomized, multicenter, double-blind, placebo-controlled, adaptive phase 2/3 clinical trial.EClinicalMedicine20213410084310.1016/j.eclinm.2021.100843 33870149
    [Google Scholar]
  10. SalinasF. MarelliB.E. SanguinetiS. Non-clinical safety assessment and in vivo biodistribution of CoviFab, an RBD-specific F(ab’)2 fragment derived from equine polyclonal antibodies.Toxicol. Appl. Pharmacol.202243411579610.1016/j.taap.2021.115796 34785274
    [Google Scholar]
  11. ChippauxJ.P. LangJ. Amadi-EddineS. FagotP. Le MenerV. Short report: Treatment of snake envenomations by a new polyvalent antivenom composed of highly purified F(ab)2: Results of a clinical trial in northern Cameroon.Am. J. Trop. Med. Hyg.19996161017101810.4269/ajtmh.1999.61.1017 10674688
    [Google Scholar]
  12. ChippauxJ-P. MassougbodjiA. StockR.P. AlagonA. Investigators of African Antivipmyn in Benin. Clinical trial of an F(ab’)2 polyvalent equine antivenom for African snake bites in Benin.Am. J. Trop. Med. Hyg.200777353854610.4269/ajtmh.2007.77.538 17827375
    [Google Scholar]
  13. HiriartY. PardoR. BukataL. Preclinical studies of NEAST (Neutralizing Equine Anti-Shiga To Xin): A potential treatment for prevention of stec-hus.Int J Drug Dev Res2019111524
    [Google Scholar]
  14. KarlinerJ.S. BelavalG.S. Incidence of reactions following administration of antirabies serum.JAMA1965193535936210.1001/jama.1965.03090050035009 14313890
    [Google Scholar]
  15. de HaroL. LangJ. BedryR. Envenimations par vipères européennes. Etude multicentrique de tolérance du Viperfav, nouvel antivenin par voie intraveineuse.Ann. Fr. Anesth. Reanim.199817768168710.1016/S0750‑7658(98)80105‑6 9750806
    [Google Scholar]
  16. MarcatoP. MulveyG. ReadR.J. Immunoprophylactic potential of cloned Shiga toxin 2 B subunit.J. Infect. Dis.2001183343544310.1086/318080 11133375
    [Google Scholar]
  17. BoyerL. DeganJ. RuhaA.M. MallieJ. ManginE. AlagónA. Safety of intravenous equine F(ab’)2: Insights following clinical trials involving 1534 recipients of scorpion antivenom.Toxicon20137638639310.1016/j.toxicon.2013.07.017 23916602
    [Google Scholar]
  18. DarwishI.A. Immunoassay methods and their applications in pharmaceutical analysis: Basic methodology and recent advances.Int. J. Biomed. Sci.200623217235 23674985
    [Google Scholar]
  19. European medicines agency, committee for medicinal products for human use, . Guideline on Bioanalytical Method Validation. In: London, UK2012Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf
  20. U.S Food and Drug Administration, U.S. Department of Health and Human ServicesGuidance for industry: Bioanalytical method validation. Rockville, USA2018Available from: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
  21. Organisation for Economic Co-operation and Development (OECD)Principles on good laboratory practice. In: Paris, France1998Available from: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/mc/chem(98)17&doclanguage=en
    [Google Scholar]
  22. LaplagneD.A. ZylbermanV. AinciartN. Engineering of a polymeric bacterial protein as a scaffold for the multiple display of peptides.Proteins200457482082810.1002/prot.20248 15390265
    [Google Scholar]
  23. MejiasM.P. GhersiG. CraigP.O. Immunization with a chimera consisting of the B subunit of Shiga toxin type 2 and brucella lumazine synthase confers total protection against Shiga toxins in mice.J. Immunol.201319152403241110.4049/jimmunol.1300999 23918978
    [Google Scholar]
  24. SuessenbachF.K. TinsJ. BurckhardtB.B. LENA ConsortiumCustomisation and validation of a low-volume plasma renin activity immunoassay: Enabling of regulatory compliant determination in paediatric trials.Pract. Lab. Med.201917e0014410.1016/j.plabm.2019.e00144 31867426
    [Google Scholar]
  25. MapleL. LathropR. BozichS. Development and validation of ELISA for herceptin detection in human serum.J. Immunol. Methods20042951-216918210.1016/j.jim.2004.09.012 15627622
    [Google Scholar]
  26. NRCGuide for the Care and Use of Laboratory Animals.National Academies Press2011
    [Google Scholar]
  27. KleinstreuerN.C. TongW. TetkoI.V. Computational toxicology.Chem. Res. Toxicol.202033368768810.1021/acs.chemrestox.0c00070 32172570
    [Google Scholar]
  28. European Medicines Agency, Committee for Medicinal Products for Human UseGuideline on the Investigation of Bioequivalence.2010Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf
    [Google Scholar]
  29. Reagan-ShawS. NihalM. AhmadN. Dose translation from animal to human studies revisited.FASEB J.200822365966110.1096/fj.07‑9574LSF 17942826
    [Google Scholar]
  30. LeeJ.W. DevanarayanV. BarrettY.C. Fit-for-purpose method development and validation for successful biomarker measurement.Pharm. Res.200623231232810.1007/s11095‑005‑9045‑3 16397743
    [Google Scholar]
  31. ManderA. ChowdhuryF. LowL. OttensmeierC.H. Fit for purpose? A case study: Validation of immunological endpoint assays for the detection of cellular and humoral responses to anti-tumour DNA fusion vaccines.Cancer Immunol. Immunother.200958578980010.1007/s00262‑008‑0633‑z 19066888
    [Google Scholar]
  32. ChowdhuryF. TuttA.L. ChanC. GlennieM. JohnsonP.W. Development, validation and application of ELISAs for pharmacokinetic and HACA assessment of a chimeric anti-CD40 monoclonal antibody in human serum.J. Immunol. Methods201036311810.1016/j.jim.2010.09.023 20869964
    [Google Scholar]
  33. FindlayJ.W. SmithW.C. LeeJ.W. Validation of immunoassays for bioanalysis: A pharmaceutical industry perspective.J. Pharm. Biomed. Anal.20002161249127310.1016/S0731‑7085(99)00244‑7 10708409
    [Google Scholar]
  34. DeSilvaB. SmithW. WeinerR. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules.Pharm. Res.200320111885190010.1023/B:PHAM.0000003390.51761.3d 14661937
    [Google Scholar]
  35. SmolecJ. DeSilvaB. SmithW. Bioanalytical method validation for macromolecules in support of pharmacokinetic studies.Pharm. Res.20052291425143110.1007/s11095‑005‑5917‑9 16132353
    [Google Scholar]
  36. HampsonG. WardT.H. CummingsJ. Validation of an ELISA for the determination of rituximab pharmacokinetics in clinical trials subjects.J. Immunol. Methods20103601-2303810.1016/j.jim.2010.05.009 20547164
    [Google Scholar]
  37. CummingsJ. WardT.H. GreystokeA. RansonM. DiveC. Biomarker method validation in anticancer drug development.Br. J. Pharmacol.2008153464665610.1038/sj.bjp.0707441 17876307
    [Google Scholar]
  38. MillerK.J. BowsherR.R. CelnikerA. Workshop on bioanalytical methods validation for macromolecules: Summary report.Pharm. Res.20011891373138310.1023/A:1013062600566 11683255
    [Google Scholar]
  39. LoboE.D. HansenR.J. BalthasarJ.P. Antibody pharmacokinetics and pharmacodynamics.J. Pharm. Sci.200493112645266810.1002/jps.20178 15389672
    [Google Scholar]
  40. QuesadaL. SevcikC. LomonteB. RojasE. GutiérrezJ.M. Pharmacokinetics of whole IgG equine antivenom: Comparison between normal and envenomed rabbits.Toxicon200648325526310.1016/j.toxicon.2006.05.010 16863656
    [Google Scholar]
  41. VázquezH. Chávez-HaroA. García-UbbelohdeW. Paniagua-SolísJ. AlagónA. SevcikC. Pharmacokinetics of a F(ab’)2 scorpion antivenom administered intramuscularly in healthy human volunteers.Int. Immunopharmacol.201010111318132410.1016/j.intimp.2010.08.018 20849955
    [Google Scholar]
  42. VázquezH. OlveraF. AlagónA. SevcikC. Production of anti-horse antibodies induced by IgG, F(ab’)2 and Fab applied repeatedly to rabbits. Effect on antivenom pharmacokinetics.Toxicon20137636236910.1016/j.toxicon.2013.09.004 24047962
    [Google Scholar]
/content/journals/vat/10.2174/2666121702666220427081107
Loading
/content/journals/vat/10.2174/2666121702666220427081107
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ELISA; NEAST; pharmacokinetic studies; preclinical studies; toxin; validation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test