Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

The venoms of Tunisian wildlife snakes are complex mixtures containing proteins/peptides and non-protein molecules. Proteins and peptides are the most abundant compounds responsible for the biological effects of venoms. Snake venoms proteins have enzymatic or non-enzymatic activities, which are grouped into different families, including C-type lectin proteins, disintegrins (long, medium and short disintegrins), Kunitz-type serine protease inhibitors, natriuretic-like peptides, vascular endothelial growth factor-related proteins, L-amino acid oxidases, phospholipases A2 and serine proteinases. With technological advancements, the toxic effects of venoms were turned into potential benefits for clinical diagnosis, basic research and development of new research tools and drugs of potential clinical use. Our research team has shown that and venom components of Tunisian wildlife snakes had great potential for the development of new drugs for the treatment of cancer, angiogenesis disorders or cardiovascular diseases. This review is an overview of snake venom proteins from and and their biochemical, pharmacological and molecular characterization and their importance as protein resources with therapeutic potential.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121701999200711180926
2021-03-01
2024-11-22
Loading full text...

Full text loading...

References

  1. Mohamed Abd El-AzizT. Garcia SoaresA. StockandJ.D. Snake venoms in drug discovery: valuable therapeutic tools for life saving.Toxins (Basel)20191110E56410.3390/toxins11100564 31557973
    [Google Scholar]
  2. UllahA UllahK AliH BetzelC RehmanS. The Sequence and a Three-Dimensional Structural Analysis Reveal Substrate Specificity among Snake Venom Phosphodiesterases Toxins20191111625
    [Google Scholar]
  3. FoxJ.W. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases.Toxicon201362758210.1016/j.toxicon.2012.09.009 23010165
    [Google Scholar]
  4. KingG.F. Venoms as a platform for human drugs: translating toxins into therapeutics.Expert Opin. Biol. Ther.201111111469148410.1517/14712598.2011.621940 21939428
    [Google Scholar]
  5. MarcinkiewiczC. Applications of snake venom components to modulate integrin activities in cell-matrix interactions.Int. J. Biochem. Cell Biol.20134591974198610.1016/j.biocel.2013.06.009 23811033
    [Google Scholar]
  6. QiuY. ChooY.M. YoonH.J. Molecular cloning and fibrin(ogen)olytic activity of a bumblebee (Bombus hypocrita sapporoensis) venom serine protease.J. Asia Pac. Entomol.2012151798210.1016/j.aspen.2011.09.002
    [Google Scholar]
  7. BazaaA. MarrakchiN. El AyebM. SanzL. CalveteJ.J. Snake venomics: comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina.Proteomics20055164223423510.1002/pmic.200402024 16206329
    [Google Scholar]
  8. DrickamerK. C-type lectin-like domains.Curr. Opin. Struct. Biol.19999558559010.1016/S0959‑440X(99)00009‑3 10508765
    [Google Scholar]
  9. JebaliJ. BazaaA. SarrayS. C-type lectin protein isoforms of Macrovipera lebetina: cDNA cloning and genetic diversity.Toxicon200953222823710.1016/j.toxicon.2008.11.006 19059426
    [Google Scholar]
  10. SarrayS. BerthetV. CalveteJ.J. Lebectin, a novel C-type lectin from Macrovipera lebetina venom, inhibits integrin-mediated adhesion, migration and invasion of human tumour cells.Lab. Invest.200484557358110.1038/labinvest.3700088 15048137
    [Google Scholar]
  11. SarrayS. DelamarreE. MarvaldiJ. El AyebM. MarrakchiN. LuisJ. Lebectin and lebecetin, two C-type lectins from snake venom, inhibit alpha5beta1 and alphaV-containing integrins.Matrix Biol.200726430631310.1016/j.matbio.2007.01.001 17300927
    [Google Scholar]
  12. SarrayS. SiretC. LehmannM. Lebectin increases N-cadherin-mediated adhesion through PI3K/AKT pathway.Cancer Lett.2009285217418110.1016/j.canlet.2009.05.012 19501458
    [Google Scholar]
  13. PilorgetA. ConesaM. SarrayS. Lebectin, a Macrovipera lebetina venom-derived C-type lectin, inhibits angiogenesis both in vitro and in vivo.J. Cell. Physiol.2007211230731510.1002/jcp.20935 17323383
    [Google Scholar]
  14. JebaliJ. FakhfekhE. MorgenM. Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231.Toxicon201486162710.1016/j.toxicon.2014.04.010 24814013
    [Google Scholar]
  15. SarrayS. SrairiN. HatmiM. Lebecetin, a potent antiplatelet C-type lectin from Macrovipera lebetina venom.Biochim. Biophys. Acta200316511-2304010.1016/S1570‑9639(03)00232‑2 14499586
    [Google Scholar]
  16. MontassarF. DarcheM. BlaizotA. Lebecetin, a C-type lectin, inhibits choroidal and retinal neovascularization.FASEB J.20173131107111910.1096/fj.201600351R 27974593
    [Google Scholar]
  17. OlfaK.Z. JoséL. SalmaD. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis.Lab. Invest.200585121507151610.1038/labinvest.3700350 16200076
    [Google Scholar]
  18. Kallech-ZiriO. LuisJ. FaljounZ. Structure function relationships of KTS disintegrins and design of antiangiogenic drugs.Lett. Drug Des. Discov.201071364010.2174/157018010789869325
    [Google Scholar]
  19. CalveteJ.J. FoxJ.W. AgelanA. NiewiarowskiS. MarcinkiewiczC. The presence of the WGD motif in CC8 heterodimeric disintegrin increases its inhibitory effect on alphaII(b)beta3, alpha(v)beta3, and alpha5beta1 integrins.Biochemistry20024162014202110.1021/bi015627o 11827548
    [Google Scholar]
  20. Ben-MabroukH. Zouari-KessentiniR. MontassarF. CC5 and CC8, two homologous disintegrins from Cerastes cerastes venom, inhibit in vitro and ex vivo angiogenesis.Int. J. Biol. Macromol.20168667068010.1016/j.ijbiomac.2016.02.008 26853827
    [Google Scholar]
  21. SchaffM. GachetC. ManginP.H. Anti-platelets without a bleeding risk: novel targets and strategiesBiol. Aujourdhui2015209321122810.1051/jbio/2015023 26820829
    [Google Scholar]
  22. LimamI. BazaaA. Srairi-AbidN. Leberagin-C, A disintegrin-like/cysteine-rich protein from Macrovipera lebetina transmediterranea venom, inhibits alphavbeta3 integrin-mediated cell adhesion.Matrix Biol.201029211712610.1016/j.matbio.2009.09.009 19808093
    [Google Scholar]
  23. HeY-Y. LiuS-B. LeeW-H. QianJ.Q. ZhangY. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom.Peptides200829101692169910.1016/j.peptides.2008.05.025 18582511
    [Google Scholar]
  24. MetaA. NakatakeH. ImamuraT. NozakiC. SugimuraK. High-yield production and characterization of biologically active recombinant aprotinin expressed in Saccharomyces cerevisiae.Protein Expr. Purif.2009661222710.1016/j.pep.2009.02.005 19233283
    [Google Scholar]
  25. YuanC-H. HeQ-Y. PengK. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas.PLoS One2008310e341410.1371/journal.pone.0003414 18923708
    [Google Scholar]
  26. ChouW-M. LiuW-H. ChenK-C. ChangL.S. Structure-function studies on inhibitory activity of Bungarus multicinctus protease inhibitor-like protein on matrix metalloprotease-2, and invasion and migration of human neuroblastoma SK-N-SH cells.Toxicon2010552-335336010.1016/j.toxicon.2009.08.012 19706303
    [Google Scholar]
  27. MorjenM. Kallech-ZiriO. BazaaA. PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells.Matrix Biol.2013321526210.1016/j.matbio.2012.11.015 23262217
    [Google Scholar]
  28. MorjenM. HonoréS. BazaaA. PIVL, a snake venom Kunitz-type serine protease inhibitor, inhibits in vitro and in vivo angiogenesis.Microvasc. Res.20149514915610.1016/j.mvr.2014.08.006 25173589
    [Google Scholar]
  29. SantaguidaP.L. Don-WauchopeA.C. OremusM. BNP and NT-proBNP as prognostic markers in persons with acute decompensated heart failure: a systematic review.Heart Fail. Rev.201419445347010.1007/s10741‑014‑9442‑y 25062653
    [Google Scholar]
  30. MitakaC. KudoT. HaraguchiG. TomitaM. Cardiovascular and renal effects of carperitide and nesiritide in cardiovascular surgery patients: a systematic review and meta-analysis.Crit. Care2011155R25810.1186/cc10519 22032777
    [Google Scholar]
  31. SchweitzH. VigneP. MoinierD. FrelinC. LazdunskiM. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps).J. Biol. Chem.1992267201392813932 1352773
    [Google Scholar]
  32. LeeM.L. FungS.Y. ChungI. PailoorJ. CheahS.H. TanN.H. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.Int. J. Med. Sci.201411659360110.7150/ijms.8096 24782648
    [Google Scholar]
  33. BarboucheR. MarrakchiN. MansuelleP. Novel anti-platelet aggregation polypeptides from Vipera lebetina venom: isolation and characterization.FEBS Lett.1996392161010.1016/0014‑5793(96)00774‑0 8769304
    [Google Scholar]
  34. VinkS. JinA.H. PothK.J. HeadG.A. AlewoodP.F. Natriuretic peptide drug leads from snake venom.Toxicon201259443444510.1016/j.toxicon.2010.12.001 21147145
    [Google Scholar]
  35. TourkiB. MatéoP. MorandJ. Lebetin 2, a snake venom-derived natriuretic peptide, attenuates acute myocardial ischemic injury through the modulation of mitochondrial permeability transition pore at the time of reperfusion.PLoS One2016119e016263210.1371/journal.pone.0162632 27618302
    [Google Scholar]
  36. TourkiB. DumesnilA. BelaidiE. Lebetin 2, a snake venom-derived b-type natriuretic peptide, provides immediate and prolonged protection against myocardial ischemia-reperfusion injury via modulation of post-ischemic inflammatory response.Toxins (Basel)2019119E52410.3390/toxins11090524 31510060
    [Google Scholar]
  37. SerafinoA. PierimarchiP. Atrial natriuretic peptide: a magic bullet for cancer therapy targeting Wnt signaling and cellular pH regulators.Curr. Med. Chem.201421212401240910.2174/0929867321666140205140152 24524761
    [Google Scholar]
  38. VeselyD.L. Heart peptide hormones: adjunct and primary treatments of cancer.Anticancer Res.201636115693570010.21873/anticanres.11152 27793890
    [Google Scholar]
  39. VeselyD.L. EichelbaumE.J. SunY. Elimination of up to 80% of human pancreatic adenocarcinomas in athymic mice by cardiac hormones.In Vivo2007213445451 17591353
    [Google Scholar]
  40. EichelbaumE.J. SunY. AlliA.A. GowerW.R.Jr VeselyD.L. Cardiac and kidney hormones cure up to 86% of human small-cell lung cancers in mice.Eur. J. Clin. Invest.200838856257010.1111/j.1365‑2362.2008.01978.x 18717826
    [Google Scholar]
  41. VeselyB.A. SongS. Sanchez-RamosJ. Four peptide hormones decrease the number of human breast adenocarcinoma cells.Eur. J. Clin. Invest.2005351606910.1111/j.1365‑2362.2005.01444.x 15638821
    [Google Scholar]
  42. VeselyB.A. EichelbaumE.J. AlliA.A. SunY. GowerW.R.Jr VeselyD.L. Four cardiac hormones eliminate 4-fold more human glioblastoma cells than the green mamba snake peptide.Cancer Lett.200725419410110.1016/j.canlet.2007.02.015 17399891
    [Google Scholar]
  43. MorjenM. OthmanH. Abdelkafi-KoubaaZ. Targeting α1 inserted domain (I) of α1β1 integrin by Lebetin 2 from M. lebetina transmediterranea venom decreased tumorigenesis and angiogenesis.Int. J. Biol. Macromol.201811779079910.1016/j.ijbiomac.2018.05.230 29870815
    [Google Scholar]
  44. YamazakiY. TakaniK. AtodaH. MoritaT. Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor 2).J. Biol. Chem.200327852519855198810.1074/jbc.C300454200 14600159
    [Google Scholar]
  45. GasmiA. AbidiF. SrairiN. OijatayerA. KarouiH. ElayebM. Purification and characterization of a growth factor-like which increases capillary permeability from Vipera lebetina venom.Biochem. Biophys. Res. Commun.20002681697210.1006/bbrc.2000.2078 10652214
    [Google Scholar]
  46. GasmiA. BourcierC. AlouiZ. Complete structure of an increasing capillary permeability protein (ICPP) purified from Vipera lebetina venom. ICPP is angiogenic via vascular endothelial growth factor receptor signalling.J. Biol. Chem.200227733299922999810.1074/jbc.M202202200 12021274
    [Google Scholar]
  47. MessadiE. AlouiZ. BelaidiE. Cardioprotective effect of VEGF and venom VEGF-like protein in acute myocardial ischemia in mice: effect on mitochondrial function.J. Cardiovasc. Pharmacol.201463327428110.1097/FJC.0000000000000045 24220315
    [Google Scholar]
  48. Zouari-KessentiniR. LuisJ. KarrayA. Two purified and characterized phospholipases A2 from Cerastes cerastes venom, that inhibit cancerous cell adhesion and migration.Toxicon200953444445310.1016/j.toxicon.2009.01.003 19708222
    [Google Scholar]
  49. Kessentini-ZouariR. JebaliJ. TaboubiS. CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo.Lab. Invest.201090451051910.1038/labinvest.2009.137 20142800
    [Google Scholar]
  50. BazaaA. LuisJ. Srairi-AbidN. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration.Matrix Biol.200928418819310.1016/j.matbio.2009.03.007 19351557
    [Google Scholar]
  51. BazaaA. PasquierE. DefillesC. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions.PLoS One201054e1012410.1371/journal.pone.0010124 20405031
    [Google Scholar]
  52. BaîramD. AissaI. LouatiH. Biochemical and monolayer characterization of Tunisian snake venom phospholipases.Int. J. Biol. Macromol.20168964064610.1016/j.ijbiomac.2016.05.020 27164498
    [Google Scholar]
  53. Abdelkafi-KoubaaZ. JebaliJ. OthmanH. A thermoactive L-amino acid oxidase from Cerastes cerastes snake venom: purification, biochemical and molecular characterization.Toxicon201489324410.1016/j.toxicon.2014.06.020 25009089
    [Google Scholar]
  54. Abdelkafi-KoubaaZ. AissaI. MorjenM. Interaction of a snake venom L-amino acid oxidase with different cell types membrane.Int. J. Biol. Macromol.20168275776410.1016/j.ijbiomac.2015.09.065 26433175
    [Google Scholar]
  55. MarrakchiN. ZingaliR.B. KarouiH. BonC. el AyebM. Cerastocytin, a new thrombin-like platelet activator from the venom of the Tunisian viper Cerastes cerastes.Biochim. Biophys. Acta19951244114715610.1016/0304‑4165(94)00216‑K 7766651
    [Google Scholar]
  56. MarrakchiN. BarboucheR. GuermaziS. KarouiH. BonC. El AyebM. Cerastotin, a serine protease from Cerastes cerastes venom, with platelet-aggregating and agglutinating properties.Eur. J. Biochem.1997247112112810.1111/j.1432‑1033.1997.00121.x 9249017
    [Google Scholar]
  57. MarrakchiN. BarboucheR. BonC. el AyebM. Cerastatin, a new potent inhibitor of platelet aggregation from the venom of the Tunisian viper, Cerastes cerastes.Toxicon199735112513510.1016/S0041‑0101(96)00020‑7 9028015
    [Google Scholar]
  58. WaheedH. MoinS.F. ChoudharyM.I. Snake venom: from deadly toxins to life-saving therapeutics.Curr. Med. Chem.201724171874189110.2174/0929867324666170605091546 28578650
    [Google Scholar]
  59. JebaliJ. JeanneauC. MorjenM. Expression of a functional recombinant C-type lectin-like protein lebecetin in the human embryonic kidney cells.Biotechnol. Prog.20122861560156510.1002/btpr.1632 22961812
    [Google Scholar]
/content/journals/vat/10.2174/2666121701999200711180926
Loading
/content/journals/vat/10.2174/2666121701999200711180926
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test