Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

The World Health Organization added snakebite envenoming to its priority list of neglected tropical diseases. Snakebite envenoming is a particularly important public health problem in rural areas of tropical and sub-tropical countries. In 2017, more than 30 thousand cases of snakebites were reported in Brazil, with the North and Northeast regions being the most affected and snakes causing most of these cases.

The objective of this study was to evaluate, , the coagulating, cytotoxic, oxidizing and antioxidant effects caused by and crude venoms.

The crude venoms protein profiles were characterized, and the biological effects were evaluated and compared between the species.

The crude venoms composition showed similar protein profiles. The and crude venoms showed coagulant activity and were capable of causing indirect hemolysis on the erythrocyte membrane, but did not protect the erythrocyte membrane from damage against hypotonic solutions. The crude venom promoted hemagglutination.

The crude venoms were not able to promote an oxidizing effect on hemoglobin and could not prevent the phenylhydrazine oxidizing effect; however, the crude venoms presence caused increase in the methemoglobin formation by phenylhydrazine oxidation.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121701999200618102634
2021-03-01
2025-01-31
Loading full text...

Full text loading...

References

  1. WHO, World Health Organization, Snakebite envenoming 2019ahttp://www.who.int/snakebites/disease/en/[03 March 2019];
  2. WHO, World Health Organization, Neglected tropical diseasess2019bwww.who.int/neglected_diseases/en/[05 February 2019];
  3. ChippauxJ.P. Snakebite envenomation turns again into a neglected tropical disease!J. Venom. Anim. Toxins Incl. Trop. Dis.2017233810.1186/s40409‑017‑0127‑6 28804495
    [Google Scholar]
  4. Brasil, Ministério da Saúde, Portal Saúde, Acidentes por serpentes - Situação epidemiológica2019http://portalarquivos2.saude.gov.br/images/pdf/2018/junho/25/2-Incidencia-Ofidismo-2000-2017.pdf[04 March 2019];
  5. UetzP. FreedP. Jirí Hošek, The Reptile Database2019http://www.reptile-database.org[25 January 2019];
  6. J.L.C.F. Cardoso F O SWen F H, Malaque C M S, et al. Epidemiologia dos Acidentes por Animais Peçonhentos, Animais Peçonhentos no Brasil: Biologia, Clínica e Terapêutica dos Acidentes.São PauloSarvier2003
    [Google Scholar]
  7. MarklandF.S. Snake venoms and the hemostatic system.Toxicon199836121749180010.1016/S0041‑0101(98)00126‑3 9839663
    [Google Scholar]
  8. GeorgievaD. ArniR.K. BetzelC. Proteome analysis of snake venom toxins: pharmacological insights.Expert Rev. Proteomics20085678779710.1586/14789450.5.6.787 19086859
    [Google Scholar]
  9. StockerK. Composition of snake venom, medical use of snake venom proteins.Boca RatonCRC Press1990
    [Google Scholar]
  10. HavtA. FontelesM.C. MonteiroH.S. The renal effects of Bothrops jararacussu venom and the role of PLA(2) and PAF blockers.Toxicon200139121841184610.1016/S0041‑0101(01)00146‑5 11600146
    [Google Scholar]
  11. GirónM.E. SalazarA.M. AguilarI. Hemorrhagic, coagulant and fibrino(geno)lytic activities of crude venom and fractions from mapanare (Bothrops colombiensis) snakes.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2008147111312110.1016/j.cbpc.2007.09.001 17933591
    [Google Scholar]
  12. GutiérrezJ.M. EscalanteT. RucavadoA. Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom.Toxicon200954797698710.1016/j.toxicon.2009.01.039 19303034
    [Google Scholar]
  13. WarrellD.A. Snake bite.Lancet20103759708778810.1016/S0140‑6736(09)61754‑2 20109866
    [Google Scholar]
  14. ChippauxJ.P. WilliamsV. WhiteJ. Snake venom variability: methods of study, results and interpretation.Toxicon199129111279130310.1016/0041‑0101(91)90116‑9 1814005
    [Google Scholar]
  15. FurtadoM.F. Travaglia-CardosoS.R. RochaM.M. Sexual dimorphism in venom of Bothrops jararaca(Serpentes: Viperidae).Toxicon200648440141010.1016/j.toxicon.2006.06.005 16889808
    [Google Scholar]
  16. CalveteJ.J. BorgesA. SeguraA. Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: Contributing to its taxonomy and snakebite management.J. Proteomics200972222724010.1016/j.jprot.2009.01.005 19457355
    [Google Scholar]
  17. CalveteJ.J. MarcinkiewiczC. SanzL. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2.J. Proteome Res.20076132633610.1021/pr060494k 17203976
    [Google Scholar]
  18. DesjardinsP. HansenJ.B. AllenM. Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer.J. Vis. Exp.20093333: e1610.10.3791/1610 19890248
    [Google Scholar]
  19. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a0 5432063
    [Google Scholar]
  20. AlvaradoJ. GutiérrezJ.M. Anticoagulant effect of myotoxic phospholipase A2 isolated from the venom of the snake Bothrops asper (Viperidae).Rev. Biol. Trop.1988362B563565 3273606
    [Google Scholar]
  21. RogalskiA. SoerensenC. Op den BrouwB. Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies.Toxicol. Lett.201728015917010.1016/j.toxlet.2017.08.020 28847519
    [Google Scholar]
  22. HubertF. CooperE.L. RochP. Structure and differential target sensitivity of the stimulable cytotoxic complex from hemolymph of the Mediterranean mussel Mytilus galloprovincialis.Biochim. Biophys. Acta199713611294110.1016/S0925‑4439(97)00013‑6 9247087
    [Google Scholar]
  23. Anvisa, Agência Nacional de Vigilância Sanitária.Farmacopeia Brasileira, Brasília20101904
    [Google Scholar]
  24. JainN.C. Osmotic fragility of erythrocytes of dogs and cats in health and in certain hematologic disorders.Cornell Vet.1973633411423 4782558
    [Google Scholar]
  25. NaoumP.C.R.J; MoraesM.S. Dosagem espectrométrica de metaemoglobina sem interferentes químicos ou enzimáticos.Rev. Bras. Hematol. Hemoter.200426192210.1590/S1516‑84842004000100004
    [Google Scholar]
  26. ArbosK.A. ClaroL.M. BorgesL. SantosC.A. Weffort-SantosA.M. Human erythrocytes as a system for evaluating the antioxidant capacity of vegetable extracts.Nutr. Res.200828745746310.1016/j.nutres.2008.04.004 19083446
    [Google Scholar]
  27. SwensonM.J. Circulação sanguínea e sistema cardiovascular.Dukes Fisiologia dos Animais Domésticos.Guanabara Koogan, Rio de1996
    [Google Scholar]
  28. MajerusP.W. TollefsenD.M. Anticoagulantes, trombolíticos e fármacos antiplaquetáriosGoodman & Gilman: as bases farmacológicas da terapêutica.Rio de JaneiroMcGraw Hill2003
    [Google Scholar]
  29. SmithS.A. The cell-based model of coagulation.J. Vet. Emerg. Crit. Care (San Antonio)200919131010.1111/j.1476‑4431.2009.00389.x 19691581
    [Google Scholar]
  30. KashimaS. RobertoP.G. SoaresA.M. Analysis of Bothrops jararacussu venomous gland transcriptome focusing on structural and functional aspects: I--gene expression profile of highly expressed phospholipases A2.Biochimie200486321121910.1016/j.biochi.2004.02.002 15134836
    [Google Scholar]
  31. ValentinE. LambeauG. Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins.Biochim. Biophys. Acta200014881-2597010.1016/S1388‑1981(00)00110‑4 11080677
    [Google Scholar]
  32. ValentinE. LambeauG. What can venom phospholipases A(2) tell us about the functional diversity of mammalian secreted phospholipases A(2)?Biochimie2000829-1081583110.1016/S0300‑9084(00)01168‑8 11086212
    [Google Scholar]
  33. Homsi-BrandeburgoM.I. QueirozL.S. Santo-NetoH. Rodrigues-SimioniL. GiglioJ.R. Fractionation of Bothrops jararacussu snake venom: partial chemical characterization and biological activity of bothropstoxin.Toxicon198826761562710.1016/0041‑0101(88)90244‑9 3176051
    [Google Scholar]
  34. SpencerP.J. AirdS.D. Boni-MitakeM. NascimentoN. RogeroJ.R. A single-step purification of bothropstoxin-1.Braz. J. Med. Biol. Res.19983191125112710.1590/S0100‑879X1998000900004 9876278
    [Google Scholar]
  35. CintraA.C. MarangoniS. OliveiraB. GiglioJ.R. Bothropstoxin-I: amino acid sequence and function.J. Protein Chem.1993121576410.1007/BF01024915 8427634
    [Google Scholar]
  36. Andrião-EscarsoS.H. SoaresA.M. RodriguesV.M. Myotoxic phospholipases A(2) in bothrops snake venoms: effect of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu.Biochimie200082875576310.1016/S0300‑9084(00)01150‑0 11018293
    [Google Scholar]
  37. Andrião-EscarsoS.H. SoaresA.M. FontesM.R. Structural and functional characterization of an acidic platelet aggregation inhibitor and hypotensive phospholipase A(2) from Bothrops jararacussu snake venom.Biochem. Pharmacol.200264472373210.1016/S0006‑2952(02)01210‑8 12167491
    [Google Scholar]
  38. KetelhutD.F. de MelloM.H. VeroneseE.L. Isolation, characterization and biological activity of acidic phospholipase A2 isoforms from Bothrops jararacussu snake venom.Biochimie2003851098399110.1016/j.biochi.2003.09.011 14644553
    [Google Scholar]
  39. SousaL.F. NicolauC.A. PeixotoP.S. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex.PLoS Negl. Trop. Dis.201379: e2442.10.1371/journal.pntd.0002442 24069493
    [Google Scholar]
  40. SilvaF.P.Jr AlexandreG.M. RamosC.H. De-SimoneS.G. On the quaternary structure of a C-type lectin from Bothrops jararacussu venom--BJ-32 (BjcuL).Toxicon200852894495310.1016/j.toxicon.2008.10.014 18948130
    [Google Scholar]
  41. CarvalhoD.D. MarangoniS. OliveiraB. NovelloJ.C. Isolation and characterization of a new lectin from the venom of the snake Bothrops jararacussu.IUBMB Life19984493393810.1080/15216549800201992
    [Google Scholar]
  42. de CarvalhoD.D. MarangoniS. NovelloJ.C. Primary structure characterization of Bothrops jararacussu snake venom lectin.J. Protein Chem.2002211435010.1023/A:1014131115951 11902666
    [Google Scholar]
  43. KleinR.C. Fabres-KleinM.H. de OliveiraL.L. FeioR.N. MalouinF. Ribon AdeO. A C-type lectin from Bothrops jararacussu venom disrupts Staphylococcal biofilms.PLoS One2015103: e0120514.10.1371/journal.pone.0120514 25811661
    [Google Scholar]
  44. SartimM.A. PinheiroM.P. de PáduaR.A.P. SampaioS.V. NonatoM.C. Structural and binding studies of a C-type galactose-binding lectin from Bothrops jararacussu snake venom.Toxicon2017126596910.1016/j.toxicon.2016.12.007 28003128
    [Google Scholar]
  45. BortoletoR.K. MurakamiM.T. WatanabeL. SoaresA.M. ArniR.K. Purification, characterization and crystallization of Jararacussin-I, a fibrinogen-clotting enzyme isolated from the venom of Bothrops jararacussu.Toxicon20024091307131210.1016/S0041‑0101(02)00140‑X 12220716
    [Google Scholar]
  46. Silva-JuniorF.P. GuedesH.L. GarveyL.C. BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role of N-glycosylation in thermostability and active site accessibility.Toxicon2007501183110.1016/j.toxicon.2007.02.018 17433397
    [Google Scholar]
  47. Sant’AnaC.D. BernardesC.P. IzidoroL.F. Molecular characterization of BjussuSP-I, a new thrombin-like enzyme with procoagulant and kallikrein-like activity isolated from Bothrops jararacussu snake venom.Biochimie200890350050710.1016/j.biochi.2007.10.005 17996740
    [Google Scholar]
  48. C.D. Sant’ Ana, Ticli FK, Oliveira LL, et al.BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom.Comp. Biochem. Physiol. A Mol. Integr. Physiol.200815144345410.1016/j.cbpa.2007.02.036
    [Google Scholar]
  49. ZaganelliG.L. ZaganelliM.G. MagalhãesA. DinizC.R. de LimaM.E. Purification and characterization of a fibrinogen-clotting enzyme from the venom of jararacuçu (Bothrops jararacussu).Toxicon199634780781910.1016/0041‑0101(96)00006‑2 8843581
    [Google Scholar]
  50. MarcussiS. BernardesC.P. Santos-FilhoN.A. Molecular and functional characterization of a new non-hemorrhagic metalloprotease from Bothrops jararacussu snake venom with antiplatelet activity.Peptides200728122328233910.1016/j.peptides.2007.10.010 18006118
    [Google Scholar]
  51. TicliF.K. Caracterização Funcional e Estrutural de um L-aminoácido oxidase do veneno de Bothrops jararacussu e avaliação da sua ação antitumoral, antiparasitária e bactericida.Ribeirão PretoFaculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo2006
    [Google Scholar]
  52. CostaN.C.S. Caracterização parcial e avaliação do potencial antibacteriano e antitumoral de uma L-aminoácido oxidase isolada de Bothrops jararacussu, Universidade Federal de Vioçosa.Viçosa2012
    [Google Scholar]
  53. UllahA. CoronadoM. MurakamiM.T. BetzelC. ArniR.K. Crystallization and preliminary X-ray diffraction analysis of an L-amino-acid oxidase from Bothrops jararacussu venom.Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.201268Pt 221121310.1107/S1744309111054923 22298002
    [Google Scholar]
  54. CaroneS.E.I. CostaT.R. BurinS.M. A new l-amino acid oxidase from Bothrops jararacussu snake venom: Isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities.Int. J. Biol. Macromol.2017103253510.1016/j.ijbiomac.2017.05.025 28495622
    [Google Scholar]
  55. MazziM.V. MarcussiS. CarlosG.B. A new hemorrhagic metalloprotease from Bothrops jararacussu snake venom: isolation and biochemical characterization.Toxicon200444221522310.1016/j.toxicon.2004.06.002 15246772
    [Google Scholar]
  56. MazziM.V. MagroA.J. AmuiS.F. Molecular characterization and phylogenetic analysis of BjussuMP-I: a RGD-P-III class hemorrhagic metalloprotease from Bothrops jararacussu snake venom.J. Mol. Graph. Model.2007261698510.1016/j.jmgm.2006.09.010 17081786
    [Google Scholar]
  57. AmorimF.G. Morandi-FilhoR. FujimuraP.T. Ueira-VieiraC. SampaioS.V. New findings from the first transcriptome of the Bothrops moojeni snake venom gland.Toxicon201714010511710.1016/j.toxicon.2017.10.025 29107670
    [Google Scholar]
  58. SoaresA.M. Andrião-EscarsoS.H. AnguloY. Structural and functional characterization of myotoxin I, a Lys49 phospholipase A(2) homologue from Bothrops moojeni (Caissaca) snake venom.Arch. Biochem. Biophys.2000373171510.1006/abbi.1999.1492 10620318
    [Google Scholar]
  59. SoaresA.M. RodriguesV.M. Homsi-BrandeburgoM.I. A rapid procedure for the isolation of the Lys-49 myotoxin II from Bothrops moojeni (caissaca) venom: biochemical characterization, crystallization, myotoxic and edematogenic activity.Toxicon199836350351410.1016/S0041‑0101(97)00133‑5 9637370
    [Google Scholar]
  60. QueirozM. MamedeC. FonsecaK. Biological characterization of a myotoxin phosphoplipase A2 homologue purified from the venom of the snake Bothrops moojeni.J. Venom. Anim. Toxins Incl. Trop. Dis.201117495810.1590/S1678‑91992011000100007
    [Google Scholar]
  61. Santos-FilhoN.A. SilveiraL.B. OliveiraC.Z. A new acidic myotoxic, anti-platelet and prostaglandin I2 inductor phospholipase A2 isolated from Bothrops moojeni snake venom.Toxicon200852890891710.1016/j.toxicon.2008.08.020 18929590
    [Google Scholar]
  62. SilveiraL.B. Marchi-SalvadorD.P. Santos-FilhoN.A. Isolation and expression of a hypotensive and anti-platelet acidic phospholipase A2 from Bothrops moojeni snake venom.J. Pharm. Biomed. Anal.201373354310.1016/j.jpba.2012.04.008 22571953
    [Google Scholar]
  63. CalgarottoA.K. DamicoD.C. Ponce-SotoL.A. Biological and biochemical characterization of new basic phospholipase A(2) BmTX-I isolated from Bothrops moojeni snake venom.Toxicon20085181509151910.1016/j.toxicon.2008.03.030 18501940
    [Google Scholar]
  64. SerranoS.M. MatosM.F. MandelbaumF.R. SampaioC.A. Basic proteinases from Bothrops moojeni (caissaca) venom--I. Isolation and activity of two serine proteinases, MSP 1 and MSP 2, on synthetic substrates and on platelet aggregation.Toxicon199331447148110.1016/0041‑0101(93)90182‑I 8503135
    [Google Scholar]
  65. BarbosaP. MartinsA. ToyamaM. Purification and biological effects of a C-type lectin isolated from Bothrops moojeni.J. Venom. Anim. Toxins Incl. Trop. Dis.20101649350410.1590/S1678‑91992010000300016
    [Google Scholar]
  66. de QueirozM.R. MamedeC.C. de MoraisN.C. Purification and characterization of BmooAi: a new toxin from Bothrops moojeni snake venom that inhibits platelet aggregation.BioMed Res. Int.20142014: 920942.10.1155/2014/920942 24971359
    [Google Scholar]
  67. OliveiraF. RodriguesV.M. BorgesM.H. Purification and partial characterization of a new proteolytic enzyme from the venom of Bothrops moojeni (CAISSACA).Biochem. Mol. Biol. Int.19994761069107710.1080/15216549900202193 10410253
    [Google Scholar]
  68. de OliveiraF. de SousaB.B. MamedeC.C. Biochemical and functional characterization of BmooSP, a new serine protease from Bothrops moojeni snake venom.Toxicon201611113013810.1016/j.toxicon.2016.01.055 26797102
    [Google Scholar]
  69. AssakuraM.T. ReichlA.P. AspertiM.C. MandelbaumF.R. Isolation of the major proteolytic enzyme from the venom of the snake Bothrops moojeni (caissaca).Toxicon198523469170610.1016/0041‑0101(85)90374‑5 3933145
    [Google Scholar]
  70. BernardesC.P. Santos-FilhoN.A. CostaT.R. Isolation and structural characterization of a new fibrin(ogen)olytic metalloproteinase from Bothrops moojeni snake venom.Toxicon200851457458410.1016/j.toxicon.2007.11.017 18187176
    [Google Scholar]
  71. GomesM.S. MendesM.M. de OliveiraF. BthMP: a new weakly hemorrhagic metalloproteinase from Bothrops moojeni snake venom.Toxicon2009531243210.1016/j.toxicon.2008.10.007 19000915
    [Google Scholar]
  72. TorresF.S. RatesB. GomesM.T. Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom.ISRN Toxicol.20122012: 673941.10.5402/2012/673941 23762636
    [Google Scholar]
  73. de QueirozM.R. MamedeC.C. FonsecaK.C. Rapid purification of a new P-I class metalloproteinase from Bothrops moojeni venom with antiplatelet activity.BioMed Res. Int.20142014: 352420.10.1155/2014/352420 24982866
    [Google Scholar]
  74. FoxJ.W. SerranoS.M. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity.FEBS J.2008275123016303010.1111/j.1742‑4658.2008.06466.x 18479462
    [Google Scholar]
  75. StábeliR.G. Sant’AnaC.D. RibeiroP.H. Cytotoxic L-amino acid oxidase from Bothrops moojeni: biochemical and functional characterization.Int. J. Biol. Macromol.200741213214010.1016/j.ijbiomac.2007.01.006 17320169
    [Google Scholar]
  76. SerranoS.M. SampaioC.A. MandelbaumF.R. Basic proteinases from Bothrops moojeni (caissaca) venom--II. Isolation of the metalloproteinase MPB. Comparison of the proteolytic activity on natural substrates by MPB, MSP 1 and MSP 2.Toxicon199331448349210.1016/0041‑0101(93)90183‑J 8503136
    [Google Scholar]
  77. de MoraisN.C. Neves MamedeC.C. FonsecaK.C. Isolation and characterization of moojenin, an acid-active, anticoagulant metalloproteinase from Bothrops moojeni venom.Toxicon20126071251125810.1016/j.toxicon.2012.08.017 22975266
    [Google Scholar]
  78. SartimM.A. CostaT.R. LaureH.J. Moojenactivase, a novel pro-coagulant PIIId metalloprotease isolated from Bothrops moojeni snake venom, activates coagulation factors II and X and induces tissue factor up-regulation in leukocytes.Arch. Toxicol.20169051261127810.1007/s00204‑015‑1533‑6 26026608
    [Google Scholar]
  79. Sano-MartinsI.S. SantoroM.M. Distúrbios hemostáticos em envenenamentos por animais peçonhentos no Brasil, Animais peçonhentos no Brasil.São PauloSarvier2003289309
    [Google Scholar]
  80. TanjoniI. ButeraD. BentoL. Snake venom metalloproteinases: structure/function relationships studies using monoclonal antibodies.Toxicon200342780180810.1016/j.toxicon.2003.10.010 14757212
    [Google Scholar]
  81. BogarínG. MoraisJ.F. YamaguchiI.K. Neutralization of crotaline snake venoms from Central and South America by antivenoms produced in Brazil and Costa Rica.Toxicon200038101429144110.1016/S0041‑0101(99)00236‑6 10758277
    [Google Scholar]
  82. JacomeD. MeloM.M. SantosM.M.B. HeneineL.G. Kinetics of venom and antivenom serum and clinical parameters and treatment efficacy in Bothrops alternatus envenomed dogs.Vet. Hum. Toxicol.2002446334338 12458635
    [Google Scholar]
  83. CastroH.C. ZingaliR.B. AlbuquerqueM.G. Pujol-LuzM. RodriguesC.R. Snake venom thrombin-like enzymes: from reptilase to now.Cell. Mol. Life Sci.2004617-884385610.1007/s00018‑003‑3325‑z 15095007
    [Google Scholar]
  84. SousaL.F. ZdenekC.N. DobsonJ.S. Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) venoms from Brazil: differential biochemistry and antivenom efficacy resulting from prey driven venom variation.Toxins (Basel)2018101041143310.3390/toxins10100411 30314373
    [Google Scholar]
  85. NielsenV.G. FrankN. AfsharS. De Novo assessment and review of Pan-American Pit Viper anticoagulant and procoagulant venom activities via kinetomic analyses.Toxins (Basel)20191129410910.3390/toxins11020094 30736322
    [Google Scholar]
  86. NielsenV.G. BoyerL.V. RedfordD.T. FordP. Thrombelastographic characterization of the thrombin-like activity of Crotalus simus and Bothrops asper venoms.Blood Coagul. Fibrinolysis201728321121710.1097/MBC.0000000000000577 27314863
    [Google Scholar]
  87. MagalhãesA. MagalhãesH.P. RichardsonM. Purification and properties of a coagulant thrombin-like enzyme from the venom of Bothrops leucurus.Comp. Biochem. Physiol. A Mol. Integr. Physiol.2007146456557510.1016/j.cbpa.2005.12.033 16481207
    [Google Scholar]
  88. SuntravatM. NuchprayoonI. PérezJ.C. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell’s viper venom-factor X activator (RVV-X).Toxicon201056454455310.1016/j.toxicon.2010.05.012 20677373
    [Google Scholar]
  89. KelenE.M.A. RosenfeldG. NudelF. Hemolytic Activity of Animal Venoms. II Variation in relation to Erythrocyte Species.Mem. Inst. Butantan196230133142
    [Google Scholar]
  90. Pharmacology of phospholipases A2 from snake venoms, Snake Venoms. Rosenberg P. Handbook for experimental pharmacology- Berlin: Springer197940347
    [Google Scholar]
  91. RosenbergP. The Relationship Between Enzymatic Activity and Pharmacological Properties of Phospholipases.Natural Toxins.OxfordOxford University Press1986129174
    [Google Scholar]
  92. RosenbergP. Pitfalls to avoid in the study of correlations between enzymatic activity and pharmacological properties of phospholipase A2 enzymes.Venom Phospholipase A2 enzymes: Structure, Function and Mechanism.ChichesterWiley1997155183
    [Google Scholar]
  93. KiniR.M. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes.Toxicon200342882784010.1016/j.toxicon.2003.11.002 15019485
    [Google Scholar]
  94. Vital-BrazilO. Peçonhas, Farmacodinâmica, Guanabara Koogan, Rio de Janeiro198210441072
  95. FernandesC.A. BorgesR.J. LomonteB. FontesM.R. A structure-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms.Biochim. Biophys. Acta20141844122265227610.1016/j.bbapap.2014.09.015 25278377
    [Google Scholar]
  96. Chaves-MoreiraD. ChaimO.M. SadeY.B. Identification of a direct hemolytic effect dependent on the catalytic activity induced by phospholipase-D (dermonecrotic toxin) from brown spider venom.J. Cell. Biochem.2009107465566610.1002/jcb.22148 19455508
    [Google Scholar]
  97. EliasF. LucasS.R.R. HagiwaraM.K. KogikaM.M. MirandolaR.M.S. Fragilidade osmótica eritrocitária em gatos acometidos por hepatopatias e gatos com insuficiência renal.Cienc. Rural20043441341810.1590/S0103‑84782004000200012
    [Google Scholar]
  98. GuptaR.K. PandeA.H. GullaK.C. GabiusH-J. HajelaK. Carbohydrate-induced modulation of cell membrane. VIII. Agglutination with mammalian lectin galectin-1 increases osmofragility and membrane fluidity of trypsinized erythrocytes.FEBS Lett.200658061691169510.1016/j.febslet.2006.02.006 16497300
    [Google Scholar]
  99. Mendonça-Franqueiro EdeP. Alves-Paiva RdeM. SartimM.A. Isolation, functional, and partial biochemical characterization of galatrox, an acidic lectin from Bothrops atrox snake venom.Acta Biochim. Biophys. Sin. (Shanghai)201143318119210.1093/abbs/gmr003 21297119
    [Google Scholar]
  100. KayanoA.M. Isolamento, caracterização bioquímica e funcional de lectina do veneno de Bothrops jararacussu.RondôniaUniversidade Federal de Rondônia201669
    [Google Scholar]
  101. BarakaA.S. AyoubC.M. KaddoumR.N. MaalouliJ.M. ChehabI.R. HadiU.M. Severe oxyhemoglobin desaturation during induction of anesthesia in a patient with congenital methemoglobinemia.Anesthesiology20019551296129710.1097/00000542‑200111000‑00041 11685006
    [Google Scholar]
  102. SunithaK. HemshekharM. ThusharaR.M. Inflammation and oxidative stress in viper bite: an insight within and beyond.Toxicon201598899710.1016/j.toxicon.2015.02.014 25727382
    [Google Scholar]
  103. WilliamsH.F. HayterP. RavishankarD. Impact of Naja nigricollis venom on the production of methaemoglobin.Toxins (Basel)2018101253955110.3390/toxins10120539 30558289
    [Google Scholar]
  104. Meléndez-MartínezD. MuñozJ.M. Barraza-GarzaG. Rattlesnake Crotalus molossus nigrescens venom induces oxidative stress on human erythrocytes.J. Venom. Anim. Toxins Incl. Trop. Dis.201723243010.1186/s40409‑017‑0114‑y 28439287
    [Google Scholar]
  105. RodriguesR.S. da SilvaJ.F. Boldrini FrançaJ. Structural and functional properties of Bp-LAAO, a new L-amino acid oxidase isolated from Bothrops pauloensis snake venom.Biochimie200991449050110.1016/j.biochi.2008.12.004 19135502
    [Google Scholar]
  106. NaumannG.B. SilvaL.F. SilvaL. Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom.Biochim. Biophys. Acta20111810768369410.1016/j.bbagen.2011.04.003 21539897
    [Google Scholar]
  107. WeiJ.F. WeiQ. LuQ.M. Purification, characterization and biological activity of an L-amino acid oxidase from Trimeresurus mucrosquamatus venom.Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)2003353219224 12621545
    [Google Scholar]
  108. GuoC. LiuS. YaoY. ZhangQ. SunM.Z. Past decade study of snake venom L-amino acid oxidase.Toxicon201260330231110.1016/j.toxicon.2012.05.001 22579637
    [Google Scholar]
  109. FoxJ.W. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases.Toxicon201362758210.1016/j.toxicon.2012.09.009 23010165
    [Google Scholar]
  110. SanthoshM.S. SundaramM.S. SunithaK. Propensity of crocin to offset Vipera russelli venom induced oxidative stress mediated neutrophil apoptosis: a biochemical insight.Cytotechnology2016681738510.1007/s10616‑014‑9752‑x 25149285
    [Google Scholar]
  111. GoldbergB. SternA. PeisachJ. The mechanism of superoxide anion generation by the interaction of phenylhydrazine with hemoglobin.J. Biol. Chem.19762511030453051 5452
    [Google Scholar]
  112. MisraH.P. FridovichI. The oxidation of phenylhydrazine: superoxide and mechanism.Biochemistry197615368168710.1021/bi00648a036 175827
    [Google Scholar]
  113. ChakrabartiS. SonayeB. NaikA.A. NadkarniP.P. Erythrocyte membrane protein damage by oxidation products of phenylhydrazine.Biochem. Mol. Biol. Int.1995352255263 7663379
    [Google Scholar]
/content/journals/vat/10.2174/2666121701999200618102634
Loading
/content/journals/vat/10.2174/2666121701999200618102634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test