Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Parkinson’s disease (PD) has caused most economies to lose their active human capital. Due to poor understanding of the pathophysiology of PD, PD animal models were developed to aid the investigation of PD pathogenesis and therapy. Currently, the toxin-induced and the genetic animal models are being used for most PD research.

Most neurotoxin animal model studies on PD are focused on the motor features and economic importance associated with dopamine depletion; however, the molecular pathways for cell loss by these models and its usefulness in PD drug development have not been reported fully. In this review, we have provided a summary of the toxic mechanism and shortcomings of four neurotoxins (6-OHDA, MPTP, Rotenone and, Paraquat) that are frequently used to mimic PD in animal models. This review will give readers basic knowledge for selecting the best toxin for a specific PD experiment and also provide information that will help in the future development of toxins with fewer shortcomings. This review also summarizes the mechanism and features of some PD genetic models.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121701999201104163407
2021-03-01
2024-11-22
Loading full text...

Full text loading...

References

  1. KikuchiT. MorizaneA. DoiD. MagotaniH. OnoeH. HayashiT. MizumaH. TakaraS. TakahashiR. InoueH. MoritaS. YamamotoM. OkitaK. NakagawaM. ParmarM. TakahashiJ. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model.Nature2017548766959259610.1038/nature23664 28858313
    [Google Scholar]
  2. LuJ-M. ZhouH-G. Evaluation on behaviors and neuron morphology of Parkinson’s disease rat model.Zhongguo Linchuang Kangfu200481803182
    [Google Scholar]
  3. ReeveA. SimcoxE. TurnbullD. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor?Ageing Res. Rev.201414193010.1016/j.arr.2014.01.004 24503004
    [Google Scholar]
  4. MeirelesJ. MassanoJ. Cognitive impairment and dementia in Parkinson’s disease: clinical features, diagnosis, and management.Front. Neurol.201238810.3389/fneur.2012.00088 22654785
    [Google Scholar]
  5. PetitG.H. OlssonT.T. BrundinP. The future of cell therapies and brain repair: Parkinson’s disease leads the way.Neuropathol. Appl. Neurobiol.2014401607010.1111/nan.12110 24372386
    [Google Scholar]
  6. BhardwajR. DeshmukhR. Parkinson’s Disease: An Insight into Mechanisms and Model Systems.Int. J. Med. Res. Health Sci.201873851
    [Google Scholar]
  7. KlasserG.D. FischerD.J. EpsteinJ.B. Burning mouth syndrome: recognition, understanding, and management.Oral Maxillofac. Surg. Clin. North Am.2008202255271, vii.10.1016/j.coms.2007.12.01218343329
    [Google Scholar]
  8. BlesaJ. PhaniS. Jackson-LewisV. PrzedborskiS. Classic and new animal models of Parkinson’s disease.J. Biomed. Biotechnol.20122012, 845618.10.1155/2012/845618 22536024
    [Google Scholar]
  9. ChaiC. LimK-L. Genetic insights into sporadic Parkinson’s disease pathogenesis.Curr. Genomics201314848650110.2174/1389202914666131210195808 24532982
    [Google Scholar]
  10. TannerC.M. LangstonJ.W. Do environmental toxins cause Parkinson’s disease? A critical review.Neurology19904010Suppl. 31730 2215971
    [Google Scholar]
  11. CaudleW.M. Occupational exposures and parkinsonism.Handb. Clin. Neurol.201513122523910.1016/B978‑0‑444‑62627‑1.00013‑5 26563792
    [Google Scholar]
  12. De lau LM, Breteler MM. Epidemiology of Parkinson’s disease.Lancet Neurol.2006552553510.1016/S1474‑4422(06)70471‑9
    [Google Scholar]
  13. BjørklundG. StejskalV. UrbinaM.A. DadarM. ChirumboloS. MutterJ. Metals and Parkinson’s Disease: Mechanisms and Biochemical Processes.Curr. Med. Chem.201825192198221410.2174/0929867325666171129124616 29189118
    [Google Scholar]
  14. FirestoneJ.A. Smith-WellerT. FranklinG. SwansonP. LongstrethW.T.Jr CheckowayH. Pesticides and risk of Parkinson disease: a population-based case-control study.Arch. Neurol.2005621919510.1001/archneur.62.1.91 15642854
    [Google Scholar]
  15. LangstonJ.W. BallardP. TetrudJ.W. IrwinI. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science1983219458797998010.1126/science.6823561 6823561
    [Google Scholar]
  16. CortiO. LesageS. BriceA. What genetics tells us about the causes and mechanisms of Parkinson’s disease.Physiol. Rev.20119141161121810.1152/physrev.00022.2010 22013209
    [Google Scholar]
  17. MataI.F. LockhartP.J. FarrerM.J. Parkin genetics: one model for Parkinson’s disease.Hum. Mol. Genet.200413Spec No 1R127R13310.1093/hmg/ddh089 14976155
    [Google Scholar]
  18. IkebeS. TanakaM. OzawaT. Point mutations of mitochondrial genome in Parkinson’s disease.Brain Res. Mol. Brain Res.199528228129510.1016/0169‑328X(94)00209‑W 7723627
    [Google Scholar]
  19. PolymeropoulosM.H. LavedanC. LeroyE. IdeS.E. DehejiaA. DutraA. PikeB. RootH. RubensteinJ. BoyerR. StenroosE.S. ChandrasekharappaS. AthanassiadouA. PapapetropoulosT. JohnsonW.G. LazzariniA.M. DuvoisinR.C. Di IorioG. GolbeL.I. NussbaumR.L. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease.Science199727653212045204710.1126/science.276.5321.2045 9197268
    [Google Scholar]
  20. ChungK.K. ThomasB. LiX. PletnikovaO. TroncosoJ.C. MarshL. DawsonV.L. DawsonT.M. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function.Science200430456751328133110.1126/science.1093891 15105460
    [Google Scholar]
  21. Ben GedalyaT. LoebV. IsraeliE. AltschulerY. SelkoeD.J. SharonR. Alpha-synuclein and polyunsaturated fatty acids promote clathrin-mediated endocytosis and synaptic vesicle recycling.Traffic200910221823410.1111/j.1600‑0854.2008.00853.x 18980610
    [Google Scholar]
  22. KoprichJ.B. JohnstonT.H. HuotP. ReyesM.G. EspinosaM. BrotchieJ.M. Progressive neurodegeneration or endogenous compensation in an animal model of Parkinson’s disease produced by decreasing doses of alpha-synuclein.PLoS One201163, e17698.10.1371/journal.pone.0017698 21408191
    [Google Scholar]
  23. PolymeropoulosM.H. Autosomal dominant Parkinson’s disease.J. Neurol.199824511Suppl. 31310.1007/PL00007740 9808333
    [Google Scholar]
  24. JennerP. OlanowC.W. Understanding cell death in Parkinson’s disease.Ann. Neurol.1998443Suppl. 1S72S8410.1002/ana.410440712 9749577
    [Google Scholar]
  25. SardiS.P. CedarbaumJ.M. BrundinP. Targeted therapies for Parkinson’s disease: from genetics to the clinic.Mov. Disord.201833568469610.1002/mds.27414 29704272
    [Google Scholar]
  26. BrundinP. DaveK.D. KordowerJ.H. Therapeutic approaches to target alpha-synuclein pathology. Exp. Neurol.2017298Pt B22523510.1016/j.expneurol.2017.10.00328987463
    [Google Scholar]
  27. HealyD.G. FalchiM. O’SullivanS.S. BonifatiV. DurrA. BressmanS. BriceA. AaslyJ. ZabetianC.P. GoldwurmS. FerreiraJ.J. TolosaE. KayD.M. KleinC. WilliamsD.R. MarrasC. LangA.E. WszolekZ.K. BercianoJ. SchapiraA.H. LynchT. BhatiaK.P. GasserT. LeesA.J. WoodN.W. International LRRK2 Consortium. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study.Lancet Neurol.20087758359010.1016/S1474‑4422(08)70117‑0 18539534
    [Google Scholar]
  28. CooksonM.R. LRRK2 pathways leading to neurodegeneration.Curr. Neurol. Neurosci. Rep.20151574210.1007/s11910‑015‑0564‑y 26008812
    [Google Scholar]
  29. GoldbergM.S. PisaniA. HaburcakM. VorthermsT.A. KitadaT. CostaC. TongY. MartellaG. TscherterA. MartinsA. BernardiG. RothB.L. PothosE.N. CalabresiP. ShenJ. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1.Neuron200545448949610.1016/j.neuron.2005.01.041 15721235
    [Google Scholar]
  30. ZigmondMJ Burkes, RE Pathophysiology of Parkinson disease.neurophycho pharmacology: The fifth generation2002123114
    [Google Scholar]
  31. KumarP. KumarP. KhanA. DeshmukhR. Lal SharmaP. Role of neurosteroids in experimental 3-nitropropionic acid induced neurotoxicity in rats.Eur. J. Pharmacol.2014723384510.1016/j.ejphar.2013.11.036 24333475
    [Google Scholar]
  32. ArosoM. FerreiraR. FreitasA. VitorinoR. Gomez-LazaroM. New insights on the mitochondrial proteome plasticity in Parkinson’s disease.Proteomics Clin. Appl.201610441642910.1002/prca.201500092 26749507
    [Google Scholar]
  33. OlanowC.W. A radical hypothesis for neurodegeneration.Trends Neurosci.1993161143944410.1016/0166‑2236(93)90070‑3 7507613
    [Google Scholar]
  34. ValkoM. RhodesC.J. MoncolJ. IzakovicM. MazurM. Free radicals, metals and antioxidants in oxidative stress-induced cancer.Chem. Biol. Interact.2006160114010.1016/j.cbi.2005.12.009 16430879
    [Google Scholar]
  35. DevoreE.E. GrodsteinF. van RooijF.J. HofmanA. StampferM.J. WittemanJ.C. BretelerM.M. Dietary antioxidants and long-term risk of dementia.Arch. Neurol.201067781982510.1001/archneurol.2010.144 20625087
    [Google Scholar]
  36. Rodriguez-PallaresJ. PargaJ.A. JoglarB. GuerraM.J. Labandeira-GarciaJ.L. Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease.Age (Dordr.)201234486388010.1007/s11357‑011‑9284‑7 21713375
    [Google Scholar]
  37. SchapiraA.H.V. CooperJ.M.M. DexterD. ClarkJ.B. JennerP. MarsdenC.D. Mitochondrial complex I deficiency in Parkinson’s disease.J. Neurochem.199054382382710.1111/j.1471‑4159.1990.tb02325.x 2154550
    [Google Scholar]
  38. SengstockG.J. OlanowC.W. DunnA.J. BaroneS.Jr ArendashG.W. Progressive changes in striatal dopaminergic markers, nigral volume, and rotational behavior following iron infusion into the rat substantia nigra.Exp. Neurol.19941301829410.1006/exnr.1994.1187 7529713
    [Google Scholar]
  39. FukushimaT. TanX. LuoY. WangP. SongJ. KandaH. HayakawaT. KumagaiT. KakamuT. TsujiM. HidakaT. MoriY. Heavy metals in blood and urine and its relation to depressive symptoms in Parkinson’s disease patients.Fukushima J. Med. Sci.2013592768010.5387/fms.59.76 24500382
    [Google Scholar]
  40. GibbW.R. ScottT. LeesA.J. Neuronal inclusions of Parkinson’s disease.Mov. Disord.19916121110.1002/mds.870060103 1848677
    [Google Scholar]
  41. DawsonT.M. KoH.S. DawsonV.L. Genetic animal models of Parkinson’s disease.Neuron201066564666110.1016/j.neuron.2010.04.034 20547124
    [Google Scholar]
  42. ChoudhuryA. ChakrabortyI. BanerjeeT.S. VanaD.R. AdapaD. Efficacy of morin as a potential therapeutic phytocomponent: Insights into the mechanism of action.Int. J. Med. Research Health Sci.20176175194
    [Google Scholar]
  43. ChesseletM.F. RichterF. Modelling of Parkinson’s disease in mice.Lancet Neurol.201110121108111810.1016/S1474‑4422(11)70227‑7 22094131
    [Google Scholar]
  44. TieuK. A guide to neurotoxic animal models of Parkinson’s disease.Cold Spring Harb. Perspect. Med.201111, a009316.10.1101/cshperspect.a009316 22229125
    [Google Scholar]
  45. PenttinenA.M. SuleymanovaI. AlbertK. AnttilaJ. VoutilainenM.H. AiravaaraM. Characterization of a new low-dose 6-hydroxydopamine model of Parkinson’s disease in rat.J. Neurosci. Res.201694431832810.1002/jnr.23708 26762168
    [Google Scholar]
  46. BlandiniF. ArmenteroM.T. Animal models of Parkinson’s disease.FEBS J.201227971156116610.1111/j.1742‑4658.2012.08491.x 22251459
    [Google Scholar]
  47. GlinkaY. TiptonK.F. YoudimM.B. Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine.J. Neurochem.19966652004201010.1046/j.1471‑4159.1996.66052004.x 8780029
    [Google Scholar]
  48. UngerstedtU. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons.Eur. J. Pharmacol.19685110711010.1016/0014‑2999(68)90164‑7 5718510
    [Google Scholar]
  49. BovéJ. PerierC. Neurotoxin-based models of Parkinson’s disease.Neuroscience2012211517610.1016/j.neuroscience.2011.10.057 22108613
    [Google Scholar]
  50. MalmforsT. SachsC. Degeneration of adrenergic nerves produced by 6-hydroxydopamine.Eur. J. Pharmacol.196831899210.1016/0014‑2999(68)90056‑3 5654676
    [Google Scholar]
  51. ThieleS.L. WarreR. NashJ.E. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson’s disease.J. Vis. Exp.20126060323410.3791/3234 22370630
    [Google Scholar]
  52. BlandiniF. ArmenteroM.T. MartignoniE. The 6-hydroxydopamine model: news from the past.Parkinsonism Relat. Disord.200814Suppl. 2S124S12910.1016/j.parkreldis.2008.04.015 18595767
    [Google Scholar]
  53. ZigmondM.J. BergerT.W. GraceA.A. StrickerE.M. Compensatory responses to nigrostriatal bundle injury. Studies with 6-hydroxydopamine in an animal model of parkinsonism.Mol. Chem. Neuropathol.198910318520010.1007/BF03159728 2504173
    [Google Scholar]
  54. BlesaJ. Trigo-DamasI. Quiroga-VarelaA. Del ReyN.L.G. Animal Models of Parkinson’s Disease. Challenges in Parkinson’s Disease. Challenges in Parkinson's Disease, Jolanta Dorszewska and Wojciech Kozubski, IntechOpen2016https://www.intechopen.com/books/challenges-in-parkinson-s-disease/animal-models-of-parkinson-s-disease10.5772/63328
    [Google Scholar]
  55. VijayanathanY. LimF.T. LimS.M. LongC.M. TanM.P. MajeedA.B.A. RamasamyK. 6-OHDA-Lesioned Adult Zebrafish as a Useful Parkinson’s Disease Model for Dopaminergic Neuroregeneration.Neurotox. Res.201732349650810.1007/s12640‑017‑9778‑x 28707266
    [Google Scholar]
  56. KhaliliA. PeimaniA.R. SafarianN. YoussefK. ZoidlG. RezaiP. Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation.Integr. Biol.2019111037338310.1093/intbio/zyz031 31851358
    [Google Scholar]
  57. Hernandez-BaltazarD. Zavala-FloresL.M. Villanueva-OlivoA. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model.Neurologia2017328533539[English Edition].10.1016/j.nrl.2015.06.011 26304655
    [Google Scholar]
  58. SachsC. JonssonG. Mechanisms of action of 6-hydroxydopamine.Biochem. Pharmacol.19752411810.1016/0006‑2952(75)90304‑4 1092302
    [Google Scholar]
  59. PrzedborskiS. TieuK. Toxic animal models.Neurodegenerative diseases. BealM.F. Cambridge, USACambridge University Press2006196221
    [Google Scholar]
  60. SarreS. YuanH. JonkersN. Van HemelrijckA. EbingerG. MichotteY. In vivo characterization of somatodendritic dopamine release in the substantia nigra of 6-hydroxydopamine-lesioned rats.J. Neurochem.2004901293910.1111/j.1471‑4159.2004.02471.x 15198664
    [Google Scholar]
  61. JeonB.S. Jackson-LewisV. BurkeR.E. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death.Neurodegeneration19954213113710.1006/neur.1995.0016 7583676
    [Google Scholar]
  62. SanerA. ThoenenH. Model experiments on the molecular mechanism of action of 6-hydroxydopamine.Mol. Pharmacol.197172147154 5125851
    [Google Scholar]
  63. HwangO. Role of oxidative stress in Parkinson’s disease.Exp. Neurobiol.2013221111710.5607/en.2013.22.1.11 23585717
    [Google Scholar]
  64. PrajapatiS.K. GarabaduD. KrishnamurthyS. Coenzyme Q10 prevents mitochondrial dysfunction and facilitates pharmacological activity of atorvastatin in 6-OHDA induced dopaminergic toxicity in rats.Neurotox. Res.201731447849210.1007/s12640‑016‑9693‑6 28130746
    [Google Scholar]
  65. IlijicE. GuzmanJ.N. SurmeierD.J. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease.Neurobiol. Dis.201143236437110.1016/j.nbd.2011.04.007 21515375
    [Google Scholar]
  66. DauerW. PrzedborskiS. Parkinson’s disease: mechanisms and models.Neuron200339688990910.1016/S0896‑6273(03)00568‑3 12971891
    [Google Scholar]
  67. SalariS. BagheriM. In vivo, in vitro and pharmacologic models of Parkinson’s disease.Physiol. Res.2019681172410.33549/physiolres.933895 30433804
    [Google Scholar]
  68. JavoyF. SoteloC. HerbetA. AgidY. Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system.Brain Res.1976102220121510.1016/0006‑8993(76)90877‑5 1247882
    [Google Scholar]
  69. WeiR. RongC. XieQ. WuS. FengY. WangR. … Lin T. Neuroprotective Effect of Optimized Yinxieling Formula in 6-OHDA-Induced Chronic Model of Parkinson’s Disease through the Inflammation Pathway.Evid. Based Complement. Alternat. Med.2019201911110.1155/2019/9348075
    [Google Scholar]
  70. OffenburgerS-L. HoX.Y. Tachie-MensonT. CoakleyS. HilliardM.A. GartnerA. 6-OHDA-induced dopaminergic neurodegeneration in Caenorhabditis elegans is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33.PLoS Genet.2018141, e1007125.10.1371/journal.pgen.1007125 29346382
    [Google Scholar]
  71. VoroninM.V. KadnikovI.A. VoronkovD.N. SeredeninS.B. Chaperone Sigma1R mediates the neuroprotective action of afobazole in the 6-OHDA model of Parkinson’s disease.Sci. Rep.2019911702010.1038/s41598‑019‑53413‑w 31745133
    [Google Scholar]
  72. VieiraJ.C.F. BassaniT.B. SantiagoR.M. de O Guaita, G.; Zanoveli, J.M.; da Cunha, C.; Vital, M.A.B.F. Anxiety-like behavior induced by 6-OHDA animal model of Parkinson’s disease may be related to a dysregulation of neurotransmitter systems in brain areas related to anxiety.Behav. Brain Res.2019371, , 111981..10.1016/j.bbr.2019.111981 31141725
    [Google Scholar]
  73. BarnumC.J. BhideN. LindenbachD. SurrenaM.A. GoldenbergA.A. TignorS. KliouevaA. WaltersH. BishopC. Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by α- and β-adrenergic receptor antagonists in hemiparkinsonian rats.Pharmacol. Biochem. Behav.2012100360761510.1016/j.pbb.2011.09.009 21978941
    [Google Scholar]
  74. ChanC.S. GertlerT.S. SurmeierD.J. A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson’s disease.Mov. Disord.201025Suppl. 1S63S7010.1002/mds.22801 20187241
    [Google Scholar]
  75. SchusterS. DoudnikoffE. RylanderD. BerthetA. AubertI. IttrichC. BlochB. CenciM.A. SurmeierD.J. HengererB. BezardE. Antagonizing L-type Ca2+ channel reduces development of abnormal involuntary movement in the rat model of L-3,4-dihydroxyphenylalanine-induced dyskinesia.Biol. Psychiatry200965651852610.1016/j.biopsych.2008.09.008 18947822
    [Google Scholar]
  76. FarboodY. SarkakiA. DolatshahiM. Taqhi MansouriS.M. KhodadadiA. Ellagic Acid Protects the Brain Against 6-Hydroxydopamine Induced Neuroinflammation in a Rat Model of Parkinson’s Disease.Basic Clin. Neurosci.2015628389 27307952
    [Google Scholar]
  77. Sánchez-PernauteR. FerreeA. CooperO. YuM. BrownellA.L. IsacsonO. Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease.J. Neuroinflammation200411610.1186/1742‑2094‑1‑6 15285796
    [Google Scholar]
  78. MuramatsuS. FujimotoK. KatoS. MizukamiH. AsariS. IkeguchiK. KawakamiT. UrabeM. KumeA. SatoT. WatanabeE. OzawaK. NakanoI. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease.Mol. Ther.20101891731173510.1038/mt.2010.135 20606642
    [Google Scholar]
  79. MittermeyerG. ChristineC.W. RosenbluthK.H. BakerS.L. StarrP. LarsonP. KaplanP.L. ForsayethJ. AminoffM.J. BankiewiczK.S. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease.Hum. Gene Ther.201223437738110.1089/hum.2011.220 22424171
    [Google Scholar]
  80. DutyS. JennerP. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease.Br. J. Pharmacol.201116441357139110.1111/j.1476‑5381.2011.01426.x 21486284
    [Google Scholar]
  81. WeingartenH.L. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): one designer drug and serendipity.J. Forensic Sci.198833258859510.1520/JFS11978J 3259617
    [Google Scholar]
  82. PrzedborskiS. Jackson-LewisV. NainiA.B. JakowecM. PetzingerG. MillerR. AkramM. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety.J. Neurochem.20017651265127410.1046/j.1471‑4159.2001.00183.x 11238711
    [Google Scholar]
  83. BurnsR.S. LeWittP.A. EbertM.H. PakkenbergH. KopinI.J. The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).N. Engl. J. Med.1985312221418142110.1056/NEJM198505303122203 2581135
    [Google Scholar]
  84. ZengX.S. JiaJ.J. KwonY. WangS.D. BaiJ. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease.Free Radic. Biol. Med.201467101810.1016/j.freeradbiomed.2013.10.013 24140863
    [Google Scholar]
  85. GiovanniA. SieberB.A. HeikkilaR.E. SonsallaP.K. Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: Systemic administration.J. Pharmacol. Exp. Ther.1994270310001007 7932147
    [Google Scholar]
  86. AgidY. Javoy-AgidF. RubergM. Biochemistry of neurotransmitters in Parkinson’s disease.Marsden CD, Fahn S, editors. Movement Disorders: London- Butterworths UK;19872166230
    [Google Scholar]
  87. FornoL.S. DeLanneyL.E. IrwinI. LangstonJ.W. MPP+ binds Similarities and differences between MPTP-induced parkinsonism to neuromelanin.Science1993231987989
    [Google Scholar]
  88. GiacoppoS. BramantiP. MazzonE. Triggering of inflammasome by impaired autophagy in response to acute experimental Parkinson’s disease: involvement of the PI3K/Akt/mTOR pathway.Neuroreport20172815996100710.1097/WNR.0000000000000871 28902711
    [Google Scholar]
  89. HuX. SongQ. LiX. LiD. ZhangQ. MengW. ZhaoQ. Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson’s model through apoptosis inhibition and autophagy enhancement.Neuropharmacology201711735236310.1016/j.neuropharm.2017.02.022 28238714
    [Google Scholar]
  90. NicklasW.J. VyasI. HeikkilaR.E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine.Life Sci.198536262503250810.1016/0024‑3205(85)90146‑8 2861548
    [Google Scholar]
  91. ArbezN. HeX. HuangY. RenM. LiangY. NuciforaF.C. WangX. PeiZ. TessaroloL. SmithW.W. RossC.A. G2019S-LRRK2 mutation enhances MPTP-linked Parkinsonism in mice.Hum. Mol. Genet.202029458059010.1093/hmg/ddz271 31813996
    [Google Scholar]
  92. KaurK. GillJ.S. BansalP.K. DeshmukhR. Neuroinflammation - A major cause for striatal dopaminergic degeneration in Parkinson’s disease.J. Neurol. Sci.201738130831410.1016/j.jns.2017.08.3251 28991704
    [Google Scholar]
  93. ZengC. YueD. SunW. Evaluation of Hematological and Clinicopathological Characteristics in MPTP-induced Parkinson’s Model Rat.J. Chengdu Med. Coll.201914110
    [Google Scholar]
  94. CuiM. ArasR. ChristianW.V. RappoldP.M. HatwarM. PanzaJ. Jackson-LewisV. JavitchJ.A. BallatoriN. PrzedborskiS. TieuK. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway.Proc. Natl. Acad. Sci. USA2009106198043804810.1073/pnas.0900358106 19416912
    [Google Scholar]
  95. MizunoY. SoneN. SaitohT. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain.J. Neurochem.19874861787179310.1111/j.1471‑4159.1987.tb05737.x 3106573
    [Google Scholar]
  96. HuangD. XuJ. WangJ. TongJ. BaiX. LiH. WangZ. HuangY. WuY. YuM. HuangF. Dynamic Changes in the Nigrostriatal Pathway in the MPTP Mouse Model of Parkinson’s Disease.Parkinsons Dis.20172017, 9349487.10.1155/2017/9349487 28831326
    [Google Scholar]
  97. LuY. ZhangX. ZhaoL. YangC. PanL. LiC. LiuK. BaiG. GaoH. YanZ. Metabolic disturbances in the striatum and substantia nigra in the onset and progression of MPTP-induced Parkinsonism model.Front. Neurosci.2018129010.3389/fnins.2018.00090 29515360
    [Google Scholar]
  98. WuK.C. LuY.H. PengY.H. TsaiT.F. KaoY.H. YangH.T. LinC.J. Decreased expression of organic cation transporters, Oct1 and Oct2, in brain microvessels and its implication to MPTP-induced dopaminergic toxicity in aged mice.J. Cereb. Blood Flow Metab.2015351374710.1038/jcbfm.2014.162 25248837
    [Google Scholar]
  99. HwangC.J. LeeH.P. ChoiD.Y. JeongH.S. KimT.H. LeeT.H. KimY.M. MoonD.B. ParkS.S. KimS.Y. OhK.W. HwangD.Y. HanS.B. LeeH.J. HongJ.T. Inhibitory effect of thiacremonone on MPTP-induced dopaminergic neurodegeneration through inhibition of p38 activation.Oncotarget2016730469434695810.18632/oncotarget.10504 27409674
    [Google Scholar]
  100. XuQ. LangleyM. KanthasamyA.G. ReddyM.B. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease.J. Nutr.2017147101926193110.3945/jn.117.255034 28835392
    [Google Scholar]
  101. FoxS.H. BrotchieJ.M. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog.Brain Res.201018413315710.1016/S0079‑6123(10)84007‑520887873
    [Google Scholar]
  102. HallidayG. HerreroM.T. MurphyK. McCannH. Ros-BernalF. BarciaC. MoriH. BlesaF.J. ObesoJ.A. No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism.Mov. Disord.200924101519152310.1002/mds.22481 19526568
    [Google Scholar]
  103. SedelisM. SchwartingR.K. HustonJ.P. Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease.Behav. Brain Res.20011251-210912510.1016/S0166‑4328(01)00309‑6 11682102
    [Google Scholar]
  104. PessiglioneM. GuehlD. HirschE.C. FégerJ. TremblayL. Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism. I. Effects of task complexity.Eur. J. Neurosci.200419242643610.1111/j.0953‑816X.2003.03088.x 14725637
    [Google Scholar]
  105. SchneiderJ.S. Modeling cognitive deficits associated with Parkinsonism in the Chronic-Low-Dose MPTP-Treated monkey. Animal Models of Cognitive Impairment; Levin, E.D. BuccafuscoJ.J. Boca Raton, FLCRC Press/Taylor & Francis200610.1201/9781420004335.ch9
    [Google Scholar]
  106. BergmanH. WichmannT. DeLongM.R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus.Science199024949751436143810.1126/science.2402638 2402638
    [Google Scholar]
  107. LimousinP. KrackP. PollakP. BenazzouzA. ArdouinC. HoffmannD. BenabidA.L. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease.N. Engl. J. Med.1998339161105111110.1056/NEJM199810153391603 9770557
    [Google Scholar]
  108. GashD.M. ZhangZ. OvadiaA. CassW.A. YiA. SimmermanL. RussellD. MartinD. LapchakP.A. CollinsF. HofferB.J. GerhardtG.A. Functional recovery in parkinsonian monkeys treated with GDNF.Nature1996380657125225510.1038/380252a0 8637574
    [Google Scholar]
  109. KordowerJ.H. EmborgM.E. BlochJ. MaS.Y. ChuY. LeventhalL. McBrideJ. ChenE.Y. PalfiS. RoitbergB.Z. BrownW.D. HoldenJ.E. PyzalskiR. TaylorM.D. CarveyP. LingZ. TronoD. HantrayeP. DéglonN. AebischerP. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease.Science2000290549276777310.1126/science.290.5492.767 11052933
    [Google Scholar]
  110. ZengX.S. GengW.S. JiaJ.J. Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment.ASN Neuro201810, 1759091418777438.10.1177/1759091418777438 29809058
    [Google Scholar]
  111. HuM. LiF. WangW. Vitexin protects dopaminergic neurons in MPTP-induced Parkinson’s disease through PI3K/Akt signaling pathway.Drug Des. Devel. Ther.20181256557310.2147/DDDT.S156920 29588573
    [Google Scholar]
  112. ChattopadhyayM. ChowdhuryA.R. FengT. AssenmacherC.A. RadaelliE. GuengerichF.P. AvadhaniN.G. Mitochondrially targeted cytochrome P450 2D6 is involved in monomethylamine-induced neuronal damage in mouse models.J. Biol. Chem.201929426103361034810.1074/jbc.RA119.008848 31113867
    [Google Scholar]
  113. HeX. YangS. ZhangR. HouL. XuJ. HuY. XuR. WangH. ZhangY. Smilagenin Protects Dopaminergic Neurons in Chronic MPTP/Probenecid-Lesioned Parkinson’s Disease Models.Front. Cell. Neurosci.2019131810.3389/fncel.2019.00018 30804756
    [Google Scholar]
  114. KaurD. YantiriF. RajagopalanS. KumarJ. MoJ.Q. BoonplueangR. ViswanathV. JacobsR. YangL. BealM.F. DiMonteD. VolitaskisI. EllerbyL. ChernyR.A. BushA.I. AndersenJ.K. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease.Neuron200337689990910.1016/S0896‑6273(03)00126‑0 12670420
    [Google Scholar]
  115. GalS. ZhengH. FridkinM. YoudimM.B. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion.J. Neurochem.2005951798810.1111/j.1471‑4159.2005.03341.x 16181414
    [Google Scholar]
  116. YoudimM.B. M30, a brain permeable multitarget neurorestorative drug in post nigrostriatal dopamine neuron lesion of parkinsonism animal models.Parkinsonism Relat. Disord.201218Suppl. 1S151S15410.1016/S1353‑8020(11)70047‑5 22166418
    [Google Scholar]
  117. Kurkowska-JastrzebskaI. BabiuchM. JoniecI. PrzybyłkowskiA. CzłonkowskiA. CzłonkowskaA. Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice.Int. Immunopharmacol.2002281213121810.1016/S1567‑5769(02)00078‑4 12349958
    [Google Scholar]
  118. HisataJ. Final supplemental environmental impact statement.Lake and stream rehabilitation: rotenone use and health risks.,2002
    [Google Scholar]
  119. CannonJ.G. BurtonR.A. WoodS.G. OwenN.L. Naturally occurring fish poisons from plants.J. Chem. Educ.2004811457146110.1021/ed081p1457
    [Google Scholar]
  120. SkaarD.R. ArnoldJ.L. KoelT.M. RuhlM.E. SkorupskiJ.A. TreanorH.B. Effects of Rotenone on Amphibians and Macroinvertebrates in Yellowstone.Yellowstone Science2017251
    [Google Scholar]
  121. DalefieldR. Insecticides and Acaricides.Veterinary Toxicology for Australia and New Zealand201787109
    [Google Scholar]
  122. DixonR.A. PasinettiG.M. Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience.Plant Physiol.2010154245345710.1104/pp.110.161430 20921162
    [Google Scholar]
  123. SørensenB.G. Rotenone - a natural pesticide.2018https://natoxaq.ku.dk/toxin-of-the-week/rotenone/
  124. MarrsT. Mammalian Toxicology of Insecticides.Royal Society of Chemistry201210.1039/9781849733007
    [Google Scholar]
  125. LeeH.J. ShinS.Y. ChoiC. LeeY.H. LeeS.J. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors.J. Biol. Chem.200227775411541710.1074/jbc.M105326200 11724769
    [Google Scholar]
  126. BetarbetR. ShererT.B. MacKenzieG. Garcia-OsunaM. PanovA.V. GreenamyreJ.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease.Nat. Neurosci.20003121301130610.1038/81834 11100151
    [Google Scholar]
  127. IndenM. KitamuraY. AbeM. TamakiA. TakataK. TaniguchiT. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice.Biol. Pharm. Bull.2011341929610.1248/bpb.34.92 21212524
    [Google Scholar]
  128. GreenamyreJ.T. CannonJ.R. DroletR. MastroberardinoP.G. Lessons from the rotenone model of Parkinson’s disease.Trends Pharmacol. Sci.201031414114210.1016/j.tips.2009.12.006 20096940
    [Google Scholar]
  129. SwarnkarS. SinghS. MathurR. PatroI.K. NathC. A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular coordination in rats.Toxicology20102721-3172210.1016/j.tox.2010.03.019 20371261
    [Google Scholar]
  130. TalpadeD.J. GreeneJ.G. HigginsD.S.Jr GreenamyreJ.T. In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone.J. Neurochem.20007562611262110.1046/j.1471‑4159.2000.0752611.x 11080215
    [Google Scholar]
  131. JohnsonM.E. BobrovskayaL. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions.Neurotoxicology20154610111610.1016/j.neuro.2014.12.002 25514659
    [Google Scholar]
  132. CannonJ.R. TapiasV. NaH.M. HonickA.S. DroletR.E. GreenamyreJ.T. A highly reproducible rotenone model of Parkinson’s disease.Neurobiol. Dis.200934227929010.1016/j.nbd.2009.01.016 19385059
    [Google Scholar]
  133. TerronA. Bal-PriceA. PainiA. Monnet-TschudiF. BennekouS.H. LeistM. SchildknechtS. EFSA WG EPI1 Members. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition.Arch. Toxicol.2018921418210.1007/s00204‑017‑2133‑4 29209747
    [Google Scholar]
  134. SchulerF. CasidaJ.E. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling.Biochim. Biophys. Acta200115061798710.1016/S0005‑2728(01)00183‑9 11418099
    [Google Scholar]
  135. SrivastavaP. PandaD. Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding.FEBS J.2007274184788480110.1111/j.1742‑4658.2007.06004.x 17697112
    [Google Scholar]
  136. MarshallL.E. HimesR.H. Rotenone inhibition of tubulin self-assembly.Biochim. Biophys. Acta1978543459059410.1016/0304‑4165(78)90315‑X 568944
    [Google Scholar]
  137. DarbinyanL.V. HambardzumyanL.E. SimonyanK.V. ChavushyanV.A. ManukyanL.P. SarkisianV.H. Rotenone impairs hippocampal neuronal activity in a rat model of Parkinson’s disease.Pathophysiology2017241233010.1016/j.pathophys.2017.01.001 28126254
    [Google Scholar]
  138. AlamM. SchwabeK. KraussJ.K. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation.Brain2011134Pt 1112310.1093/brain/awq322 21147837
    [Google Scholar]
  139. Christof von W. Kerstin SNadine J, Joachim KK, Mesbah A The rotenone-induced rat model of Parkinson’s disease.Behav. Brain Res.2015279526110.1016/j.bbr.2014.11.002
    [Google Scholar]
  140. ShererT.B. KimJ.H. BetarbetR. GreenamyreJ.T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation.Exp. Neurol.2003179191610.1006/exnr.2002.8072 12504863
    [Google Scholar]
  141. FlemingS.M. ZhuC. FernagutP.O. MehtaA. DiCarloC.D. SeamanR.L. ChesseletM.F. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone.Exp. Neurol.2004187241842910.1016/j.expneurol.2004.01.023 15144868
    [Google Scholar]
  142. LapointeN. St-HilaireM. MartinoliM.G. BlanchetJ. GouldP. RouillardC. CicchettiF. Rotenone induces non-specific central nervous system and systemic toxicity.FASEB J.200418671771910.1096/fj.03‑0677fje 14766796
    [Google Scholar]
  143. BansalP.K. RahulD. Animal Models of Neurological Disorders: Principle and Working Procedure for Animal Models of Neurological Disorders.1st edSingaporeSpringer2018
    [Google Scholar]
  144. De MirandaB.R. GreenamyreJ.T. RochaE.M. CastroS. GreenamyreJ.T. Response to Rotenone and Parkinson’s Disease; Reduced Sensitivity in Females.Toxicol. Sci.2019170256310.1093/toxsci/kfz127 31161199
    [Google Scholar]
  145. De MirandaB.R. FazzariM. RochaE.M. CastroS. GreenamyreJ.T. Sex Differences in Rotenone Sensitivity Reflect the Male-to-Female Ratio in Human Parkinson’s Disease Incidence.Toxicol. Sci.2019170113314310.1093/toxsci/kfz082 30907971
    [Google Scholar]
  146. ZhangY. GuoH. GuoX. GeD. ShiY. LuX. … Zhang Q. Involvement of Akt/mTOR in the Neurotoxicity of Rotenone-Induced Parkinson’s Disease Models.Int. J. Environ. Res. Public Health20191620381110.3390/ijerph16203811
    [Google Scholar]
  147. SunC. WangY. MoM. SongC. WangX. ChenS. LiuY. Minocycline Protects against Rotenone-Induced Neurotoxicity Correlating with Upregulation of Nurr1 in a Parkinson’s Disease Rat Model.BioMed Res. Int.20192019, 6843265.10.1155/2019/6843265 30949504
    [Google Scholar]
  148. GünaydınC. AvcıB. BozkurtA. ÖngerM.E. BalcıH. BilgeS.S. Effects of agomelatine in rotenone-induced Parkinson’s disease in rats.Neurosci. Lett.2019699717610.1016/j.neulet.2019.01.057 30716425
    [Google Scholar]
  149. AzmyM.S. MenzeE.T. El-NagaR.N. TadrosM.G. Neuroprotective Effects of Filgrastim in Rotenone-Induced Parkinson’s Disease in Rats: Insights into its Anti-Inflammatory, Neurotrophic, and Antiapoptotic Effects.Mol. Neurobiol.20185586572658810.1007/s12035‑017‑0855‑1 29327204
    [Google Scholar]
  150. ZhangX. DuL. ZhangW. YangY. ZhouQ. DuG. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis.Sci. Rep.201771996810.1038/s41598‑017‑07442‑y 28855526
    [Google Scholar]
  151. SarbishegiM. Charkhat GorgichE.A. The Effects of Celecoxib on Rotenone-Induced Rat Model of Parkinson’s Disease: Suppression of Neuroinflammation and Oxidative Stress-Mediated Apoptosis.Gene Cell Tissue201962, e92178.10.5812/gct.92178
    [Google Scholar]
  152. AlamM. SchmidtW.J. L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats.Behav. Brain Res.2004153243944610.1016/j.bbr.2003.12.021 15265640
    [Google Scholar]
  153. NairT.A. VadivelanR. Behavioral studies of dasatinib and resveratrol in rotenone induced Parkinson’s rat model.Int. J. Pharm.201910420042011
    [Google Scholar]
  154. LupescuA. JilaniK. ZbidahM. LangF. Induction of apoptotic erythrocyte death by rotenone.Toxicology2012300313213710.1016/j.tox.2012.06.007 22727881
    [Google Scholar]
  155. SaravananK.S. SindhuK.M. SenthilkumarK.S. MohanakumarK.P. L-deprenyl protects against rotenone-induced, oxidative stress-mediated dopaminergic neurodegeneration in rats.Neurochem. Int.2006491284010.1016/j.neuint.2005.12.016 16490285
    [Google Scholar]
  156. IndenM. KitamuraY. TamakiA. YanagidaT. ShibaikeT. YamamotoA. TakataK. YasuiH. TairaT. ArigaH. TaniguchiT. Neuroprotective effect of the antiparkinsonian drug pramipexole against nigrostriatal dopaminergic degeneration in rotenone-treated mice.Neurochem. Int.200955876076710.1016/j.neuint.2009.07.009 19647776
    [Google Scholar]
  157. BovéJ. ProuD. PerierC. PrzedborskiS. Toxin-induced models of Parkinson’s disease.NeuroRx20052348449410.1602/neurorx.2.3.484 16389312
    [Google Scholar]
  158. TannerC.M. KamelF. RossG.W. HoppinJ.A. GoldmanS.M. KorellM. MarrasC. BhudhikanokG.S. KastenM. ChadeA.R. ComynsK. RichardsM.B. MengC. PriestleyB. FernandezH.H. CambiF. UmbachD.M. BlairA. SandlerD.P. LangstonJ.W. Rotenone, paraquat, and Parkinson’s disease.Environ. Health Perspect.2011119686687210.1289/ehp.1002839 21269927
    [Google Scholar]
  159. ANVISA (Agência Nacional de Vigilância Sanitária). Parecer Técnico de Reavaliação,http://portal.anvisa.gov.br/documents/33880/2541353/CP%2B94-2015%2B-%2BNT.pdf/50fb348f-3c2a-4992-a3a2-ca89fd4d21272016
  160. McCormackA.L. ThiruchelvamM. Manning-BogA.B. ThiffaultC. LangstonJ.W. Cory-SlechtaD.A. Di MonteD.A. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat.Neurobiol. Dis.200210211912710.1006/nbdi.2002.0507 12127150
    [Google Scholar]
  161. MillerG.W. Paraquat: the red herring of Parkinson’s disease research.Toxicol. Sci.200710011210.1093/toxsci/kfm223 17934192
    [Google Scholar]
  162. ChoiH.S. AnJ.J. KimS.Y. LeeS.H. KimD.W. YooK.Y. WonM.H. KangT.C. KwonH.J. KangJ.H. ChoS.W. KwonO.S. ParkJ. EumW.S. ChoiS.Y. PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model.Free Radic. Biol. Med.20064171058106810.1016/j.freeradbiomed.2006.06.006 16962931
    [Google Scholar]
  163. ShimizuK. OhtakiK. MatsubaraK. AoyamaK. UezonoT. SaitoO. SunoM. OgawaK. HayaseN. KimuraK. ShionoH. Carrier-mediated processes in blood--brain barrier penetration and neural uptake of paraquat.Brain Res.20019061-213514210.1016/S0006‑8993(01)02577‑X 11430870
    [Google Scholar]
  164. CicchettiF. LapointeN. Roberge-TremblayA. Saint-PierreM. JimenezL. FickeB.W. GrossR.E. Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats.Neurobiol. Dis.200520236037110.1016/j.nbd.2005.03.018 16242641
    [Google Scholar]
  165. ThrashB. UthayathasS. KaruppagounderS.S. SuppiramaniamV. DhanasekaranM. Paraquat and maneb induced neurotoxicity.Proc. West. Pharmacol. Soc.2007503142 18605226
    [Google Scholar]
  166. PengJ. StevensonF.F. OoM.L. AndersenJ.K. Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation.Free Radic. Biol. Med.200946231232010.1016/j.freeradbiomed.2008.10.045 19027846
    [Google Scholar]
  167. McCormackA.L. Di MonteD.A. Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration.J. Neurochem.2003851828610.1046/j.1471‑4159.2003.01621.x 12641729
    [Google Scholar]
  168. Niso-SantanoM. González-PoloR.A. Bravo-San PedroJ.M. Gómez-SánchezR. Lastres-BeckerI. Ortiz-OrtizM.A. SolerG. MoránJ.M. CuadradoA. FuentesJ.M. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED). Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis.Free Radic. Biol. Med.201048101370138110.1016/j.freeradbiomed.2010.02.024 20202476
    [Google Scholar]
  169. FeiQ. McCormackA.L. Di MonteD.A. EthellD.W. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism.J. Biol. Chem.200828363357336410.1074/jbc.M708451200 18056701
    [Google Scholar]
  170. PengJ. MaoX.O. StevensonF.F. HsuM. AndersenJ.K. The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway.J. Biol. Chem.200427931326263263210.1074/jbc.M404596200 15155744
    [Google Scholar]
  171. Saint-PierreM. TremblayM.E. SikA. GrossR.E. CicchettiF. Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats.J. Neurochem.200698376077210.1111/j.1471‑4159.2006.03923.x 16893418
    [Google Scholar]
  172. Manning-BogA.B. McCormackA.L. LiJ. UverskyV.N. FinkA.L. Di MonteD.A. The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein.J. Biol. Chem.200227731641164410.1074/jbc.C100560200 11707429
    [Google Scholar]
  173. BerryC. La VecchiaC. NicoteraP. Paraquat and Parkinson’s disease.Cell Death Differ.20101771115112510.1038/cdd.2009.217 20094060
    [Google Scholar]
  174. LiouH.H. ChenR.C. ChenT.H. TsaiY.F. TsaiM.C. Attenuation of paraquat-induced dopaminergic toxicity on the substantia nigra by (-)-deprenyl in vivo.Toxicol. Appl. Pharmacol.20011721374310.1006/taap.2001.9130 11264021
    [Google Scholar]
  175. TomensonJ.A. CampbellC. Mortality from Parkinson’s disease and other causes among a workforce manufacturing paraquat: a retrospective cohort study.BMJ Open201112, e000283.10.1136/bmjopen‑2011‑000283 22080539
    [Google Scholar]
  176. BrentJ. SchaefferT.H. Systematic review of parkinsonian syndromes in short- and long-term survivors of paraquat poisoning.J. Occup. Environ. Med.201153111332133610.1097/JOM.0b013e318233775d 21988794
    [Google Scholar]
  177. ThiruchelvamM. Paraquat and Parkinson's disease, Always follow the label instructions when using paraquat.Paraquat Information Centerhttps://paraquat.com/en/safety/safety-humans/paraquat-and-parkinsons-disease2020
    [Google Scholar]
  178. CacabelosR. Parkinson’s disease: from pathogenesis to pharmacogenomics.Int. J. Mol. Sci.201718355110.3390/ijms18030551 28273839
    [Google Scholar]
  179. ZhengZ. PoonW.S. Rodent Model of Parkinson’s Disease: Unilateral or Bilateral?J. Alzheimers Dis. Parkinsonism2017731910.4172/2161‑0460.1000319
    [Google Scholar]
  180. MuthukumaranK. LeahyS. HarrisonK. SikorskaM. SandhuJ.K. CohenJ. KeshanC. LopatinD. MillerH. Borowy-BorowskiH. LanthierP. WeinstockS. PandeyS. Orally delivered water soluble Coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: potential for therapeutic application in Parkinson’s disease.BMC Neurosci.2014152110.1186/1471‑2202‑15‑21 24483602
    [Google Scholar]
  181. ChiuC.C. YehT.H. LaiS.C. Wu-ChouY.H. ChenC.H. Mochly-RosenD. HuangY.C. ChenY.J. ChenC.L. ChangY.M. WangH.L. LuC.S. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism.Exp. Neurol.201526324425310.1016/j.expneurol.2014.09.016 25263579
    [Google Scholar]
  182. BhakuniG.S. BediO. BariwalJ. DeshmukhR. KumarP. Animal models of hepatotoxicity.Inflamm. Res.2016651132410.1007/s00011‑015‑0883‑0 26427493
    [Google Scholar]
  183. ShihabuddinL.S. BrundinP. GreenamyreJ.T. StephensonD. SardiS.P. New Frontiers in Parkinson’s Disease: From Genetics to the Clinic.J. Neurosci.201838449375938210.1523/JNEUROSCI.1666‑18.2018 30381429
    [Google Scholar]
  184. ChesseletM.F. FlemingS. MortazaviF. MeurersB. Strengths and limitations of genetic mouse models of Parkinson’s disease.Parkinsonism Relat. Disord.200814Suppl. 2S84S8710.1016/j.parkreldis.2008.04.004 18585084
    [Google Scholar]
  185. DehayB. BourdenxM. GorryP. PrzedborskiS. VilaM. HunotS. SingletonA. OlanowC.W. MerchantK.M. BezardE. PetskoG.A. MeissnerW.G. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations.Lancet Neurol.201514885586610.1016/S1474‑4422(15)00006‑X 26050140
    [Google Scholar]
  186. LukK.C. LeeV.M.Y. Modeling Lewy pathology propagation in Parkinson’s disease.Parkinsonism Relat. Disord.201420Suppl. 1S85S8710.1016/S1353‑8020(13)70022‑1 24262196
    [Google Scholar]
  187. RecasensA. DehayB. BovéJ. Carballo-CarbajalI. DoveroS. Pérez-VillalbaA. FernagutP.O. BlesaJ. ParentA. PerierC. FariñasI. ObesoJ.A. BezardE. VilaM. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys.Ann. Neurol.201475335136210.1002/ana.24066 24243558
    [Google Scholar]
  188. WangT. HayJ.C. Alpha-synuclein toxicity in the early secretory pathway: how it drives neurodegeneration in Parkinsons disease.Front. Neurosci.2015943310.3389/fnins.2015.00433 26617485
    [Google Scholar]
  189. NorrisE.H. GiassonB.I. IschiropoulosH. LeeV.M.Y. Effects of oxidative and nitrative challenges on α-synuclein fibrillogenesis involve distinct mechanisms of protein modifications.J. Biol. Chem.200327829272302724010.1074/jbc.M212436200 12857790
    [Google Scholar]
  190. YaminG. UverskyV.N. FinkA.L. Nitration inhibits fibrillation of human α-synuclein in vitro by formation of soluble oligomers.FEBS Lett.20035421-314715210.1016/S0014‑5793(03)00367‑3 12729915
    [Google Scholar]
  191. HinkleK.M. YueM. BehrouzB. DächselJ.C. LincolnS.J. BowlesE.E. BeeversJ.E. DuggerB. WinnerB. ProtsI. KentC.B. NishiokaK. LinW.L. DicksonD.W. JanusC.J. FarrerM.J. MelroseH.L. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors.Mol. Neurodegener.201272510.1186/1750‑1326‑7‑25 22647713
    [Google Scholar]
  192. TongY. YamaguchiH. GiaimeE. BoyleS. KopanR. KelleherR.J.III ShenJ. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice.Proc. Natl. Acad. Sci. USA2010107219879988410.1073/pnas.1004676107 20457918
    [Google Scholar]
  193. AlessiD.R. SammlerE. LRRK2 kinase in Parkinson’s disease.Science20183606384363710.1126/science.aar5683 29622645
    [Google Scholar]
  194. GautierC.A. KitadaT. ShenJ. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress.Proc. Natl. Acad. Sci. USA200810532113641136910.1073/pnas.0802076105 18687901
    [Google Scholar]
  195. GispertS. RicciardiF. KurzA. AzizovM. HoepkenH-H. BeckerD. VoosW. LeunerK. MüllerW.E. KudinA.P. KunzW.S. ZimmermannA. RoeperJ. WenzelD. JendrachM. García-ArencíbiaM. Fernández-RuizJ. HuberL. RohrerH. BarreraM. ReichertA.S. RübU. ChenA. NussbaumR.L. AuburgerG. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration.PLoS One200946, e5777.10.1371/journal.pone.0005777 19492057
    [Google Scholar]
/content/journals/vat/10.2174/2666121701999201104163407
Loading
/content/journals/vat/10.2174/2666121701999201104163407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test