Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Natural products are characterized by a complex chemical composition and are capable of concurrently modulate several signalling pathways. Considering the biological complexity of carcinogenesis, natural products represent key components of the therapeutic armamentarium for oncological diseases. The bark of is used in traditional Ayurvedic medicine for its astringent, expectorant, cardiotonic, styptic, and antidysenteric properties. Alongside its traditional uses, exhibits different biological activities including antimutagenic and anticarcinogenic.

This study was designed to evaluate the toxic effects of an alcoholic extract obtained from the bark of on a human T-lymphoblastic cell line (Jurkat). We explored the phytochemical composition and investigated the cytotoxic, cytostatic, genotoxic, and anti-genotoxic effects.

The phytochemical composition was analyzed using spectrophotometric methods; all the biological endpoints were assessed through flow cytometry.

The phytochemical screening showed that polyphenols represent about 64% of the extract. Moreover, the extract was cytotoxic on Jurkat cells by inducing both apoptosis and necrosis, and blocked the cell cycle in the G2/M phase. Additionally, it was found that the extract lacks any genotoxic effect, but was not effective in protecting Jurkat cells from the DNA damage induced by H2O2 and etoposide.

The results of our study show the toxic effects of on Jurkat cells and confirm the pivotal role played by natural compounds in the oncological field. Further studies should be performed to better understand its clinical potential and deepen its toxicological profile.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121701999200601170928
2021-03-01
2025-03-13
Loading full text...

Full text loading...

References

  1. Available from: Cancer today [Internet]http://gco.iarc.fr/today/home[cited 2019 Sep 12].
  2. AlqahtaniA. KhanZ. AlloghbiA.S. Said Ahmed T, Ashraf M, M. Hammouda D. Hepatocellular Carcinoma: Molecular Mechanisms and Targeted Therapies.Medicina (Mex.)201955952610.3390/medicina55090526
    [Google Scholar]
  3. RamsayR.R. Popovic-NikolicM.R. NikolicK. UliassiE. BolognesiM.L. A perspective on multi-target drug discovery and design for complex diseases.Clin. Transl. Med.201871310.1186/s40169‑017‑0181‑2 29340951
    [Google Scholar]
  4. DarR.A. ShahnawazM. RasoolS. QaziP.H. Natural product medicines: A literature update.J Phytopharm201766340342
    [Google Scholar]
  5. HowesM.R. The evolution of anticancer drug discovery from plants.Lancet Oncol.201819329329410.1016/S1470‑2045(18)30136‑0 29508748
    [Google Scholar]
  6. NobiliS. LippiD. WitortE. Natural compounds for cancer treatment and prevention.Pharmacol. Res.200959636537810.1016/j.phrs.2009.01.017 19429468
    [Google Scholar]
  7. NewmanD.J. CraggG.M. Natural Products as Sources of New Drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  8. TurriniE. MaffeiF. MilelliA. CalcabriniC. FimognariC. Overview of the Anticancer Profile of Avenanthramides from Oat.Int. J. Mol. Sci.20192018: E4536.10.3390/ijms20184536 31540249
    [Google Scholar]
  9. CatanzaroE. GrecoG. PotenzaL. CalcabriniC. FimognariC. Natural Products to Fight Cancer: A Focus on Juglans regia.Toxins (Basel)20181011: E469.10.3390/toxins10110469 30441778
    [Google Scholar]
  10. MondalA. GandhiA. FimognariC. AtanasovA.G. BishayeeA. Alkaloids for cancer prevention and therapy: Current progress and future perspectives.Eur. J. Pharmacol.2019: 858172472.10.1016/j.ejphar.2019.172472 31228447
    [Google Scholar]
  11. TurriniE. CatanzaroE. FerruzziL. Hemidesmus indicus induces apoptosis via proteasome inhibition and generation of reactive oxygen species.Sci. Rep.201991719910.1038/s41598‑019‑43609‑5 31076590
    [Google Scholar]
  12. TurriniE. CalcabriniC. TacchiniM. EfferthT. SacchettiG. GuerriniA. Vitro Study of the Cytotoxic, Cytostatic, and Antigenotoxic Profile of Hemidesmus indicus (L.) R.Br. (Apocynaceae) Crude Drug Extract on T Lymphoblastic Cells.Toxins2018061002
    [Google Scholar]
  13. TurriniE. CatanzaroE. MuraroM.G. Hemidesmus indicus induces immunogenic death in human colorectal cancer cells.Oncotarget2018936244432445610.18632/oncotarget.25325 29849952
    [Google Scholar]
  14. TurriniE. FerruzziL. FimognariC. Natural compounds to overcome cancer chemoresistance: toxicological and clinical issues.Expert Opin. Drug Metab. Toxicol.201410121677169010.1517/17425255.2014.972933 25339439
    [Google Scholar]
  15. ChopraR.N. GhoshS. Terminalia Arjuna: Its Chemistry, Pharmacology and Therapeutic Action.Ind. Med. Gaz.19296427073 29009552
    [Google Scholar]
  16. BiswasM. BhattacharyaS. GhoshA.K. Antitumour activity of Terminalia arjuna leaf against Ehrlich ascites carcinoma in mice.Nat. Prod. Res.201226121141114410.1080/14786419.2011.561206 22017259
    [Google Scholar]
  17. DwivediS. ChopraD. Revisiting Terminalia arjuna - An Ancient Cardiovascular Drug.J. Tradit. Complement. Med.20144422423110.4103/2225‑4110.139103 25379463
    [Google Scholar]
  18. HarborneJB Indian Medicinal Plants. A Compendium of 500 Species.J Pharm Pharmacol. Warrier P K, Nambiar V P K, Ramankutty. C.1994Vol.111935935
    [Google Scholar]
  19. JainS. YadavP.P. GillV. VasudevaN. SinglaN. Terminalia arjuna a sacred medicinal plant: phytochemical and pharmacological profile.Phytochem. Rev.20098249150210.1007/s11101‑009‑9134‑8
    [Google Scholar]
  20. AnejaK.R. SharmaC. JoshiR. Antimicrobial activity of Terminalia arjuna Wight & Arn.: an ethnomedicinal plant against pathogens causing ear infection.Rev. Bras. Otorrinolaringol. (Engl. Ed.)20127816874 22392241
    [Google Scholar]
  21. MandalS. PatraA. SamantaA. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties.Asian Pac. J. Trop. Biomed.201331296096610.1016/S2221‑1691(13)60186‑0 24093787
    [Google Scholar]
  22. ChengH-Y. LinC-C. LinT-C. Antiherpes simplex virus type 2 activity of casuarinin from the bark of Terminalia arjuna Linn.Antiviral Res.200255344745510.1016/S0166‑3542(02)00077‑3 12206882
    [Google Scholar]
  23. SharmaS.K. SharmaD. AgarwalN. Diminishing effect of arjuna tree (Terminalia arjuna) bark on the lipid and oxidative stress status of high fat high cholesterol fed rats and development of certain dietary recipes containing the tree bark for human consumption.Res Pharm201222230
    [Google Scholar]
  24. SubramaniamS. RamachandranS. UthrapathiS. GnamanickamV.R. DubeyG.P. Anti-hyperlipidemic and antioxidant potential of different fractions of Terminalia arjuna Roxb. bark against PX- 407 induced hyperlipidemia.Indian J. Exp. Biol.2011494282288 21614892
    [Google Scholar]
  25. GauthamanK. Mohamed SaleemT.S. RaviV. Sita Sharan Patel, Niranjali Devaraj S. Alcoholic Extract of Terminalia Arjuna Protects Rabbit Heart against Ischemic-Reperfusion Injury: Role of Antioxidant Enzymes and Heat Shock Protein.Int J Biol Life Agric Sci200826112122
    [Google Scholar]
  26. GauthamanK. MaulikM. KumariR. ManchandaS.C. DindaA.K. MaulikS.K. Effect of chronic treatment with bark of Terminalia arjuna: a study on the isolated ischemic-reperfused rat heart.J. Ethnopharmacol.2001752-319720110.1016/S0378‑8741(01)00183‑0 11297851
    [Google Scholar]
  27. ParveenA. BabbarR. AgarwalS. KotwaniA. FahimM. Mechanistic clues in the cardioprotective effect of Terminalia arjuna bark extract in isoproterenol-induced chronic heart failure in rats.Cardiovasc. Toxicol.2011111485710.1007/s12012‑010‑9099‑2 21116736
    [Google Scholar]
  28. SivalokanathanS. IlayarajaM. BalasubramanianM.P. Antioxidant activity of Terminalia arjuna bark extract on N-nitrosodiethylamine induced hepatocellular carcinoma in rats.Mol. Cell. Biochem.20062811-2879310.1007/s11010‑006‑0433‑8 16328960
    [Google Scholar]
  29. SinhaM. MannaP. SilP.C. Terminalia arjuna protects mouse hearts against sodium fluoride-induced oxidative stress.J. Med. Food200811473374010.1089/jmf.2007.0130 19053867
    [Google Scholar]
  30. VermaN. VinayakM. Effect of Terminalia arjuna on antioxidant defense system in cancer.Mol. Biol. Rep.200936115916410.1007/s11033‑008‑9279‑3 18537039
    [Google Scholar]
  31. ReddyT.K. SeshadriP. ReddyK.K.R. JagetiaG.C. ReddyC.D. Effect of Terminalia arjuna extract on adriamycin-induced DNA damage.Phytother. Res.20082291188119410.1002/ptr.2428 18729254
    [Google Scholar]
  32. KaurS. GroverI.S. KumarS. Antimutagenic potential of extracts isolated from Terminalia arjuna.J. Environ. Pathol. Toxicol. Oncol.200120191410.1615/JEnvironPatholToxicolOncol.v20.i1.20 11215710
    [Google Scholar]
  33. SaxenaM. FaridiU. MishraR. Cytotoxic agents from Terminalia arjuna.Planta Med.200773141486149010.1055/s‑2007‑990258 18008199
    [Google Scholar]
  34. AhmadM.S. AhmadS. GautamB. ArshadM. AfzalM. Terminalia arjuna, a herbal remedy against environmental carcinogenicity: An in vitro and in vivo study.Egypt. J. Med. Hum. Genet.2014151616710.1016/j.ejmhg.2013.10.004
    [Google Scholar]
  35. Viswanatha GL shastry, Vaidya SK, C R, Krishnadas N, Rangappa S. Antioxidant and antimutagenic activities of bark extract of Terminalia arjuna.Asian Pac. J. Trop. Med.201031296597010.1016/S1995‑7645(11)60010‑2
    [Google Scholar]
  36. Scassellati-SforzoliniG. VillariniL.M. MorettiL.M. Antigenotoxic properties of Terminalia arjuna bark extracts.J. Environ. Pathol. Toxicol. Oncol.1999182119125 15281223
    [Google Scholar]
  37. TacchiniM. SpagnolettiA. MarieschiM. Phytochemical profile and bioactivity of traditional ayurvedic decoctions and hydro-alcoholic macerations of Boerhaavia diffusa L. and Curculigo orchioides Gaertn.Nat. Prod. Res.201529222071207910.1080/14786419.2014.1003299 25612143
    [Google Scholar]
  38. LamaisonJ.L.C. CarnetA. Teneurs en Principaux Flavonoides des Fleurs de Crataegus monogyna Jacq et de Crataegus laevigata (Poiret D. C) en Fonction de la Vegetation.Pharm. Acta Helv.199065315320
    [Google Scholar]
  39. PorterL.J. HrstichL.N. ChanB.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin.Phytochemistry198525122323010.1016/S0031‑9422(00)94533‑3
    [Google Scholar]
  40. BryceS.M. BemisJ.C. AvlasevichS.L. DertingerS.D. In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity.Mutat. Res.20076301-2789110.1016/j.mrgentox.2007.03.002 17434794
    [Google Scholar]
  41. GuptaS. BishnoiJ.P. KumarN. KumarH. NidheershT. Terminalia arjuna (Roxb.) Wight &Arn.: Competent source of bioactive components in functional food and drugs.J. Pharm. Innov.201873223231
    [Google Scholar]
  42. LinY. ShiR. WangX. ShenH-M. Luteolin, a flavonoid with potential for cancer prevention and therapy.Curr. Cancer Drug Targets20088763464610.2174/156800908786241050 18991571
    [Google Scholar]
  43. TodenS. RavindranathanP. GuJ. CardenasJ. YuchangM. GoelA. Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer.Sci. Rep.201881333510.1038/s41598‑018‑21478‑8 29463813
    [Google Scholar]
  44. RavindranathanP. PashamD. BalajiU. Mechanistic insights into anticancer properties of oligomeric proanthocyanidins from grape seeds in colorectal cancer.Carcinogenesis201839676777710.1093/carcin/bgy034 29684110
    [Google Scholar]
  45. RaufA. ImranM. Abu-IzneidT. Proanthocyanidins: A comprehensive review.Biomed. Pharmacother.2019: 116108999.10.1016/j.biopha.2019.108999 31146109
    [Google Scholar]
  46. SahaA. PawarV.M. JayaramanS. Characterisation of Polyphenols in Terminalia arjuna Bark Extract.Indian J. Pharm. Sci.201274433934710.4103/0250‑474X.107067 23626389
    [Google Scholar]
  47. AkhtarM.J. AlhadlaqH.A. KumarS. AlrokayanS.A. AhamedM. Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy.Arch. Toxicol.201589111895190710.1007/s00204‑015‑1570‑1 26223318
    [Google Scholar]
  48. BaudinoT.A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment.Curr. Drug Discov. Technol.201512132010.2174/1570163812666150602144310 26033233
    [Google Scholar]
  49. LeeS-H. MengX.W. FlattenK.S. LoegeringD.A. KaufmannS.H. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm.Cell Death Differ.2013201647610.1038/cdd.2012.93 22858544
    [Google Scholar]
  50. ZimmermannM. MeyerN. Annexin V/7-AAD staining in keratinocytes.Methods Mol. Biol.2011740576310.1007/978‑1‑61779‑108‑6_8 21468968
    [Google Scholar]
  51. GreenD.R. LlambiF. Cell Death Signaling.Cold Spring Harb. Perspect. Biol.2015712: a006080.10.1101/cshperspect.a006080 26626938
    [Google Scholar]
  52. GalluzziL. VitaleI. AaronsonS.A. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  53. D’ArcyM.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy.Cell Biol. Int.201943658259210.1002/cbin.11137 30958602
    [Google Scholar]
  54. TaitS.W.G. IchimG. GreenD.R. Die another way--non-apoptotic mechanisms of cell death.J. Cell Sci.2014127Pt 102135214410.1242/jcs.093575 24833670
    [Google Scholar]
  55. GiorgiC. RomagnoliA. PintonP. RizzutoR. Ca2+ signaling, mitochondria and cell death.Curr. Mol. Med.20088211913010.2174/156652408783769571 18336292
    [Google Scholar]
  56. SalomonA.R. VoehringerD.W. HerzenbergL.A. KhoslaC. Understanding and exploiting the mechanistic basis for selectivity of polyketide inhibitors of F(0)F(1)-ATPase.Proc. Natl. Acad. Sci. USA20009726147661477110.1073/pnas.97.26.14766 11121076
    [Google Scholar]
  57. LiY-Z. LiC.J. PintoA.V. PardeeA.B. Release of mitochondrial cytochrome C in both apoptosis and necrosis induced by β-lapachone in human carcinoma cells.Mol. Med.19995423223910.1007/BF03402120 10448645
    [Google Scholar]
  58. TagliarinoC. PinkJ.J. DubyakG.R. NieminenA.L. BoothmanD.A. Calcium is a key signaling molecule in beta-lapachone-mediated cell death.J. Biol. Chem.200127622191501915910.1074/jbc.M100730200 11279125
    [Google Scholar]
  59. BaiX. CerimeleF. Ushio-FukaiM. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo.J. Biol. Chem.200327837355013550710.1074/jbc.M302967200 12816951
    [Google Scholar]
  60. NagpalA. MeenaL.S. KaurS. GroverI.S. WadhwaR. KaulS.C. Growth suppression of human transformed cells by treatment with bark extracts from a medicinal plant, Terminalia arjuna.In Vitro Cell. Dev. Biol. Anim.200036854454710.1290/1071‑2690(2000)036<0544:GSOHTC>2.0.CO;2 11149755
    [Google Scholar]
  61. ShaliniS. KumarR.R. BirendraS. Antiproliferative effect of Phytosome complex of Methanolic extact of Terminalia Arjuna bark on Human Breast Cancer Cell Lines (MCF-7).Int J Drug Dev & Res201571173182
    [Google Scholar]
  62. SinghS. VermaS.K. SinghS.K. Analysis of anti-cancer potential of Terminalia arjuna.Int J Adv Scient Res Manage20172118287
    [Google Scholar]
  63. SivalokanathanS. VijayababuM.R. BalasubramanianM.P. Effects of Terminalia arjuna bark extract on apoptosis of human hepatoma cell line HepG2.World J. Gastroenterol.20061271018102410.3748/wjg.v12.i7.1018 16534840
    [Google Scholar]
  64. KuoP-L. HsuY-L. LinT-C. ChangJ-K. LinC-C. Induction of cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells by casuarinin from the bark of Terminalia arjuna Linn.Anticancer Drugs200516440941510.1097/00001813‑200504000‑00007 15746577
    [Google Scholar]
  65. KuoP-L. HsuY-L. LinT-C. LinL-T. ChangJ-K. LinC-C. Casuarinin from the bark of Terminalia arjuna induces apoptosis and cell cycle arrest in human breast adenocarcinoma MCF-7 cells.Planta Med.200571323724310.1055/s‑2005‑837823 15770544
    [Google Scholar]
  66. ZhangL-J. ChengJ-J. LiaoC-C. Triterpene acids from Euscaphis japonica and assessment of their cytotoxic and anti-NO activities.Planta Med.201278141584159010.1055/s‑0032‑1315040 22814889
    [Google Scholar]
  67. JooH. LeeH.J. ShinE.A. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells.Phytother. Res.201630459660310.1002/ptr.5563 26787261
    [Google Scholar]
  68. ElsherbinyN.M. Al-GayyarM.M.H. Anti-tumor activity of arjunolic acid against Ehrlich Ascites Carcinoma cells in vivo and in vitro through blocking TGF-β type 1 receptor.Biomed. Pharmacother.201682283410.1016/j.biopha.2016.04.046 27470335
    [Google Scholar]
  69. KeithC.T. BorisyA.A. StockwellB.R. Multicomponent therapeutics for networked systems.Nat. Rev. Drug Discov.200541717810.1038/nrd1609 15688074
    [Google Scholar]
  70. MillsC.C. KolbE.A. SampsonV.B. Development of Chemotherapy with Cell-Cycle Inhibitors for Adult and Pediatric Cancer Therapy.Cancer Res.201878232032510.1158/0008‑5472.CAN‑17‑2782 29311160
    [Google Scholar]
  71. MalumbresM. BarbacidM. Cell cycle, CDKs and cancer: a changing paradigm.Nat. Rev. Cancer20099315316610.1038/nrc2602 19238148
    [Google Scholar]
  72. BaeS.Y. KimG.D. JeonJ-E. ShinJ. LeeS.K. Anti-proliferative effect of (19Z)-halichondramide, a novel marine macrolide isolated from the sponge Chondrosia corticata, is associated with G2/M cell cycle arrest and suppression of mTOR signaling in human lung cancer cells.Toxicol. In Vitro201327269469910.1016/j.tiv.2012.11.001 23147639
    [Google Scholar]
  73. MalumbresM. BarbacidM. To cycle or not to cycle: a critical decision in cancer.Nat. Rev. Cancer20011322223110.1038/35106065 11902577
    [Google Scholar]
  74. MassaguéJ. G1 cell-cycle control and cancer.Nature2004432701529830610.1038/nature03094 15549091
    [Google Scholar]
  75. HenriquesA.C. RibeiroD. PedrosaJ. SarmentoB. SilvaP.M.A. BousbaaH. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution.Cancer Lett.2019440-441648110.1016/j.canlet.2018.10.005 30312726
    [Google Scholar]
  76. AraldiR.P. de MeloT.C. MendesT.B. Using the comet and micronucleus assays for genotoxicity studies: A review.Biomed. Pharmacother.201572748210.1016/j.biopha.2015.04.004 26054678
    [Google Scholar]
  77. UrquiagaI. LeightonF. Plant polyphenol antioxidants and oxidative stress.Biol. Res.2000332556410.4067/S0716‑97602000000200004 15693271
    [Google Scholar]
  78. NiedzwieckiA. RoomiM.W. KalinovskyT. RathM. Anticancer Efficacy of Polyphenols and Their Combinations.Nutrients201689: E552.10.3390/nu8090552 27618095
    [Google Scholar]
  79. AbbaszadehH. KeikhaeiB. MottaghiS. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds.Phytother. Res.20193382002201410.1002/ptr.6403 31373113
    [Google Scholar]
  80. KampaM. NifliA-P. NotasG. CastanasE. Polyphenols and cancer cell growth.Rev. Physiol. Biochem. Pharmacol.200715979113 17551696
    [Google Scholar]
  81. GuthrieA.R. ChowH.S. MartinezJ.A. Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention.Pharmacol. Res. Perspect.201751: e00294.10.1002/prp2.294 28596842
    [Google Scholar]
  82. KuntzS. WenzelU. DanielH. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines.Eur. J. Nutr.199938313314210.1007/s003940050054 10443335
    [Google Scholar]
  83. CurtiV. Di LorenzoA. DacremaM. XiaoJ. NabaviS.M. DagliaM. In vitro polyphenol effects on apoptosis: An update of literature data.Semin. Cancer Biol.20174611913110.1016/j.semcancer.2017.08.005 28830771
    [Google Scholar]
  84. KhanF. NiazK. MaqboolF. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update.Nutrients201689: E529.10.3390/nu8090529 27589790
    [Google Scholar]
  85. CocciaA. MoscaL. PucaR. ManginoG. RossiA. LendaroE. Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells.Oncol. Rep.20163663095310410.3892/or.2016.5150 27748855
    [Google Scholar]
  86. Zielińska-PrzyjemskaM. KaczmarekM. Krajka-KuźniakV. ŁuczakM. Baer-DubowskaW. The effect of resveratrol, its naturally occurring derivatives and tannic acid on the induction of cell cycle arrest and apoptosis in rat C6 and human T98G glioma cell lines.Toxicol. In Vitro201743697510.1016/j.tiv.2017.06.004 28595835
    [Google Scholar]
  87. OakM-H. El BedouiJ. Schini-KerthV.B. Antiangiogenic properties of natural polyphenols from red wine and green tea.J. Nutr. Biochem.20051611810.1016/j.jnutbio.2004.09.004 15629234
    [Google Scholar]
  88. SarkarJ. NandyS.K. ChowdhuryA. ChakrabortiT. ChakrabortiS. Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis.Biomed. Pharmacother.20168434034710.1016/j.biopha.2016.09.049 27668533
    [Google Scholar]
  89. CerezoA.B. WinterboneM.S. MoyleC.W.A. NeedsP.W. KroonP.A. Molecular structure-function relationship of dietary polyphenols for inhibiting VEGF-induced VEGFR-2 activity.Mol. Nutr. Food Res.201559112119213110.1002/mnfr.201500407 26250940
    [Google Scholar]
  90. ShanmugamM.K. WarrierS. KumarA.P. SethiG. ArfusoF. Potential Role of Natural Compounds as Anti-Angiogenic Agents in Cancer.Curr. Vasc. Pharmacol.201715650351910.2174/1570161115666170713094319 28707601
    [Google Scholar]
  91. MajidiniaM. BishayeeA. YousefiB. Polyphenols: Major regulators of key components of DNA damage response in cancer.DNA Repair (Amst.)2019: 82102679.10.1016/j.dnarep.2019.102679 31450085
    [Google Scholar]
  92. AzquetaA. CollinsA. Polyphenols and DNA Damage: A Mixed Blessing.Nutrients2016812: E785.10.3390/nu8120785 27918471
    [Google Scholar]
  93. KellyM.R. XuJ. AlexanderK.E. LooG. Disparate effects of similar phenolic phytochemicals as inhibitors of oxidative damage to cellular DNA.Mutat. Res.2001485430931810.1016/S0921‑8777(01)00066‑0 11585363
    [Google Scholar]
  94. FergusonL.R. Role of plant polyphenols in genomic stability.Mutat. Res.20014751-28911110.1016/S0027‑5107(01)00073‑2 11295156
    [Google Scholar]
  95. BenhuseinG.M. MutchE. AburawiS. WilliamsF.M. Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay.Libyan J. Med.20105510.3402/ljm.v5i0.4637 21483593
    [Google Scholar]
  96. ZanichelliF. CapassoS. Di BernardoG. Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage.Apoptosis201217996497410.1007/s10495‑012‑0740‑3 22684843
    [Google Scholar]
  97. MeresseP. DechauxE. MonneretC. BertounesqueE. Etoposide: discovery and medicinal chemistry.Curr. Med. Chem.200411182443246610.2174/0929867043364531 15379707
    [Google Scholar]
  98. KaurS.J. GroverI.S. KumarS. Modulatory effects of a tannin fraction isolated from Terminalia arjuna on the genotoxicity of mutagens in Salmonella typhimurium.Food Chem. Toxicol.200038121113111910.1016/S0278‑6915(00)00104‑6 11033200
    [Google Scholar]
  99. PasquiniR. Scassellati-SforzoliniG. VillariniM. In vitro protective effects of Terminalia arjuna bark extracts against the 4-nitroquinoline-N-oxide genotoxicity.J. Environ. Pathol. Toxicol. Oncol.2002211334410.1615/JEnvironPatholToxicolOncol.v21.i1.20 11934011
    [Google Scholar]
  100. NohmiT. Thresholds of Genotoxic and Non-Genotoxic Carcinogens.Toxicol. Res.201834428129010.5487/TR.2018.34.4.281 30370002
    [Google Scholar]
  101. ShuklaP.C. SinghK.K. YanagawaB. TeohH. VermaS. DNA damage repair and cardiovascular diseases.Can. J. Cardiol.201026Suppl. A13A16A10.1016/S0828‑282X(10)71055‑2
    [Google Scholar]
  102. KhanA.O. Genetics of primary glaucoma.Curr. Opin. Ophthalmol.201122534735510.1097/ICU.0b013e32834922d2 21730848
    [Google Scholar]
  103. StorkebaumE. QuaegebeurA. VikkulaM. CarmelietP. Cerebrovascular disorders: molecular insights and therapeutic opportunities.Nat. Neurosci.201114111390139710.1038/nn.2947 22030550
    [Google Scholar]
/content/journals/vat/10.2174/2666121701999200601170928
Loading
/content/journals/vat/10.2174/2666121701999200601170928
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antigenotoxicity; cell cycle; cytotoxicity; genotoxicity; leukemia cells; Terminalia arjuna
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test