Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Venom toxins have specific molecular targets that result in envenomated complications such as neurotoxicity. During evolution, the composition of the venom has been evolved synchronously with the evolution of molecular targets. Venom is an important tool for humans from two different perspectives; venom advantages and disadvantages. Meanwhile, clinical and pharmacological applications of venoms due to their specific targeting and modulation of physiological elements or targets are notable in various disorders. The better understanding of venoms and their composition will improve the practical applications of some toxin-based drugs in drugstoresin the future.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121701666211124151529
2022-04-01
2025-01-19
Loading full text...

Full text loading...

References

  1. CasewellN.R. WüsterW. VonkF.J. HarrisonR.A. FryB.G. Complex cocktails: The evolutionary novelty of venoms.Trends Ecol. Evol.201328421922910.1016/j.tree.2012.10.02023219381
    [Google Scholar]
  2. UtkinY.N. Animal venom studies: Current benefits and future developments.World J. Biol. Chem.201562283310.4331/wjbc.v6.i2.2826009701
    [Google Scholar]
  3. KlupczynskaA. PawlakM. KokotZ.J. MatysiakJ. Application of metabolomic tools for studying low molecular-weight fraction of animal venoms and poisons.Toxins (Basel)201810830610.3390/toxins1008030630042318
    [Google Scholar]
  4. Kazemi-LomedashtF. KhalajV. BagheriK.P. BehdaniM. ShahbazzadehD. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus.Toxicon201712512313010.1016/j.toxicon.2016.11.26127914888
    [Google Scholar]
  5. JahdasaniR. JamnaniF.R. BehdaniM. Habibi-AnbouhiM. YardehnaviN. ShahbazzadehD. Kazemi-LomedashtF. Identification of the immunogenic epitopes of the whole venom component of the Hemiscorpius lepturus scorpion using the phage display peptide library.Toxicon2016124839310.1016/j.toxicon.2016.11.24727845058
    [Google Scholar]
  6. TorabiE. AsgariS. KhalajV. BehdaniM. Kazemi-LomedashtF. BagheriK.P. ShahbazzadehD. Corrigendum to" The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus"[Toxicon 125 (2017) 123-130].Toxicon.20171286010.1016/j.toxicon.2017.01.01228192687
    [Google Scholar]
  7. TasoulisT. IsbisterG.K. A review and database of snake venom proteomes.Toxins (Basel)20179929010.3390/toxins909029028927001
    [Google Scholar]
  8. RuimingZ. YibaoM. YawenH. ZhiyongD. YingliangW. ZhijianC. WenxinL. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components.BMC Genomics201011145210.1186/1471‑2164‑11‑45220663230
    [Google Scholar]
  9. Abdel-RahmanM.A. OmranM.A.A. Abdel-NabiI.M. UedaH. McVeanA. Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes.Toxicon200953334935910.1016/j.toxicon.2008.12.00719103215
    [Google Scholar]
  10. MaY. HeY. ZhaoR. WuY. LiW. CaoZ. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal.J. Proteomics20127551563157610.1016/j.jprot.2011.11.02922155128
    [Google Scholar]
  11. ZhangY. Why do we study animal toxins?Zool. Res.2015364183222https://pubmed.ncbi.nlm.nih.gov/26228472/26228472
    [Google Scholar]
  12. CushmanD.W. OndettiM.A. History of the design of captopril and related inhibitors of angiotensin converting enzyme.Hypertension199117458959210.1161/01.HYP.17.4.5892013486
    [Google Scholar]
  13. ChingA.T. Paes LemeA.F. ZelanisA. RochaM.M. FurtadoMde.F. SilvaD.A. TrugilhoM.R. da RochaS.L. PeralesJ. HoP.L. SerranoS.M. Junqueira-de-AzevedoI.L. Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes.J. Proteome Res.20121121152116210.1021/pr200876c22168127
    [Google Scholar]
  14. Kazemi-LomedashtF. OghalaieA. BehdaniM. ShahbazzadehD. Anti-tumor activity of Iranian cobra snake (Naja oxiana) venom on lung cancer cell line.Health Biotechnol Biopharm2019315763
    [Google Scholar]
  15. OghalaieA. Kazemi-LomedashtF. ZareinejadM.R. ShahbazzadehD. Antiadhesive and cytotoxic effect of Iranian Vipera lebetina snake venom on lung epithelial cancer cells.J. Family Med. Prim. Care20176478078310.4103/jfmpc.jfmpc_208_1729564263
    [Google Scholar]
  16. OghalaieA. BehdaniM. YardehnaviN. ShahbazzadehD. Kazemi-LomedashtF. Cytotoxicity, anti-adhesive and anti-angiogenic effects of Caspian Cobra snake (Naja oxiana) venom on human endothelial cells.Health Biotechno Biopharm2017115362
    [Google Scholar]
  17. PeigneurS. TytgatJ. Toxins in drug discovery and pharmacology.Toxins (Basel)201810312610.3390/toxins1003012629547537
    [Google Scholar]
  18. AlbuquerqueE.X. PereiraE.F. AlkondonM. RogersS.W. Mammalian nicotinic acetylcholine receptors: From structure to function.Physiol. Rev.20098917312010.1152/physrev.00015.200819126755
    [Google Scholar]
  19. DurmusN. GültürkS. KayaT. DemirT. ParlakM. AltunA. Evaluation of effects of T and N type calcium channel blockers on the electroencephalogram recordings in Wistar Albino Glaxo/Rij rats, an absence epilepsy model.Indian J. Pharmacol.2015471343810.4103/0253‑7613.15032425821308
    [Google Scholar]
  20. WuJ. JiangH. BiQ. LuoQ. LiJ. ZhangY. ChenZ. LiC. Apamin-mediated actively targeted drug delivery for treatment of spinal cord injury: More than just a concept.Mol. Pharm.20141193210322210.1021/mp500393m25098949
    [Google Scholar]
  21. KaplanN. MorpurgoN. LinialM. Novel families of toxin-like peptides in insects and mammals: A computational approach.J. Mol. Biol.2007369255356610.1016/j.jmb.2007.02.10617433819
    [Google Scholar]
  22. AnastasiA. ErspamerV. BucciM. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes.Experientia197127216616710.1007/BF021458735544731
    [Google Scholar]
  23. ZhangH.P. XiaoZ. CilzN.I. HuB. DongH. LeiS. Bombesin facilitates GABAergic transmission and depresses epileptiform activity in the entorhinal cortex.Hippocampus2014241213110.1002/hipo.2219123966303
    [Google Scholar]
  24. RanawakaU.K. LallooD.G. de SilvaH.J. Neurotoxicity in snakebite- the limits of our knowledge.PLoS Negl. Trop. Dis.2013710e230210.1371/journal.pntd.000230224130909
    [Google Scholar]
  25. LonatiD. GiampretiA. RossettoO. PetroliniV.M. VecchioS. BuscagliaE. MazzoleniM. ChiaraF. AloiseM. GentilliA. MontecuccoC. CocciniT. LocatelliC.A. Neurotoxicity of European viperids in Italy: Pavia Poison Control Centre case series 2001-2011.Clin. Toxicol. (Phila.)201452426927610.3109/15563650.2014.90404624708390
    [Google Scholar]
  26. VuT.T. StaffordA.R. LeslieB.A. KimP.Y. FredenburghJ.C. WeitzJ.I. Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin.J. Biol. Chem.201328823168621687110.1074/jbc.M113.46475023612970
    [Google Scholar]
  27. YitaoH. KefuM. BingshanT. XuejunF. YingZ. ZhiliC. XinJ. GuoY. Effects of batroxobin with continuous transcranial Doppler monitoring in patients with acute cerebral stroke: A randomized controlled trial.Echocardiography201431101283129210.1111/echo.1255924684297
    [Google Scholar]
  28. ChenW. CarvalhoL.P. ChanM.Y. KiniR.M. KangT.S. Fasxiator, a novel factor XIa inhibitor from snake venom, and its site-specific mutagenesis to improve potency and selectivity.J. Thromb. Haemost.201513224826110.1111/jth.1279725418421
    [Google Scholar]
  29. ErikssonL. SaxelinR. RöhlS. RoyJ. CaidahlK. NyströmT. HedinU. RazuvaevA. Glucagon-like peptide-1 receptor activation does not affect re-endothelialization but reduces intimal hyperplasia via direct effects on smooth muscle cells in a nondiabetic model of arterial injury.J. Vasc. Res.2015521415210.1159/00038109725966620
    [Google Scholar]
  30. HwangD.S. KimS.K. BaeH. Therapeutic effects of bee venom on immunological and neurological diseases.Toxins (Basel)2015772413242110.3390/toxins707241326131770
    [Google Scholar]
  31. ParkS. BaekH. JungK.H. LeeG. LeeH. KangG.H. LeeG. BaeH. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells.Immun. Inflamm. Dis.20153438639710.1002/iid3.7626734460
    [Google Scholar]
  32. SonD.J. LeeJ.W. LeeY.H. SongH.S. LeeC.K. HongJ.T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds.Pharmacol. Ther.2007115224627010.1016/j.pharmthera.2007.04.00417555825
    [Google Scholar]
  33. LiL. HuangJ. LinY. Snake venoms in cancer therapy: Past, present and future.Toxins (Basel)201810934610.3390/toxins1009034630158426
    [Google Scholar]
  34. MaR. MahadevappaR. KwokH.F. Venom-based peptide therapy: Insights into anti-cancer mechanism.Oncotarget201785910090810093010.18632/oncotarget.2174029246030
    [Google Scholar]
  35. DardevetL. RaniD. AzizT.A. BazinI. SabatierJ.M. FadlM. BrambillaE. De WaardM. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion.Toxins (Basel)2015741079110110.3390/toxins704107925826056
    [Google Scholar]
  36. ZhaoL. ShiX. ZhaoJ. Chlorotoxin-conjugated nanoparticles for targeted imaging and therapy of glioma.Curr. Top. Med. Chem.201515131196120810.2174/156802661566615033011082225858130
    [Google Scholar]
  37. MattsonM.P. Apoptosis in neurodegenerative disorders.Nat. Rev. Mol. Cell Biol.20001212012910.1038/3504000911253364
    [Google Scholar]
  38. ChungE.S. LeeG. LeeC. YeM. ChungH.S. KimH. BaeS.J. HwangD.S. BaeH. Bee venom phospholipase A2, a novel Foxp3+ regulatory T cell inducer, protects dopaminergic neurons by modulating neuroinflammatory responses in a mouse model of Parkinson’s disease.J. Immunol.2015195104853486010.4049/jimmunol.150038626453752
    [Google Scholar]
  39. YinS.M. ZhaoD. YuD.Q. LiS.L. AnD. PengY. XuH. SunY.P. WangD.M. ZhaoJ. ZhangW.Q. Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson’s disease.Sheng Li Xue Bao2014666658666https://pubmed.ncbi.nlm.nih.gov/25516514/25516514
    [Google Scholar]
  40. WangT. WangS.W. ZhangY. WuX.F. PengY. CaoZ. GeB.Y. WangX. WuQ. LinJ.T. ZhangW.Q. LiS. ZhaoJ. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).PLoS One2014910e10997710.1371/journal.pone.010997725299676
    [Google Scholar]
  41. XuH. AnD. YinS.M. ChenW. ZhaoD. MengX. YuD.Q. SunY.P. ZhaoJ. ZhangW.Q. The alterations of apoptosis factor Bcl-2/Bax in the early Parkinson’s disease rats and the protective effect of scorpion venom derived activity peptide.Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih2015313225229https://pubmed.ncbi.nlm.nih.gov/26387182/26387182
    [Google Scholar]
  42. MartinsN.M. SantosN.A. SartimM.A. CintraA.C. SampaioS.V. SantosA.C. A tripeptide isolated from Bothrops atrox venom has neuroprotective and neurotrophic effects on a cellular model of Parkinson’s disease.Chem. Biol. Interact.2015235101610.1016/j.cbi.2015.04.00425868679
    [Google Scholar]
  43. JinJ. KangH.M. JungJ. JeongJ.W. ParkC. Related expressional change of HIF-1α to the neuroprotective activity of exendin-4 in transient global ischemia.Neuroreport2014251657010.1097/WNR.000000000000004624201448
    [Google Scholar]
  44. DarsaliaV. HuaS. LarssonM. MallardC. NathansonD. NyströmT. SjöholmÅ. JohanssonM.E. PatroneC. Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization.PLoS One201498e10311410.1371/journal.pone.010311425101679
    [Google Scholar]
  45. YangE.J. JiangJ.H. LeeS.M. YangS.C. HwangH.S. LeeM.S. ChoiS.M. Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models.J. Neuroinflammation2010716910.1186/1742‑2094‑7‑6920950451
    [Google Scholar]
  46. LeeM.J. JangM. ChoiJ. LeeG. MinH.J. ChungW.S. KimJ.I. JeeY. ChaeY. KimS.H. LeeS.J. ChoI.H. Bee venom acupuncture alleviates experimental autoimmune encephalomyelitis by upregulating regulatory T cells and suppressing Th1 and Th17 responses.Mol. Neurobiol.20165331419144510.1007/s12035‑014‑9012‑225579380
    [Google Scholar]
  47. DhanakA.C. RishipathakD.D. GideD. Multiple Sclerosis & it’s treatment with Alpha-Cobratoxin: A review.Int. J. Pharm. Tech. Res.201021740749
    [Google Scholar]
  48. FujiiT. MashimoM. MoriwakiY. MisawaH. OnoS. HoriguchiK. KawashimaK. Expression and function of the cholinergic system in immune cells.Front. Immunol.20178108510.3389/fimmu.2017.0108528932225
    [Google Scholar]
  49. KhalilW.K. AssafN. ElShebineyS.A. SalemN.A. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis.Neurochem. Int.201580798610.1016/j.neuint.2014.11.00825481089
    [Google Scholar]
  50. McEntireD.M. KirkpatrickD.R. DueckN.P. KerfeldM.J. SmithT.A. NelsonT.J. ReisbigM.D. AgrawalD.K. Pain transduction: A pharmacologic perspective.Expert Rev. Clin. Pharmacol.2016981069108010.1080/17512433.2016.118348127137678
    [Google Scholar]
  51. RamírezD. GonzalezW. FissoreR.A. CarvachoI. Conotoxins as tools to understand the physiological function of voltage-gated calcium (CaV) channels.Mar. Drugs2017151031310.3390/md1510031329027927
    [Google Scholar]
  52. LebbeE.K. PeigneurS. WijesekaraI. TytgatJ. Conotoxins targeting nicotinic acetylcholine receptors: an overview.Mar. Drugs20141252970300410.3390/md1205297024857959
    [Google Scholar]
  53. LiR.A. TomaselliG.F. Using the deadly μ-conotoxins as probes of voltage-gated sodium channels.Toxicon200444211712210.1016/j.toxicon.2004.03.02815246758
    [Google Scholar]
  54. MiljanichG.P. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain.Curr. Med. Chem.200411233029304010.2174/092986704336388415578997
    [Google Scholar]
  55. Di Cesare MannelliL. CinciL. MicheliL. ZanardelliM. PaciniA. McIntoshJ.M. GhelardiniC. α-conotoxin RgIA protects against the development of nerve injury-induced chronic pain and prevents both neuronal and glial derangement.Pain2014155101986199510.1016/j.pain.2014.06.02325008370
    [Google Scholar]
  56. ChangE. ChenX. KimM. GongN. BhatiaS. LuoZ.D. Differential effects of voltage-gated calcium channel blockers on calcium channel alpha-2-delta-1 subunit protein-mediated nociception.Eur. J. Pain201519563964810.1002/ejp.58525158907
    [Google Scholar]
  57. GreenB.R. BulajG. NortonR.S. Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity.Future Med. Chem.20146151677169810.4155/fmc.14.10725406007
    [Google Scholar]
  58. DengM. LuoX. XiaoY. SunZ. JiangL. LiuZ. ZengX. ChenH. TangJ. ZengW. Songping Liang Huwentoxin-XVI, an analgesic, highly reversible mammalian N-type calcium channel antagonist from Chinese tarantula Ornithoctonus huwena. Neuropharmacology20147965766710.1016/j.neuropharm.2014.01.01724467846
    [Google Scholar]
  59. LiuX. LiC. ChenJ. DuJ. ZhangJ. LiG. JinX. WuC. AGAP, a new recombinant neurotoxic polypeptide, targets the voltage-gated calcium channels in rat small diameter DRG neurons.Biochem. Biophys. Res. Commun.20144521606510.1016/j.bbrc.2014.08.05125148943
    [Google Scholar]
  60. TonelloR. RigoF. GewehrC. TrevisanG. PereiraE.M.R. GomezM.V. FerreiraJ. Action of Phα1β, a peptide from the venom of the spider Phoneutria nigriventer, on the analgesic and adverse effects caused by morphine in mice.J. Pain201415661963110.1016/j.jpain.2014.02.00724607814
    [Google Scholar]
  61. RosaF. TrevisanG. RigoF.K. TonelloR. AndradeE.L. do Nascimento CordeiroM. CalixtoJ.B. GomezM.V. FerreiraJ. Phα1β, a peptide from the venom of the spider Phoneutria nigriventer shows antinociceptive effects after continuous infusion in a neuropathic pain model in rats.Anesth. Analg.2014119119620210.1213/ANE.000000000000024924836473
    [Google Scholar]
  62. LiuJ.K. The history of monoclonal antibody development - Progress, remaining challenges and future innovations.Ann. Med. Surg. (Lond.)20143411311610.1016/j.amsu.2014.09.00125568796
    [Google Scholar]
  63. XiaoY. BinghamJ.P. ZhuW. MoczydlowskiE. LiangS. CumminsT.R. Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration.J. Biol. Chem.200828340273002731310.1074/jbc.M70844720018628201
    [Google Scholar]
  64. CardosoF.C. DekanZ. RosengrenK.J. EricksonA. VetterI. DeuisJ.R. HerzigV. AlewoodP.F. KingG.F. LewisR.J. Identification and characterization of ProTx-III [μ-TRTX-Tp1a], a new voltage-gated sodium channel inhibitor from venom of the tarantula Thrixopelma pruriens. Mol. Pharmacol.201588229130310.1124/mol.115.09817825979003
    [Google Scholar]
  65. LiuY. TangJ. ZhangY. XunX. TangD. PengD. YiJ. LiuZ. ShiX. Synthesis and analgesic effects of μ-TRTX-Hhn1b on models of inflammatory and neuropathic pain.Toxins (Basel)2014682363237810.3390/toxins608236325123556
    [Google Scholar]
  66. LimB.S. MoonH.J. LiD.X. GilM. MinJ.K. LeeG. BaeH. KimS.K. MinB.I. Effect of bee venom acupuncture on oxaliplatin-induced cold allodynia in rats.Evid. Based Complement. Alternat. Med.2013201336932410.1155/2013/36932424058370
    [Google Scholar]
  67. LeeJ.H. LiD.X. YoonH. GoD. QuanF.S. MinB.I. KimS.K. Serotonergic mechanism of the relieving effect of bee venom acupuncture on oxaliplatin-induced neuropathic cold allodynia in rats.BMC Complement. Altern. Med.201414147110.1186/1472‑6882‑14‑47125481535
    [Google Scholar]
  68. RohD.H. KwonY.B. KimH.W. HamT.W. YoonS.Y. KangS.Y. HanH.J. LeeH.J. BeitzA.J. LeeJ.H. Acupoint stimulation with diluted bee venom (apipuncture) alleviates thermal hyperalgesia in a rodent neuropathic pain model: Involvement of spinal alpha 2-adrenoceptors.J. Pain20045629730310.1016/j.jpain.2004.05.00315336634
    [Google Scholar]
  69. LimS.M. LeeS.H. Effectiveness of bee venom acupuncture in alleviating post-stroke shoulder pain: A systematic review and meta-analysis.J. Integr. Med.201513424124710.1016/S2095‑4964(15)60178‑926165368
    [Google Scholar]
  70. ChenL. DeltheilT. Turle-LorenzoN. LibergeM. RosierC. WatabeI. SrengL. AmalricM. MourreC. SK channel blockade reverses cognitive and motor deficits induced by nigrostriatal dopamine lesions in rats.Int. J. Neuropsychopharmacol.20141781295130610.1017/S146114571400023624661728
    [Google Scholar]
  71. PengY. LuK. LiZ. ZhaoY. WangY. HuB. XuP. ShiX. ZhouB. PenningtonM. ChandyK.G. TangY. Blockade of Kv1.3 channels ameliorates radiation-induced brain injury.Neuro-oncol.201416452853910.1093/neuonc/not22124305723
    [Google Scholar]
  72. WaqarM. BatoolS. In silico analysis of binding of neurotoxic venom ligands with acetylcholinesterase for therapeutic use in treatment of Alzheimer’s disease.J. Theor. Biol.201537210711710.1016/j.jtbi.2015.02.02825747777
    [Google Scholar]
  73. BalsaraR. DangA. DonahueD.L. SnowT. CastellinoF.J. Conantokin-G attenuates detrimental effects of NMDAR hyperactivity in an ischemic rat model of stroke.PLoS One2015103e012284010.1371/journal.pone.012284025822337
    [Google Scholar]
  74. VargasL.S. LaraM.V. GonçalvesR. MandrediniV. Ponce-SotoL.A. MarangoniS. Dal BeloC.A. Mello-CarpesP.B. The intrahippocampal infusion of crotamine from Crotalus durissus terrificus venom enhances memory persistence in rats.Toxicon201485525810.1016/j.toxicon.2014.04.01724813333
    [Google Scholar]
  75. LiangY.X. ZhangZ.Y. ZhangR. Antinociceptive effect of najanalgesin from naja naja atra in a neuropathic pain model via inhibition of c-jun NH2-terminal kinase.Chin. Med. J. (Engl.)2015128172340234510.4103/0366‑6999.16339726315082
    [Google Scholar]
  76. LeeS.M. YangE.J. ChoiS.M. KimS.H. BaekM.G. JiangJ.H. Effects of bee venom on glutamate-induced toxicity in neuronal and glial cells.Evid. Based Complement. Alternat. Med.2012201236819610.1155/2012/36819621904562
    [Google Scholar]
  77. ZambelliV.O. FernandesA.C. GutierrezV.P. FerreiraJ.C.B. ParadaC.A. Mochly-RosenD. CuryY. Peripheral sensitization increases opioid receptor expression and activation by crotalphine in rats.PLoS One201493e9057610.1371/journal.pone.009057624594607
    [Google Scholar]
  78. Aviles-OlmosI. DicksonJ. KefalopoulouZ. DjamshidianA. EllP. SoderlundT. WhittonP. WyseR. IsaacsT. LeesA. LimousinP. FoltynieT. Exenatide and the treatment of patients with Parkinson’s disease.J. Clin. Invest.201312362730273610.1172/JCI6829523728174
    [Google Scholar]
  79. Aviles-OlmosI. DicksonJ. KefalopoulouZ. DjamshidianA. KahanJ. EllP. WhittonP. WyseR. IsaacsT. LeesA. LimousinP. FoltynieT. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease.J. Parkinsons Dis.20144333734410.3233/JPD‑14036424662192
    [Google Scholar]
/content/journals/vat/10.2174/2666121701666211124151529
Loading
/content/journals/vat/10.2174/2666121701666211124151529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test