Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Ion channel function is essential for maintaining life and is involved in various physiological activities. However, various factors such as heredity, aging, wounding, and diseases can cause abnormalities in ion channel function and expression. Such channel abnormalities can interfere with the healthy activities of the organism and threaten the maintenance of life. There are many types of ion channels, and their roles are diverse. In recent years, it is becoming clear that ion channels are intrinsically involved in various diseases beyond what has been previously thought. Therefore, it is highly desirable to develop more drugs by increasing various channels for drug discovery and various diseases. In this review, we will introduce the ion channels currently targeted for drug discovery and the mechanisms by which these channels are involved in diseases, focusing on information compiled on the internet. Currently, the target ion channels for drug development and treating diseases are becoming more diverse. The drugs under development are not only small molecules, which account for most of the ion channel drugs developed to date, but also different types of drugs, such as antibodies, peptides, and oligonucleotides. Due to low specificity, many existing ion channel drugs have side effect problems. Diversification of drugs may facilitate the resolution of these problems, and venom-derived peptide drugs are a promising class of future agents that can contribute to this end. In the last part of this review, the status of drug development of venom-derived peptides will also be discussed.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121702666220429095250
2022-08-01
2025-01-31
Loading full text...

Full text loading...

References

  1. RobertsonB. Introduction to the Journal of Physiology’s special issue on neurological channelopathies.J. Physiol.2010588Pt 111821182210.1113/jphysiol.2010.191114 20516349
    [Google Scholar]
  2. NiliusB. A Special Issue on channelopathies.Pflugers Arch.2010460222122210.1007/s00424‑010‑0818‑0 20238123
    [Google Scholar]
  3. ImbriciP. LiantonioA. CamerinoG.M. Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery.Front. Pharmacol.2016712110.3389/fphar.2016.00121 27242528
    [Google Scholar]
  4. WallaceE. HowardL. LiuM. Long QT Syndrome: genetics and future perspective.Pediatr. Cardiol.20194071419143010.1007/s00246‑019‑02151‑x 31440766
    [Google Scholar]
  5. KonecznyI. HerbstR. Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture.Cells20198767110.3390/cells8070671 31269763
    [Google Scholar]
  6. HudaS. WhittamD. BhojakM. Neuromyelitis optica spectrum disorders.Clin. Med.201919216917610.7861/clinmedicine.19‑2‑169 30872305
    [Google Scholar]
  7. Peixoto PinheiroB. VonaB. LöwenheimH. RüttigerL. KnipperM. AdelY. Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway.Pflugers Arch.2021473582384010.1007/s00424‑020‑02496‑w 33336302
    [Google Scholar]
  8. HainsB.C. KleinJ.P. SaabC.Y. CranerM.J. BlackJ.A. WaxmanS.G. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury.J. Neurosci.200323268881889210.1523/JNEUROSCI.23‑26‑08881.2003 14523090
    [Google Scholar]
  9. HainsB.C. SaabC.Y. KleinJ.P. CranerM.J. WaxmanS.G. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury.J. Neurosci.200424204832483910.1523/JNEUROSCI.0300‑04.2004 15152043
    [Google Scholar]
  10. TsantoulasC. McMahonS.B. Opening paths to novel analgesics: the role of potassium channels in chronic pain.Trends Neurosci.201437314615810.1016/j.tins.2013.12.002 24461875
    [Google Scholar]
  11. JiangH. TianS.L. ZengY. LiL.L. ShiJ. TrkA pathway(s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation.Brain Res. Bull.2008761-212413010.1016/j.brainresbull.2008.01.013 18395621
    [Google Scholar]
  12. SunH.S. JacksonM.F. MartinL.J. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia.Nat. Neurosci.200912101300130710.1038/nn.2395 19734892
    [Google Scholar]
  13. IliffJ.J. WangM. LiaoY. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.Sci. Transl. Med.20124147147ra11110.1126/scitranslmed.3003748 22896675
    [Google Scholar]
  14. Ionchannellibrary Ion channel drug candidates in preclinical development and clinical trialsAvailable from: https://www.ionchannellibrary.com/drugs-in-clinical-trials/ (accessed Dec 07, 2021).
  15. Bayer, Annual report2019201943
    [Google Scholar]
  16. AdemuwagunI.A. RotimiS.O. SyrbeS. AjammaY.U. AdebiyiE. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions.Front. Neurol.20211260005010.3389/fneur.2021.600050 33841294
    [Google Scholar]
  17. MeislerM.H. SCN8A encephalopathy: Mechanisms and models.Epilepsia201960Suppl. 3S86S91
    [Google Scholar]
  18. HuW. TianC. LiT. YangM. HouH. ShuY. Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation.Nat. Neurosci.2009128996100210.1038/nn.2359 19633666
    [Google Scholar]
  19. VeeramahK.R. O’BrienJ.E. MeislerM.H. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP.Am. J. Hum. Genet.201290350251010.1016/j.ajhg.2012.01.006 22365152
    [Google Scholar]
  20. EstacionM. O’BrienJ.E. ConraveyA. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy.Neurobiol. Dis.20146911712310.1016/j.nbd.2014.05.017 24874546
    [Google Scholar]
  21. Neurocrine Biosciences IncCommercially Available and Pipeline Candidates.Available from: https://www.neurocrine.com/pipeline/pipeline-overview/
    [Google Scholar]
  22. Praxis Precision MedicinesPraxis Precision Medicines receives orphan drug designation for prax-562 for the treatment of scn2a-dee.Available from: https://investors.praxismedicines.com/news-releases/news-release-details/praxis-precision-medicines-receives-orphan-drug-designation-0
    [Google Scholar]
  23. WengertE.R. PatelM.K. The role of the persistent sodium current in epilepsy.Epilepsy Curr.2021211404710.1177/1535759720973978 33236643
    [Google Scholar]
  24. ClaesL. Del-FaveroJ. CeulemansB. LagaeL. Van BroeckhovenC. De JongheP. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy.Am. J. Hum. Genet.20016861327133210.1086/320609 11359211
    [Google Scholar]
  25. MeislerM.H. O’BrienJ.E. SharkeyL.M. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects.J. Physiol.2010588Pt 111841184810.1113/jphysiol.2010.188482 20351042
    [Google Scholar]
  26. De JongheP. Molecular genetics of Dravet syndrome.Dev. Med. Child Neurol.201153Suppl. 271010.1111/j.1469‑8749.2011.03965.x 21504425
    [Google Scholar]
  27. PariharR. GaneshS. The SCN1A gene variants and epileptic encephalopathies.J. Hum. Genet.201358957358010.1038/jhg.2013.77 23884151
    [Google Scholar]
  28. DuttonS.B. MakinsonC.D. PapaleL.A. Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility.Neurobiol. Dis.20134921122010.1016/j.nbd.2012.08.012 22926190
    [Google Scholar]
  29. DuJ. SimmonsS. BrunklausA. Differential excitatory vs inhibitory SCN expression at single cell level regulates brain sodium channel function in neurodevelopmental disorders.Eur. J. Paediatr. Neurol.20202412913310.1016/j.ejpn.2019.12.019 31928904
    [Google Scholar]
  30. Stoke TherapeuticsT.A.N.G.O. Available from: https://www.stoketherapeutics.com/our-science/tango/ (accessed Dec 10, 2021).
  31. SandersS.J. CampbellA.J. CottrellJ.R. Progress in Understanding and Treating SCN2A-Mediated Disorders.Trends Neurosci.201841744245610.1016/j.tins.2018.03.011 29691040
    [Google Scholar]
  32. WolffM. JohannesenK.M. HedrichU.B.S. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders.Brain201714051316133610.1093/brain/awx054 28379373
    [Google Scholar]
  33. ReynoldsC. KingM.D. GormanK.M. The phenotypic spectrum of SCN2A-related epilepsy.Eur. J. Paediatr. Neurol.20202411712210.1016/j.ejpn.2019.12.016 31924505
    [Google Scholar]
  34. Praxis Precision MedicinesCurrent development pipeline.Available from: https://praxismedicines.com/ (accessed Dec 03, 2021).
    [Google Scholar]
  35. SoldovieriM.V. MiceliF. TaglialatelaM. Driving with no brakes: molecular pathophysiology of Kv7 potassium channels.Physiology201126536537610.1152/physiol.00009.2011 22013194
    [Google Scholar]
  36. BergA.T. MahidaS. PoduriA. KCNQ2-DEE: developmental or epileptic encephalopathy?Ann. Clin. Transl. Neurol.20218366667610.1002/acn3.51316 33616268
    [Google Scholar]
  37. BrownD.A. PassmoreG.M. Neural KCNQ (Kv7) channels.Br. J. Pharmacol.200915681185119510.1111/j.1476‑5381.2009.00111.x 19298256
    [Google Scholar]
  38. Perez-ReyesE. Molecular physiology of low-voltage-activated t-type calcium channels.Physiol. Rev.200383111716110.1152/physrev.00018.2002 12506128
    [Google Scholar]
  39. KimD. SongI. KeumS. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels.Neuron2001311354510.1016/S0896‑6273(01)00343‑9 11498049
    [Google Scholar]
  40. PowellK.L. CainS.M. SnutchT.P. O’BrienT.J. Low threshold T-type calcium channels as targets for novel epilepsy treatments.Br. J. Clin. Pharmacol.201477572973910.1111/bcp.12205 23834404
    [Google Scholar]
  41. HeronS.E. KhosravaniH. VarelaD. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants.Ann. Neurol.200762656056810.1002/ana.21169 17696120
    [Google Scholar]
  42. ChourasiaN. Ossó-RiveraH. GhoshA. Von AllmenG. KoenigM.K. Expanding the Phenotypic Spectrum of CACNA1H Mutations.Pediatr. Neurol.201993505510.1016/j.pediatrneurol.2018.11.017 30686625
    [Google Scholar]
  43. EckleV.S. ShcheglovitovA. VitkoI. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility.J. Physiol.2014592479580910.1113/jphysiol.2013.264176 24277868
    [Google Scholar]
  44. Cavion, Technology & Platform.Available from: https://cavionpharma.com/technology (accessed Dec 03, 2021).
  45. CACNA1A Foundation, XEN007Available from: https://www.cacna1a.org/blog/post1 (accessed Dec 03, 2021).
  46. BarnardE.A. SkolnickP. OlsenR.W. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function.Pharmacol. Rev.1998502291313 9647870
    [Google Scholar]
  47. OlsenR.W. SieghartW. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update.Pharmacol. Rev.200860324326010.1124/pr.108.00505 18790874
    [Google Scholar]
  48. NakajimaK. YinX. TakeiY. SeogD.H. HommaN. HirokawaN. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy.Neuron201276594596110.1016/j.neuron.2012.10.012 23217743
    [Google Scholar]
  49. Ali RodriguezR. JoyaC. HinesR.M. Common ribs of inhibitory synaptic dysfunction in the umbrella of neurodevelopmental disorders.Front. Mol. Neurosci.20181113210.3389/fnmol.2018.00132 29740280
    [Google Scholar]
  50. ChuangS.H. ReddyD.S. Genetic and molecular regulation of extrasynaptic GABA-A receptors in the brain: therapeutic insights for epilepsy.J. Pharmacol. Exp. Ther.2018364218019710.1124/jpet.117.244673 29142081
    [Google Scholar]
  51. Ovid Therapeutics IncAnnounces Phase 3 NEPTUNE Clinical Trial of OV101 for the Treatment of Angelman Syndrome Did Not Meet Primary Endpoint. Available from: https://investors.ovidrx.com/news-releases/news-release-details/ovid-therapeutics-announces-phase-3-neptune-clinical-trial-ov101 (accessed Dec 03, 2021).
  52. Ovid Therapeutics IncProvides Update on OV101 Program and the Prioritization of its Resources.Available from: https://investors.ovidrx.com/news-releases/news-release-details/ovid-provides-update-ov101-program-and-prioritization-its (accessed Dec 03, 2021).
    [Google Scholar]
  53. Olmos-AlonsoA. SchettersS.T. SriS. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology.Brain2016139Pt 389190710.1093/brain/awv379 26747862
    [Google Scholar]
  54. ParkJ. WetzelI. MarriottI. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease.Nat. Neurosci.201821794195110.1038/s41593‑018‑0175‑4 29950669
    [Google Scholar]
  55. McQuadeA. Blurton-JonesM. Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk.J. Mol. Biol.201943191805181710.1016/j.jmb.2019.01.045 30738892
    [Google Scholar]
  56. CojocaruA BuradaE BălșeanuAT Roles of microglial ion channel in neurodegenerative diseases.J. Clin. Med.2021106123910.3390/jcm10061239 33802786
    [Google Scholar]
  57. DiL. SrivastavaS. ZhdanovaO. Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis.Proc. Natl. Acad. Sci. USA201010741541154610.1073/pnas.0910133107 20080610
    [Google Scholar]
  58. LeeG.S. SubramanianN. KimA.I. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP.Nature2012492742712312710.1038/nature11588 23143333
    [Google Scholar]
  59. RossolM. PiererM. RaulienN. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors.Nat. Commun.201231132910.1038/ncomms2339 23271661
    [Google Scholar]
  60. MurakamiT. OckingerJ. YuJ. Critical role for calcium mobilization in activation of the NLRP3 inflammasome.Proc. Natl. Acad. Sci.201210928112821128710.1073/pnas.1117765109 22733741
    [Google Scholar]
  61. JinL.W. LucenteJ.D. NguyenH.M. Repurposing the KCa3.1 inhibitor senicapoc for Alzheimer’s disease.Ann. Clin. Transl. Neurol.20196472373810.1002/acn3.754 31019997
    [Google Scholar]
  62. SimardJ.M. WooS.K. SchwartzbauerG.T. GerzanichV. Sulfonylurea receptor 1 in central nervous system injury: a focused review.J. Cereb. Blood Flow Metab.20123291699171710.1038/jcbfm.2012.91 22714048
    [Google Scholar]
  63. SimardJ.M. WooS.K. GerzanichV. Transient receptor potential melastatin 4 and cell death.Pflugers Arch.2012464657358210.1007/s00424‑012‑1166‑z 23065026
    [Google Scholar]
  64. WooS.K. TsymbalyukN. TsymbalyukO. IvanovaS. GerzanichV. SimardJ.M. SUR1-TRPM4 channels, not KATP, mediate brain swelling following cerebral ischemia.Neurosci. Lett.202071813472910.1016/j.neulet.2019.134729 31899311
    [Google Scholar]
  65. GerzanichV. WooS.K. VennekensR. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury.Nat. Med.200915218519110.1038/nm.1899 19169264
    [Google Scholar]
  66. HowesO.D. KapurS. The dopamine hypothesis of schizophrenia: version III--the final common pathway.Schizophr. Bull.200935354956210.1093/schbul/sbp006 19325164
    [Google Scholar]
  67. StahlS.M. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate.CNS Spectr.201823318719110.1017/S1092852918001013 29954475
    [Google Scholar]
  68. NakazawaK. SapkotaK. The origin of NMDA receptor hypofunction in schizophrenia.Pharmacol. Ther.202020510742610.1016/j.pharmthera.2019.107426 31629007
    [Google Scholar]
  69. TarabeuxJ. KebirO. GauthierJ. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia.Transl. Psychiatry2011111e5510.1038/tp.2011.52 22833210
    [Google Scholar]
  70. YuY. LinY. TakasakiY. Rare loss of function mutations in N-methyl-D-aspartate glutamate receptors and their contributions to schizophrenia susceptibility.Transl. Psychiatry2018811210.1038/s41398‑017‑0061‑y 29317596
    [Google Scholar]
  71. XiangWei WJiang Y, Yuan H. De Novo Mutations and Rare Variants Occurring in NMDA Receptors.Curr. Opin. Physiol.20182273510.1016/j.cophys.2017.12.013 29756080
    [Google Scholar]
  72. MayerM.L. WestbrookG.L. The physiology of excitatory amino acids in the vertebrate central nervous system.Prog. Neurobiol.198728319727610.1016/0301‑0082(87)90011‑6 2883706
    [Google Scholar]
  73. RuppersbergJ.P. von KitzingE. SchoepferR. The mechanism of magnesium block of NMDA receptors.Semin. Neurosci.199462879610.1006/smns.1994.1012
    [Google Scholar]
  74. RozovA. BurnashevN. Fast interaction between AMPA and NMDA receptors by intracellular calcium.Cell Calcium201660640741410.1016/j.ceca.2016.09.005 27707506
    [Google Scholar]
  75. SchmittW.B. SprengelR. MackV. Restoration of spatial working memory by genetic rescue of GluR-A-deficient mice.Nat. Neurosci.20058327027210.1038/nn1412 15723058
    [Google Scholar]
  76. WiedholzL.M. OwensW.A. HortonR.E. Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors.Mol. Psychiatry200813663164010.1038/sj.mp.4002056 17684498
    [Google Scholar]
  77. GulsunerS. SteinD.J. SusserE.S. Genetics of schizophrenia in the South African Xhosa.Science2020367647756957310.1126/science.aay8833 32001654
    [Google Scholar]
  78. Novartis, Novartis builds on commitment to addressing need in neuropsychiatric disorders with Cadent Therapeutics acquisition.Available from: https://www.novartis.com/news/media-releases/novartis-builds-commitment-addressing-need-neuropsychiatric-disorders-cadent-therapeutics-acquisition (accessed Dec 03, 2021).
  79. ChowA. ErisirA. FarbC. K(+) channel expression distinguishes subpopulations of parvalbumin- and somatostatin-containing neocortical interneurons.J. Neurosci.199919219332934510.1523/JNEUROSCI.19‑21‑09332.1999 10531438
    [Google Scholar]
  80. KawaguchiY. KondoS. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex.J. Neurocytol.2002313-527728710.1023/A:1024126110356 12815247
    [Google Scholar]
  81. LienC.C. JonasP. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons.J. Neurosci.20032362058206810.1523/JNEUROSCI.23‑06‑02058.2003 12657664
    [Google Scholar]
  82. BoddumK. HougaardC. LinX-Y.J. von SchoubyeN.L. JensenH.S. GrunnetM. JespersenT.K. K(v)3.1/K(v)3.2 channel positive modulators enable faster activating kinetics and increase firing frequency in fast-spiking GABAergic interneurons.Neuropharmacology201711810211210.1016/j.neuropharm.2017.02.024 28242439
    [Google Scholar]
  83. KaczmarekL.K. ZhangY. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance.Physiol. Rev.20179741431146810.1152/physrev.00002.2017 28904001
    [Google Scholar]
  84. YanagiM. JohoR.H. SouthcottS.A. ShuklaA.A. GhoseS. TammingaC.A. Kv3.1-containing K(+) channels are reduced in untreated schizophrenia and normalized with antipsychotic drugs.Mol. Psychiatry201419557357910.1038/mp.2013.49 23628987
    [Google Scholar]
  85. Autifony Therapeutics, Pipeline.Available from: https://autifony.com/pipeline/ (accessed Dec 03, 2021).
  86. DickinsonD. StraubR.E. TrampushJ.W. Differential effects of common variants in SCN2A on general cognitive ability, brain physiology, and messenger RNA expression in schizophrenia cases and control individuals.JAMA Psychiatry201471664765610.1001/jamapsychiatry.2014.157 24718902
    [Google Scholar]
  87. FromerM. PocklingtonA.J. KavanaghD.H. De novo mutations in schizophrenia implicate synaptic networks.Nature2014506748717918410.1038/nature12929 24463507
    [Google Scholar]
  88. LiJ. CaiT. JiangY. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NP de novo database.Mol. Psychiatry201621229029710.1038/mp.2015.40 25849321
    [Google Scholar]
  89. TatsukawaT. RaveauM. OgiwaraI. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity.Mol. Autism20191011510.1186/s13229‑019‑0265‑5 30962870
    [Google Scholar]
  90. ShinW. KweonH. KangR. Scn2a Haploinsufficiency in mice suppresses hippocampal neuronal excitability, excitatory synaptic drive, and long-term potentiation, and spatial learning and memory.Front. Mol. Neurosci.20191214510.3389/fnmol.2019.00145 31249508
    [Google Scholar]
  91. Newron Pharmaceuticals, PipelineAvailable from: https://www.newron.com/science#evenamide (accessed Dec 03, 2021).
  92. OrserB.A. PennefatherP.S. MacDonaldJ.F. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors.Anesthesiology199786490391710.1097/00000542‑199704000‑00021 9105235
    [Google Scholar]
  93. AleksandrovaL.R. WangY.T. PhillipsA.G. Hydroxynorketamine: implications for the NMDA receptor hypothesis of ketamine’s antidepressant action.Chronic Stress (Thousand Oaks)20171110.1177/2470547017743511 30556028
    [Google Scholar]
  94. MaengS. ZarateC.A.Jr DuJ. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.Biol. Psychiatry200863434935210.1016/j.biopsych.2007.05.028 17643398
    [Google Scholar]
  95. KoikeH. IijimaM. ChakiS. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression.Behav. Brain Res.2011224110711110.1016/j.bbr.2011.05.035 21669235
    [Google Scholar]
  96. MillerO.H. MoranJ.T. HallB.J. Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: Direct inhibition and disinhibition.Neuropharmacology2016100172610.1016/j.neuropharm.2015.07.028 26211972
    [Google Scholar]
  97. MohamadF.H. HasA.T.C. The α5-containing GABAA receptors-a brief summary.J. Mol. Neurosci.201967234335110.1007/s12031‑018‑1246‑4 30607899
    [Google Scholar]
  98. FischellJ. Van DykeA.M. KvartaM.D. LeGatesT.A. ThompsonS.M. Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5-containing GABAA receptors.Neuropsychopharmacology201540112499250910.1038/npp.2015.112 25900119
    [Google Scholar]
  99. ZanosP NelsonME HighlandJN A negative allosteric modulator for α5 subunit-containing GABA receptors exerts a rapid and persistent antidepressant-like action without the side effects of the NMDA receptor antagonist ketamine in mice.eNeuro201741ENEURO.0285-16.201710.1523/ENEURO.0285‑16.201728275719
    [Google Scholar]
  100. XuN.Z. ErnstM. TrevenM. Negative allosteric modulation of alpha 5-containing GABAA receptors engenders antidepressant-like effects and selectively prevents age-associated hyperactivity in tau-depositing mice.Psychopharmacology201823541151116110.1007/s00213‑018‑4832‑9 29374303
    [Google Scholar]
  101. FogaçaM.V. DumanR.S. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions.Front. Cell. Neurosci.2019138710.3389/fncel.2019.00087 30914923
    [Google Scholar]
  102. VollenweiderI. SmithK.S. KeistR. RudolphU. Antidepressant-like properties of α2-containing GABA(A) receptors.Behav. Brain Res.20112171778010.1016/j.bbr.2010.10.009 20965216
    [Google Scholar]
  103. YangL.P. JiangF.J. WuG.S. Acute treatment with a novel TRPC4/C5 channel inhibitor produces antidepressant and anxiolytic-like effects in mice.PLoS One2015108e013625510.1371/journal.pone.0136255 26317356
    [Google Scholar]
  104. JustS. ChenardB.L. CeciA. Treatment with HC-070, a potent inhibitor of TRPC4 and TRPC5, leads to anxiolytic and antidepressant effects in mice.PLoS One2018131e019122510.1371/journal.pone.0191225 29385160
    [Google Scholar]
  105. RiccioA. LiY. MoonJ. Essential role for TRPC5 in amygdala function and fear-related behavior.Cell2009137476177210.1016/j.cell.2009.03.039 19450521
    [Google Scholar]
  106. RiccioA. LiY. TsvetkovE. Decreased anxiety-like behavior and Gαq/11-dependent responses in the amygdala of mice lacking TRPC4 channels.J. Neurosci.201434103653366710.1523/JNEUROSCI.2274‑13.2014 24599464
    [Google Scholar]
  107. Boehringer Ingelheim, Our Human Pharma Research and Development PipelineAvailable from: https://www.boehringer-ingelheim.com/science/human-health/research-and-development-pipeline (accessed Dec 07, 2021).
  108. FerrariD. PizziraniC. AdinolfiE. The P2X7 receptor: a key player in IL-1 processing and release.J. Immunol.200617673877388310.4049/jimmunol.176.7.3877 16547218
    [Google Scholar]
  109. KooJ.W. DumanR.S. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress.Proc. Natl. Acad. Sci. USA2008105275175610.1073/pnas.0708092105 18178625
    [Google Scholar]
  110. IwataM. OtaK.T. DumanR.S. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses.Brain Behav. Immun.20133110511410.1016/j.bbi.2012.12.008 23261775
    [Google Scholar]
  111. IwataM. OtaK.T. LiX.Y. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor.Biol. Psychiatry2016801122210.1016/j.biopsych.2015.11.026 26831917
    [Google Scholar]
  112. KutluM.G. GouldT.J. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders.Biochem. Pharmacol.201597449851110.1016/j.bcp.2015.07.029 26231942
    [Google Scholar]
  113. SéguélaP. WadicheJ. Dineley-MillerK. DaniJ.A. PatrickJ.W. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium.J. Neurosci.199313259660410.1523/JNEUROSCI.13‑02‑00596.1993 7678857
    [Google Scholar]
  114. PaylorR. NguyenM. CrawleyJ.N. PatrickJ. BeaudetA. Orr-UrtregerA. Alpha7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of Acra7-deficient mice.Learn. Mem.199854-530231610.1101/lm.5.4.302 10454356
    [Google Scholar]
  115. PandyaA.A. YakelJ.L. Activation of the α7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT₁a receptor antagonist.Neuropharmacology201370354210.1016/j.neuropharm.2013.01.004 23321689
    [Google Scholar]
  116. SmithK.S. EnginE. MeloniE.G. RudolphU. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice.Neuropharmacology201263225025810.1016/j.neuropharm.2012.03.001 22465203
    [Google Scholar]
  117. LöwK. CrestaniF. KeistR. Molecular and neuronal substrate for the selective attenuation of anxiety.Science2000290548913113410.1126/science.290.5489.131 11021797
    [Google Scholar]
  118. BottaP. DemmouL. KasugaiY. Regulating anxiety with extrasynaptic inhibition.Nat. Neurosci.201518101493150010.1038/nn.4102 26322928
    [Google Scholar]
  119. BehlkeL.M. FosterR.A. LiuJ. A Pharmacogenetic ‘restriction-of-function’ approach reveals evidence for anxiolytic-like actions mediated by α5-containing GABAA receptors in mice.Neuropsychopharmacology201641102492250110.1038/npp.2016.49 27067130
    [Google Scholar]
  120. PiantadosiS.C. FrenchB.J. PoeM.M. Sex-dependent anti-stress effect of an α5 subunit containing GABAA receptor positive allosteric modulator.Front. Pharmacol.2016744610.3389/fphar.2016.00446 27920723
    [Google Scholar]
  121. FryeR.E. CasanovaM.F. FatemiS.H. Neuropathological mechanisms of seizures in autism spectrum disorder.Front. Neurosci.20161019210.3389/fnins.2016.00192 27242398
    [Google Scholar]
  122. BlattG.J. FitzgeraldC.M. GuptillJ.T. BookerA.B. KemperT.L. BaumanM.L. Density and distribution of hippocampal neurotransmitter receptors in autism: An autoradiographic study.J. Autism Dev. Disord.200131653754310.1023/A:1013238809666 11814263
    [Google Scholar]
  123. FatemiS.H. ReutimanT.J. FolsomT.D. ThurasP.D. GABA(A) receptor downregulation in brains of subjects with autism.J. Autism Dev. Disord.200939222323010.1007/s10803‑008‑0646‑7 18821008
    [Google Scholar]
  124. FatemiS.H. ReutimanT.J. FolsomT.D. RustanO.G. RooneyR.J. ThurasP.D. Downregulation of GABAA receptor protein subunits α6, β2, δ ε γ2, θ and ρ2 in superior frontal cortex of subjects with autism.J. Autism Dev. Disord.20144481833184510.1007/s10803‑014‑2078‑x 24668190
    [Google Scholar]
  125. FatemiS.H. HaltA.R. StaryJ.M. KanodiaR. SchulzS.C. RealmutoG.R. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices.Biol. Psychiatry200252880581010.1016/S0006‑3223(02)01430‑0 12372652
    [Google Scholar]
  126. CookE.H.Jr CourchesneR.Y. CoxN.J. Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers.Am. J. Hum. Genet.19986251077108310.1086/301832 9545402
    [Google Scholar]
  127. BuxbaumJ.D. SilvermanJ.M. SmithC.J. Association between a GABRB3 polymorphism and autism.Mol. Psychiatry20027331131610.1038/sj.mp.4001011 11920158
    [Google Scholar]
  128. ShaoY. CuccaroM.L. HauserE.R. Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes.Am. J. Hum. Genet.200372353954810.1086/367846 12567325
    [Google Scholar]
  129. CellotG. CherubiniE. GABAergic signaling as therapeutic target for autism spectrum disorders.Front Pediatr.201427010.3389/fped.2014.00070 25072038
    [Google Scholar]
  130. ClinicalTrials.govU.S. National Library of Medicine, A Study to Evaluate the Safety and Tolerability of SAGE-718 in Participants With Mild Cognitive Impairment or Mild Dementia Due to Alzheimer's Disease (AD).Available from: https://clinicaltrials.gov/ct2/show/NCT04602624 (Accessed Dec 07, 2021).
  131. WuB. MurrayJ.K. AndrewsK.L. Discovery of Tarantula Venom-Derived NaV1.7-Inhibitory JzTx-V Peptide 5-Br-Trp24 Analogue AM-6120 with Systemic Block of Histamine-Induced Pruritis.J. Med. Chem.201861219500951210.1021/acs.jmedchem.8b00736 30346167
    [Google Scholar]
  132. MoyerB.D. MurrayJ.K. LiguttiJ. Pharmacological characterization of potent and selective NaV1.7 inhibitors engineered from Chilobrachys jingzhao tarantula venom peptide JzTx-V.PLoS One2018135e019679110.1371/journal.pone.0196791 29723257
    [Google Scholar]
  133. GilhusN.E. TzartosS. EvoliA. PalaceJ. BurnsT.M. VerschuurenJ.J.G.M. Myasthenia gravis.Nat. Rev. Dis. Primers2019513010.1038/s41572‑019‑0079‑y 31048702
    [Google Scholar]
  134. PedersenT.H. RiisagerA. de PaoliF.V. ChenT.Y. NielsenO.B. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle.J. Gen. Physiol.2016147429130810.1085/jgp.201611582 27022190
    [Google Scholar]
  135. LouisE.D. Essential tremor.Lancet Neurol.20054210011010.1016/S1474‑4422(05)00991‑9 15664542
    [Google Scholar]
  136. LouisE.D. The roles of age and aging in essential tremor: an epidemiological perspective.Neuroepidemiology2019521-211111810.1159/000492831 30625472
    [Google Scholar]
  137. AgarwalS. BiagioniM.C. Essential tremor.In: StatPearls. Treasure Island (FL): StatPearls Publishing, Copyright© 2021, StatPearls Publishing LLC.2021
    [Google Scholar]
  138. LouisE.D. FaustP.L. Essential tremor: the most common form of cerebellar degeneration?Cerebellum Ataxias2020711210.1186/s40673‑020‑00121‑1 32922824
    [Google Scholar]
  139. CheronG. Márquez-RuizJ. CheronJ. Purkinje cell BKchannel ablation induces abnormal rhythm in deep cerebellar nuclei and prevents LTD.Sci. Rep.201881422010.1038/s41598‑018‑22654‑6 29523816
    [Google Scholar]
  140. ImlachW.L. FinchS.C. DunlopJ. MeredithA.L. AldrichR.W. DalzielJ.E. The molecular mechanism of “ryegrass staggers,” a neurological disorder of K+ channels.J. Pharmacol. Exp. Ther.2008327365766410.1124/jpet.108.143933 18801945
    [Google Scholar]
  141. DudemS. LargeR.J. KulkarniS. LINGO1 is a regulatory subunit of large conductance, Ca2+-activated potassium channels.Proc. Natl. Acad. Sci. USA202011742194220010.1073/pnas.1916715117 31932443
    [Google Scholar]
  142. KuoS.H. TangG. LouisE.D. Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau.Acta Neuropathol.2013125687988910.1007/s00401‑013‑1108‑7 23543187
    [Google Scholar]
  143. TodorovicS.M. LingleC.J. Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents.J. Neurophysiol.199879124025210.1152/jn.1998.79.1.240 9425195
    [Google Scholar]
  144. HandforthA. HomanicsG.E. CoveyD.F. T-type calcium channel antagonists suppress tremor in two mouse models of essential tremor.Neuropharmacology201059638038710.1016/j.neuropharm.2010.05.012 20547167
    [Google Scholar]
  145. ParkY.G. KimJ. KimD. The potential roles of T-type Ca2+ channels in motor coordination.Front. Neural Circuits2013717210.3389/fncir.2013.00172 24191148
    [Google Scholar]
  146. KralicJ.E. CriswellH.E. OstermanJ.L. Genetic essential tremor in gamma-aminobutyric acidA receptor alpha1 subunit knockout mice.J. Clin. Invest.2005115377477910.1172/JCI200523625 15765150
    [Google Scholar]
  147. ChangK.Y. ParkY.G. ParkH.Y. HomanicsG.E. KimJ. KimD. Lack of CaV3.1 channels causes severe motor coordination defects and an age-dependent cerebellar atrophy in a genetic model of essential tremor.Biochem. Biophys. Res. Commun.20114101192310.1016/j.bbrc.2011.05.082 21621520
    [Google Scholar]
  148. Paris-RobidasS. BrochuE. SintesM. Defective dentate nucleus GABA receptors in essential tremor.Brain2012135Pt 110511610.1093/brain/awr301 22120148
    [Google Scholar]
  149. Marin-LahozJ. GironellA. Linking essential tremor to the cerebellum: neurochemical evidence.Cerebellum201615324325210.1007/s12311‑015‑0735‑z 26498765
    [Google Scholar]
  150. DengH. XieW.J. LeW.D. HuangM.S. JankovicJ. Genetic analysis of the GABRA1 gene in patients with essential tremor.Neurosci. Lett.20064011-2161910.1016/j.neulet.2006.02.066 16530959
    [Google Scholar]
  151. HandforthA. KadamP.A. KosoyanH.P. EslamiP. Suppression of harmaline tremor by activation of an extrasynaptic GABAA receptor: implications for essential tremor.Tremor Other Hyperkinet. Mov.20188054610.5334/tohm.407 30191083
    [Google Scholar]
  152. Sage Therapeutics, Inc. PipelineAvailable from: https://www.sagerx.com/programs-research/pipeline/ (accessed Dec 03, 2021).
  153. TsudaM. Shigemoto-MogamiY. KoizumiS. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury.Nature2003424695077878310.1038/nature01786 12917686
    [Google Scholar]
  154. InoueK. TsudaM. Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors.Biochem. Pharmacol.202118711430910.1016/j.bcp.2020.114309 33130129
    [Google Scholar]
  155. UlmannL. HirbecH. RassendrenF. P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain.EMBO J.201029142290230010.1038/emboj.2010.126 20562826
    [Google Scholar]
  156. TraperoC. Martín-SatuéM. Purinergic signaling in endometriosis-associated pain.Int. J. Mol. Sci.20202122E851210.3390/ijms21228512 33198179
    [Google Scholar]
  157. VinclerM. WittenauerS. ParkerR. EllisonM. OliveraB.M. McIntoshJ.M. Molecular mechanism for analgesia involving specific antagonism of alpha9alpha10 nicotinic acetylcholine receptors.Proc. Natl. Acad. Sci. USA200610347178801788410.1073/pnas.0608715103 17101979
    [Google Scholar]
  158. EllisonM. HaberlandtC. Gomez-CasatiM.E. Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR.Biochemistry20064551511151710.1021/bi0520129 16445293
    [Google Scholar]
  159. LipsK.S. PfeilU. KummerW. Coexpression of alpha 9 and alpha 10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons.Neuroscience200211511510.1016/S0306‑4522(02)00274‑9 12401316
    [Google Scholar]
  160. MohammadiS.A. ChristieM.J. Conotoxin Interactions with α9α10-nAChRs: Is the α9α10-Nicotinic Acetylcholine Receptor an Important Therapeutic Target for Pain Management?Toxins20157103916393210.3390/toxins7103916 26426047
    [Google Scholar]
  161. RichterK. MathesV. FroniusM. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.Sci. Rep.2016612866010.1038/srep28660 27349288
    [Google Scholar]
  162. MashimoM. MoriwakiY. MisawaH. KawashimaK. FujiiT. Regulation of immune functions by non-neuronal acetylcholine (ACh) via muscarinic and nicotinic ACh receptors.Int. J. Mol. Sci.20212213681810.3390/ijms22136818 34202925
    [Google Scholar]
  163. ClinicalTrials.gov, U.S. National Library of Medicine, Study on the Safety of Drug BAY1817080 at Different Doses and the Way the Body Absorbs and Eliminates the Drug in Japanese Healthy Adult Male ParticipantsAvailable from: https://clinicaltrials.gov/ct2/show/NCT04265781 (Accessed Dec 07, 2021).
  164. DingS. ZhuL. TianY. ZhuT. HuangX. ZhangX. P2X3 receptor involvement in endometriosis pain via ERK signaling pathway.PLoS One2017129e018464710.1371/journal.pone.0184647 28898282
    [Google Scholar]
  165. Souza Monteiro de AraujoD. NassiniR. GeppettiP. De LoguF. TRPA1 as a therapeutic target for nociceptive pain.Expert Opin. Ther. Targets20202410997100810.1080/14728222.2020.1815191 32838583
    [Google Scholar]
  166. Acadia Pharmaceuticals IncEarly Stage Clinical Programs.Available from: https://www.acadia-pharm.com/pipeline/early-stage-clinical-programs/ (accessed Dec 03, 2021).
    [Google Scholar]
  167. CaterinaM.J. SchumacherM.A. TominagaM. RosenT.A. LevineJ.D. JuliusD. The capsaicin receptor: a heat-activated ion channel in the pain pathway.Nature1997389665381682410.1038/39807 9349813
    [Google Scholar]
  168. TominagaM. CaterinaM.J. MalmbergA.B. The cloned capsaicin receptor integrates multiple pain-producing stimuli.Neuron199821353154310.1016/S0896‑6273(00)80564‑4 9768840
    [Google Scholar]
  169. ChuangH.H. PrescottE.D. KongH. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.Nature2001411684095796210.1038/35082088 11418861
    [Google Scholar]
  170. Di MarzoV. BlumbergP.M. SzallasiA. Endovanilloid signaling in pain.Curr. Opin. Neurobiol.200212437237910.1016/S0959‑4388(02)00340‑9 12139983
    [Google Scholar]
  171. ShinC.Y. ShinJ. KimB.M. Essential role of mitochondrial permeability transition in vanilloid receptor 1-dependent cell death of sensory neurons.Mol. Cell. Neurosci.2003241576810.1016/S1044‑7431(03)00121‑0 14550768
    [Google Scholar]
  172. JinH.W. IchikawaH. FujitaM. Involvement of caspase cascade in capsaicin-induced apoptosis of dorsal root ganglion neurons.Brain Res.20051056213914410.1016/j.brainres.2005.07.025 16125681
    [Google Scholar]
  173. Sorrento Therapeutics, Inc. RTXAvailable from: https://sorrentotherapeutics.com/research/pain/ (accessed Dec 03, 2021).
  174. KushnarevM. PirvulescuI.P. CandidoK.D. KnezevicN.N. Neuropathic pain: preclinical and early clinical progress with voltage-gated sodium channel blockers.Expert Opin. Investig. Drugs202029325927110.1080/13543784.2020.1728254 32070160
    [Google Scholar]
  175. CoxJ.J. ReimannF. NicholasA.K. An SCN9A channelopathy causes congenital inability to experience pain.Nature2006444712189489810.1038/nature05413 17167479
    [Google Scholar]
  176. FaberC.G. LauriaG. MerkiesI.S. Gain-of-function Nav1.8 mutations in painful neuropathy.Proc. Natl. Acad. Sci. USA201210947194441944910.1073/pnas.1216080109 23115331
    [Google Scholar]
  177. RamachandranR. ThompsonS.K. MalkmusS. Topical Application of ASN008, a Permanently Charged Sodium Channel Blocker, Shows Robust Efficacy, a Rapid Onset, and Long Duration of Action in a Mouse Model of Pruritus.J. Pharmacol. Exp. Ther.2020374352152810.1124/jpet.120.265074 32616515
    [Google Scholar]
  178. Nocion TherapeuticsAvailable from: https://www.nociontx.com/ (accessed Dec 03, 2021).
  179. SangameswaranL. FishL.M. KochB.D. A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia.J. Biol. Chem.199727223148051480910.1074/jbc.272.23.14805 9169448
    [Google Scholar]
  180. EnglandS. de GrootM.J. Subtype-selective targeting of voltage-gated sodium channels.Br. J. Pharmacol.200915861413142510.1111/j.1476‑5381.2009.00437.x 19845672
    [Google Scholar]
  181. AkopianA.N. SivilottiL. WoodJ.N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons.Nature1996379656225726210.1038/379257a0 8538791
    [Google Scholar]
  182. AkopianA.N. SouslovaV. EnglandS. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways.Nat. Neurosci.19992654154810.1038/9195 10448219
    [Google Scholar]
  183. Wex PharmaceuticalsAbout Halneuron®.Available from: https://wexpharma.com/technology/about-halneuron/ (accessed Dec 06, 2021).
    [Google Scholar]
  184. Newron Pharmaceuticals, Ralfinamide. Available from: https://www.newron.com/science#ralfinamide (accessed Dec 06, 2021).
  185. AltierC. ZamponiG.W. Targeting Ca2+ channels to treat pain: T-type versus N-type.Trends Pharmacol. Sci.200425946547010.1016/j.tips.2004.07.004 15559248
    [Google Scholar]
  186. RobbinsJ. KCNQ potassium channels: physiology, pathophysiology, and pharmacology.Pharmacol. Ther.200190111910.1016/S0163‑7258(01)00116‑4 11448722
    [Google Scholar]
  187. SahP. FaberE.S. Channels underlying neuronal calcium-activated potassium currents.Prog. Neurobiol.200266534535310.1016/S0301‑0082(02)00004‑7 12015199
    [Google Scholar]
  188. KwongK. KollarikM. NassensteinC. RuF. UndemB.J. P2X2 receptors differentiate placodal vs. neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus.Am. J. Physiol. Lung Cell. Mol. Physiol.20082955L858L86510.1152/ajplung.90360.2008 18689601
    [Google Scholar]
  189. IdzkoM. HammadH. van NimwegenM. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells.Nat. Med.200713891391910.1038/nm1617 17632526
    [Google Scholar]
  190. LommatzschM. CickoS. MüllerT. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease.Am. J. Respir. Crit. Care Med.2010181992893410.1164/rccm.200910‑1506OC 20093639
    [Google Scholar]
  191. HoenderopJ.G. NiliusB. BindelsR.J. Calcium absorption across epithelia.Physiol. Rev.200585137342210.1152/physrev.00003.2004 15618484
    [Google Scholar]
  192. van GoorM.K.C. HoenderopJ.G.J. van der WijstJ. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6.Biochim. Biophys. Acta Mol. Cell Res.20171864688389310.1016/j.bbamcr.2016.11.027 27913205
    [Google Scholar]
  193. PrevarskayaN. ZhangL. BarrittG. TRP channels in cancer.Biochim. Biophys. Acta20071772893794610.1016/j.bbadis.2007.05.006 17616360
    [Google Scholar]
  194. StewartJ.M. TRPV6 as a target for cancer therapy.J. Cancer202011237438710.7150/jca.31640 31897233
    [Google Scholar]
  195. RaphaëlM. Lehen’kyiV. VandenbergheM. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival.Proc. Natl. Acad. Sci.201411137E3870E387910.1073/pnas.1413409111 25172921
    [Google Scholar]
  196. BolanzK.A. HedigerM.A. LandowskiC.P. The role of TRPV6 in breast carcinogenesis.Mol. Cancer Ther.20087227127910.1158/1535‑7163.MCT‑07‑0478 18245667
    [Google Scholar]
  197. SongH. DongM. ZhouJ. ShengW. LiX. GaoW. Expression and prognostic significance of TRPV6 in the development and progression of pancreatic cancer.Oncol. Rep.20183931432144010.3892/or.2018.6216 29344675
    [Google Scholar]
  198. Soricimed Biopharma, Discovery. Available from: https://www.soricimed.com/discovery.htm (accessed Dec 06, 2021).
  199. AugerR. MottaI. BenihoudK. OjciusD.M. KanellopoulosJ.M. A role for mitogen-activated protein kinase(Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death.J. Biol. Chem.200528030281422815110.1074/jbc.M501290200 15937334
    [Google Scholar]
  200. BlayJ. WhiteT.D. HoskinD.W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine.Cancer Res.1997571326022605 9205063
    [Google Scholar]
  201. PellegattiP. RaffaghelloL. BianchiG. PiccardiF. PistoiaV. Di VirgilioF. Increased level of extracellular ATP at tumor sites: In vivo imaging with plasma membrane luciferase.PLoS One200837e259910.1371/journal.pone.0002599 18612415
    [Google Scholar]
  202. GuB.J. ZhangW. WorthingtonR.A. A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor.J. Biol. Chem.200127614111351114210.1074/jbc.M010353200 11150303
    [Google Scholar]
  203. GhiringhelliF. ApetohL. TesniereA. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors.Nat. Med.200915101170117810.1038/nm.2028 19767732
    [Google Scholar]
  204. GilbertS.M. OliphantC.J. HassanS. ATP in the tumour microenvironment drives expression of nfP2X7, a key mediator of cancer cell survival.Oncogene201938219420810.1038/s41388‑018‑0426‑6 30087439
    [Google Scholar]
  205. Biosceptre International Ltd., PipelineAvailable from: https://www.biosceptre.com/pipeline/ (accessed Dec 06, 2021).
  206. OliphantC.J. FreemanF.S. ImonG.R.L. BIL06v immunizations generate antibodies specific for non-functional P2X7 (nfP2X7) that target solid tumors in vivo.Cancer Res.20197913Suppl.LB-201
    [Google Scholar]
  207. MallM.A. HartlD. CFTR: cystic fibrosis and beyond.Eur. Respir. J.20144441042105410.1183/09031936.00228013 24925916
    [Google Scholar]
  208. ShinD.H. KimM. KimY. Bicarbonate permeation through anion channels: its role in health and disease.Pflugers Arch.202047281003101810.1007/s00424‑020‑02425‑x 32621085
    [Google Scholar]
  209. Cystic Fibrosis Mutation DatabaseAvailable from: http://www.genet.sickkids.on.ca/Home.html (accessed Dec 06, 2021).
  210. FanenP. Wohlhuter-HaddadA. HinzpeterA. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies.Int. J. Biochem. Cell Biol.2014529410210.1016/j.biocel.2014.02.023 24631642
    [Google Scholar]
  211. ChaudaryN. Triplet CFTR modulators: future prospects for treatment of cystic fibrosis.Ther. Clin. Risk Manag.2018142375238310.2147/TCRM.S147164 30584312
    [Google Scholar]
  212. HoyS.M. Elexacaftor/Ivacaftor/Tezacaftor: First Approval.Drugs201979182001200710.1007/s40265‑019‑01233‑7 31784874
    [Google Scholar]
  213. ClunesL.A. McMillan-CastanaresN. MehtaN. Epithelial vectorial ion transport in cystic fibrosis: dysfunction, measurement, and pharmacotherapy to target the primary deficit.SAGE Open Med.20208205031212093380710.1177/2050312120933807 32637102
    [Google Scholar]
  214. AbbVie IncAbbVie Announces Collaboration with Cystic Fibrosis Foundation.Available from: https://news.abbvie.com/ news/press-releases/news-type/corporate-news/abbvie-announces-collaboration-with-cystic-fibrosis-foundation.htm (accessed Dec 06, 2021).
    [Google Scholar]
  215. DanahayH. GoslingM. TMEM16A: an alternative approach to restoring airway anion secretion in cystic fibrosis?Int. J. Mol. Sci.2020217E238610.3390/ijms21072386 32235608
    [Google Scholar]
  216. Enterprise TherapeuticsEnterprise Therapeutics’ First-in-Class TMEM16A potentiator program for treatment of cystic fibrosis and other respiratory diseases acquired by Roche.Available from: https://enterprisetherapeutics.com/enterprise-therapeutics-first-in-class-tmem16a-potentiator-program-for-treatment-of-cystic-fibrosis-and-other-respiratory-diseases-acquired-by-roche/ (accessed Dec 08, 2021).
  217. Parion Sciences, Pipeline. Available from: https://www.parion.com/pipeline/ (accessed Dec 08, 2021).
  218. Arrowhead Pharmaceuticals, Pipeline.Available from: https://arrowheadpharma.com/pipeline/ (accessed Dec 08, 2021).
  219. Parion SciencesParion sciences and takeda end collaboration on p-321 for ophthalmic indications.Available from: https://www.parion.com/uncategorized/parion-sciences-and-takeda-end-collaboration-on-p-321-for-ophthalmic-indications/ (accessed Dec 06, 2021).
    [Google Scholar]
  220. GrantA.O. Cardiac ion channels.Circ. Arrhythm. Electrophysiol.20092218519410.1161/CIRCEP.108.789081 19808464
    [Google Scholar]
  221. PriestB.T. McDermottJ.S. Cardiac ion channels.Channels20159635235910.1080/19336950.2015.1076597 26556552
    [Google Scholar]
  222. ZhangX.D. ThaiP.N. LieuD.K. ChiamvimonvatN. Cardiac small-conductance calcium-activated potassium channels in health and disease.Pflugers Arch.2021473347748910.1007/s00424‑021‑02535‑0 33624131
    [Google Scholar]
  223. EllinorP.T. LunettaK.L. GlazerN.L. Common variants in KCNN3 are associated with lone atrial fibrillation.Nat. Genet.201042324024410.1038/ng.537 20173747
    [Google Scholar]
  224. EllinorP.T. LunettaK.L. AlbertC.M. Meta-analysis identifies six new susceptibility loci for atrial fibrillation.Nat. Genet.201244667067510.1038/ng.2261 22544366
    [Google Scholar]
  225. LiN. TimofeyevV. TutejaD. Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation.J. Physiol.2009587Pt 51087110010.1113/jphysiol.2008.167718 19139040
    [Google Scholar]
  226. ZhangX.D. TimofeyevV. LiN. Critical roles of a small conductance Ca2⁺-activated K⁺ channel (SK3) in the repolarization process of atrial myocytes.Cardiovasc. Res.2014101231732510.1093/cvr/cvt262 24282291
    [Google Scholar]
  227. ChristophersenP. WulffH. Pharmacological gating modulation of small- and intermediate-conductance Ca2+-activated K+ channels (KCa2.x and KCa3.1).Channels20159633634310.1080/19336950.2015.1071748 26217968
    [Google Scholar]
  228. MasonJ.W. ElliottG.T. RomanoS.J. MendzelevskiB. AllgrenR. GillingsM. RoyD. Abstract 11495: HBI-3000: A Novel Drug for Conversion of Atrial Fibrillation - Phase 1 Study Results.Circulation2019140Suppl. 1A11495
    [Google Scholar]
  229. ShibasakiK. TRPV4 ion channel as important cell sensors.J. Anesth.20163061014101910.1007/s00540‑016‑2225‑y 27506578
    [Google Scholar]
  230. LiuL. GuoM. LvX. Role of transient receptor potential vanilloid 4 in vascular function.Front. Mol. Biosci.2021867766110.3389/fmolb.2021.677661 33981725
    [Google Scholar]
  231. RandhawaP.K. JaggiA.S. TRPV4 channels: physiological and pathological role in cardiovascular system.Basic Res. Cardiol.201511065410.1007/s00395‑015‑0512‑7 26415881
    [Google Scholar]
  232. GlaxoSmithKline, Our pipeline. Available from: https://www.gsk.com/en-gb/research-and-development/our-pipeline/ (accessed Dec 08, 2021).
  233. GoyalN. SkrdlaP. SchroyerR. Clinical pharmacokinetics, safety, and tolerability of a novel, first-in-class TRPV4 ion channel inhibitor, GSK2798745, in healthy and heart failure subjects.Am. J. Cardiovasc. Drugs201919333534210.1007/s40256‑018‑00320‑6 30637626
    [Google Scholar]
  234. BrooksC.A. BartonL.S. BehmD.J. Discovery of GSK3527497: a candidate for the inhibition of transient receptor potential vanilloid-4 (TRPV4).J. Med. Chem.201962209270928010.1021/acs.jmedchem.9b01247 31532662
    [Google Scholar]
  235. SrikanthS. GwackY. Orai1-NFAT signalling pathway triggered by T cell receptor stimulation.Mol. Cells201335318219410.1007/s10059‑013‑0073‑2 23483280
    [Google Scholar]
  236. GuéguinouM. ChantômeA. FromontG. BougnouxP. VandierC. Potier-CartereauM. KCa and Ca(2+) channels: the complex thought.Biochim. Biophys. Acta20141843102322233310.1016/j.bbamcr.2014.02.019 24613282
    [Google Scholar]
  237. WulffH. CalabresiP.A. AllieR. The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS.J. Clin. Invest.2003111111703171310.1172/JCI16921 12782673
    [Google Scholar]
  238. BeetonC. WulffH. StandiferN.E. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases.Proc. Natl. Acad. Sci. USA200610346174141741910.1073/pnas.0605136103 17088564
    [Google Scholar]
  239. Di VirgilioF. Dal BenD. SartiA.C. GiulianiA.L. FalzoniS. The P2X7 Receptor in infection and inflammation.Immunity2017471153110.1016/j.immuni.2017.06.020 28723547
    [Google Scholar]
  240. KataokaA. Tozaki-SaitohH. KogaY. TsudaM. InoueK. Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT.J. Neurochem.2009108111512510.1111/j.1471‑4159.2008.05744.x 19014371
    [Google Scholar]
  241. CastañedaO. SotolongoV. AmorA.M. Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus.Toxicon199533560361310.1016/0041‑0101(95)00013‑C 7660365
    [Google Scholar]
  242. TarchaE.J. OlsenC.M. ProbstP. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial.PLoS One2017127e018076210.1371/journal.pone.0180762 28723914
    [Google Scholar]
  243. TEKv Therapeutics LLC. Available from: https://tekvt.com/ (accessed Dec 08, 2021).
  244. GramD.X. HolstJ.J. SzallasiA. TRPV1: A potential therapeutic target in type 2 diabetes and comorbidities?Trends Mol. Med.201723111002101310.1016/j.molmed.2017.09.005 29137713
    [Google Scholar]
  245. FestaA. D’AgostinoR.Jr HowardG. MykkänenL. TracyR.P. HaffnerS.M. Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS).Circulation20001021424710.1161/01.CIR.102.1.42 10880413
    [Google Scholar]
  246. WuT. DornJ.P. DonahueR.P. SemposC.T. TrevisanM. Associations of serum C-reactive protein with fasting insulin, glucose, and glycosylated hemoglobin: the Third National Health and Nutrition Examination Survey, 1988-1994.Am. J. Epidemiol.20021551657110.1093/aje/155.1.65 11772786
    [Google Scholar]
  247. SchaldeckerT. KimS. TarabanisC. Inhibition of the TRPC5 ion channel protects the kidney filter.J. Clin. Invest.2013123125298530910.1172/JCI71165 24231357
    [Google Scholar]
  248. Goldfinch Bio, IncOur Pipeline: Changing kidney disease treatment, for good.Available from: https://www.goldfinchbio.com/pipeline/ (accessed Dec 08, 2021).
  249. ClinicalTrials.govU.S. National Library of Medicine, Granexin gel for diabetic foot ulcers.Available from: https://www.io.nihr.ac.uk/wp-content/uploads/2018/07/12177-Granexin-gel-for-Diabetic-foot-ulcer-V1.0-JUN2018-NON-CONF.pdf (Accessed Dec 06, 2021).
  250. Saniona, SAN903.Available from: https://saniona.com/pipeline/san903/ (accessed Dec 06, 2021).
  251. SpringWorks TherapeuticsSpringWorks Therapeutics Launches with $103M in Series A Funding and Rights to Four Clinical Program.Available from: https://ir.springworkstx.com/news-releases/news-release-details/springworks-therapeutics-launches-103m-series-funding-and-rights (accessed Dec 07, 2021).
  252. ClinicalTrials.govU.S. National library of medicine, senicapoc and dehydrated stomatocytosis.Available from: https://clinicaltrials.gov/ct2/show/NCT04372498?term=PF-05416266+OR+senicapoc+OR+ICA-17043&draw=2&rank=3 (accessed Dec 07, 2021).
  253. IONCHANNELLIBRARYIon channel drugs on the market.Available from: https://www.ionchannellibrary.com/drugs-on-the-market/ (accessed Dec 07, 2021).
    [Google Scholar]
  254. Del Río-SanchoS. CrosC. CoutazB. CuendetM. KaliaY.N. Cutaneous iontophoresis of μ-conotoxin CnIIIC-A potent NaV1.4 antagonist with analgesic, anaesthetic and myorelaxant properties.Int. J. Pharm.20175181-2596510.1016/j.ijpharm.2016.12.054 28034736
    [Google Scholar]
  255. KolosovA. AuriniL. WilliamsE.D. CookeI. GoodchildC.S. Intravenous injection of leconotide, an omega conotoxin: synergistic antihyperalgesic effects with morphine in a rat model of bone cancer pain.Pain Med.201112692394110.1111/j.1526‑4637.2011.01118.x 21539704
    [Google Scholar]
  256. LeeS.Y. MacKinnonR. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom.Nature2004430699623223510.1038/nature02632 15241419
    [Google Scholar]
  257. SuchynaT.M. TapeS.E. KoeppeR.E.II AndersenO.S. SachsF. GottliebP.A. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers.Nature2004430699623524010.1038/nature02743 15241420
    [Google Scholar]
  258. CardosoF.C. Multi-targeting sodium and calcium channels using venom peptides for the treatment of complex ion channels-related diseases.Biochem. Pharmacol.202018111410710.1016/j.bcp.2020.114107 32579958
    [Google Scholar]
  259. FlinspachM. XuQ. PiekarzA.D. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor.Sci. Rep.2017713966210.1038/srep39662 28045073
    [Google Scholar]
  260. LopezL. MontnachJ. Oliveira-MendesB. Synthetic analogues of huwentoxin-iv spider peptide with altered human NaV1.7/NaV1.6 selectivity ratios.Front. Cell Dev. Biol.2021979858810.3389/fcell.2021.798588 34988086
    [Google Scholar]
  261. NeffR.A. FlinspachM. GibbsA. Comprehensive engineering of the tarantula venom peptide huwentoxin-IV to inhibit the human voltage-gated sodium channel hNav1.7.J. Biol. Chem.202029551315132710.1016/S0021‑9258(17)49888‑7 31871053
    [Google Scholar]
  262. MurrayJ.K. LiguttiJ. LiuD. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Na(V)1.7 sodium channel.J. Med. Chem.20155852299231410.1021/jm501765v 25658507
    [Google Scholar]
  263. ChenC. XuB. ShiX. GpTx-1 and [Ala5, Phe6, Leu26, Arg28]GpTx-1, two peptide NaV 1.7 inhibitors: analgesic and tolerance properties at the spinal level.Br. J. Pharmacol.2018175203911392710.1111/bph.14461 30076786
    [Google Scholar]
  264. Srairi-AbidN. OthmanH. AissaouiD. BenAissaR. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways.Cell Calcium20198016017410.1016/j.ceca.2019.05.003 31108338
    [Google Scholar]
  265. Dueñas-CuellarR.A. SantanaC.J.C. MagalhãesA.C.M. PiresO.R.Jr FontesW. CastroM.S. Scorpion toxins and ion channels: potential applications in cancer therapy.Toxins2020125E32610.3390/toxins12050326 32429050
    [Google Scholar]
  266. Díaz-GarcíaA. VarelaD. Voltage-GatedK. Voltage-gated K+/Na+ channels and scorpion venom toxins in cancer.Front. Pharmacol.20201191310.3389/fphar.2020.00913 32655396
    [Google Scholar]
  267. MikaelianA.G. TraboulayE. ZhangX.M. Pleiotropic anticancer properties of scorpion venom peptides: rhopalurus princeps venom as an anticancer agent.Drug Des. Devel. Ther.20201488189310.2147/DDDT.S231008 32161447
    [Google Scholar]
  268. KerkisI. HayashiM.A. Prieto da SilvaA.R. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake.BioMed Res. Int.2014201467598510.1155/2014/675985 24551848
    [Google Scholar]
  269. HayashiM.A.F. CampeiroJ.D. YonamineC.M. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents.Toxicon202220611310.1016/j.toxicon.2021.12.005 34896407
    [Google Scholar]
  270. Rádis-BaptistaG. Cell-penetrating peptides derived from animal venoms and toxins.Toxins202113214710.3390/toxins13020147 33671927
    [Google Scholar]
  271. CampeiroJ.D. MarinovicM.P. CarapetoF.C. Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile.Amino Acids201850226727810.1007/s00726‑017‑2513‑3 29235017
    [Google Scholar]
  272. FalcaoC.B. Radis-BaptistaG. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology.Peptides202012617023410.1016/j.peptides.2019.170234 31857106
    [Google Scholar]
  273. KimuraT. Screening techniques using the periplasmic expression of peptide libraries and target molecules.J. Bioanal. Biomed.2015090510.4172/1948‑593X.1000190
    [Google Scholar]
/content/journals/vat/10.2174/2666121702666220429095250
Loading
/content/journals/vat/10.2174/2666121702666220429095250
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test