Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Development of a new drug molecule is costly and requires a long time. Many attempts have been made to improve the safety of the effective level of “old” drugs, utilizing various ways like individualizing drug therapy, curative drug control, and dose titration. But, recently, important efforts have been made to discover the novel drug releasing systems, which can be supplied to a target system in the human body, while controlling the level and time of delivery. Polymers, whether synthetic or natural, have great importance in pharmaceutical applications, especially in the field of drug delivery. The use of polymers in pharmaceutical applications ranges from their use as binders in tablets to viscosity and flow controlling factors in liquids, and they can be used in suspensions and emulsions; also, in some cases, they can be used as film coatings. Moreover, they may be used as membranes implanted within the living body. Current work highlights the importance of drug delivery systems and the role of polymers in them.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121701999201116154850
2021-03-01
2024-11-26
Loading full text...

Full text loading...

References

  1. RolandoM.A. RoqueM. The physical chemistry of materials: energy and environmental applications.CRC. Press201689
    [Google Scholar]
  2. McCrumN.G. BuckleyC.P. BucknallC.B. Principles of polymer engineering.Oxford, New YorkOxford University Press1997
    [Google Scholar]
  3. PainterP.C. ColemanM.M. Fundamentals of polymer science: an introductory text.Lancaster, Pa.Technomic Pub.1997
    [Google Scholar]
  4. SowjanyaM. DebnathS. Lavanya, P.; Thejovathi, R.; Babu, M. polymers used in the designing of controlled drug delivery system.Res. J. Pharm. and Tech.201710390391210.5958/0974‑360X.2017.00168.8
    [Google Scholar]
  5. MustafaN. MohammedA. OmerA. MohamedE. GarlnabiM. HamedA. Reviewing of general polymer types, properties and application in medical field.Int. J. Sci. Res. (Ahmedabad)20165823197064
    [Google Scholar]
  6. GandhiK.J. DeshmaneS.V. BiyaniK.R. polymers in pharmaceutical drug delivery system: a review.Int. J. Pharm. Sci. Rev. Res.20121425766
    [Google Scholar]
  7. DemingT.J. Polypeptide materials: New synthetic methods and applications.Adv. Mater.19979429931110.1002/adma.19970090404
    [Google Scholar]
  8. SiepmannJ. FahamA. ClasS.D. BoydB. JanninV. Bernkop-SchnürchA. ZhaoH. LecommandouxS. EvansJ. AllenC. MerkelO. Costabile, Morgan, R.; Alexander; Ricky, D.; Wildman; Roberts, C.; Leroux, J. K. Lipids and polymers in pharmaceutical technology: Lifelong companions.Int. J. Pharm.201955812814210.1016/j.ijpharm.2018.12.080
    [Google Scholar]
  9. Vajra PriyaV. RoyH.K. JyothiN. PrasanthiK. polymers in drug delivery technology, types of polymers and applications.Sch. Acad. J. Pharm.201657305308
    [Google Scholar]
  10. LarsonN. GhandehariH. Polymeric conjugates for drug delivery.Chem. Mater.201224584085310.1021/cm2031569
    [Google Scholar]
  11. GodwinA. BolinaK. ClochardM. DinandE. RankinS. SimicS. BrocchiniS. New strategies for polymer development in pharmaceutical science – a short review.JPP2001531175118410.1211/0022357011776612
    [Google Scholar]
  12. RingsdorfH. Structure and properties of pharmacologically active polymers.Polymer SCI.: Symposium19755113515310.1002/polc.5070510111
    [Google Scholar]
  13. MarkovskyE. Baabur-CohenH. Eldar-BoockA. OmerL. TiramG. FerberS. OfekP. PolyakD. ScomparinA. Satchi-FainaroR. Administration, distribution, metabolism and elimination of polymer therapeutics.J. Control. Release201216144646010.1016/j.jconrel.2011.12.021
    [Google Scholar]
  14. DuncanR. RingsdorfH. Satchi-FainaroR. Polymer therapeutics—polymers as drugs, drug and protein conjugates and gene delivery systems: Past, present and future opportunities.J. Drug Target.200614633734110.1080/10611860600833856
    [Google Scholar]
  15. WenH. JungH. LiX. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges.AAPS J.20151761327134010.1208/s12248‑015‑9814‑9
    [Google Scholar]
  16. PillaiO. PanchagnulaR. Polymers in drug delivery.Curr. Opin. Chem. Biol.2001544745110.1016/S1367‑5931(00)00227‑1
    [Google Scholar]
  17. WhittleseyK.J. SheaL.D. Delivery systems for small molecule drugs, proteins and DNA: the neuroscience/biomaterial interface.Exp. Neurol.200419011610.1016/j.expneurol.2004.06.020
    [Google Scholar]
  18. PangX. DuH.L. ZhangH.Q. ZhaiY.J. ZhaiG.X. Polymer-drug conjugates: present state of play and future perspectives.Drug Discov. Today2013161316132210.1016/j.drudis.2013.09.007
    [Google Scholar]
  19. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review.J. Control. Release20006527128410.1016/S0168‑3659(99)00248‑5
    [Google Scholar]
  20. LangerR. New methods of drug delivery.Science19902491527153310.1126/science.2218494
    [Google Scholar]
  21. FreibergS. ZhuX. Polymer microspheres for controlled drug release.Int. J. Pharm.200428211810.1016/j.ijpharm.2004.04.013
    [Google Scholar]
  22. YangW.W. PierstorffE. Reservoir-based polymer drug delivery systems.J. Lab. Autom.2012171505810.1177/2211068211428189
    [Google Scholar]
  23. StevensonC.L. JohnT. SantiniJ. LangerR. Reservoir-based drug delivery systems utilizing micro-technology.Adv. Drug Deliv. Rev.2012641590160210.1016/j.addr.2012.02.005
    [Google Scholar]
  24. BlagoevaR. NedevA. Monolithic controlled delivery systems: Part I. Basic characteristics and mechanisms.Bioauto. J.200648088
    [Google Scholar]
  25. WiseL.D. Handbook of pharmaceutical controlled release technology.New York, BaselMarcel Dekker, Inc.200010.1201/9781482289985
    [Google Scholar]
  26. KydonieusA. Treatise on controlled drug delivery.NewYorkMarcel Dekker, Inc.1992
    [Google Scholar]
  27. ChandranS. LailaF.A. ManthaN. Design and evaluation of ethyl cellulose based matrix tablets of ibuprofen with pH modulated release kinetics.Indian J. Pharm. Sci.200857059660210.4103/0250‑474X.45397
    [Google Scholar]
  28. GothiG.D. ParinhB.N. PatelT.D. PrajapatiS.T. PatelD.M. PatelC.N. J. Glob. Pharma Technol.2010226974
    [Google Scholar]
  29. DhikavV. SindhuS. AnandK.S. Newer non-steroidal anti-inflammatory drugs: A review of their therapeutic potential and adverse drug reactions.J. Indian Acad. Clinical Med.20023332338
    [Google Scholar]
  30. NagendrakumarD. KeshavshettiG.G. ShardorA.G. An overview: Matrix tablets as sustained release.Recent Res. Sci. Technol.2013543645
    [Google Scholar]
  31. GrassiM. Lapasin, R.; Pricl, S. modeling of drug release from a swellable matrix.Chem. Eng. Commun.19981697910910.1080/00986449808912722
    [Google Scholar]
  32. BrahmankarD.M. JaiswalS.B. Biopharmaceutics and Pharmacokinetics.2nd edDelhiVallabh Prakashan2009399401
    [Google Scholar]
  33. ManishJ. AbhayK. Sustained release matrix type drug delivery system: a review.J. Drug Deliv. Ther.201226142148
    [Google Scholar]
  34. JantzenG.M. RobinsonJ.R. Sustained and controlled-release drug deliverysystemsBanker G.S, Rhodes C.T (Eds.) Modern Pharmaceutics, Third Edition, Revised and Expanded. Drugs and the Pharmaceutical SciencesMarcell Dekker, Inc. New York.,199572575609
    [Google Scholar]
  35. VyasS.P. KharR.K. Controlled drug delivery: Concepts and advances.Vallabh prakashan.,2002156189
    [Google Scholar]
  36. ZimmerŁ. KasperekR. PoleszakE. Modern polymers in matrix tablets technology.Polim. Med.2014443189196
    [Google Scholar]
  37. MesnukulA. YodkhumK. PhaechamudT. Solid dispersion matrix tablet comprising indomethacin-peg-hpmc fabricated with fusion and mold technique.Indian J. Pharm. Sci.200971441342010.4103/0250‑474X.57290
    [Google Scholar]
  38. VenkatarajuM.P. GowdaD.V. RajeshK.S. ShivakumarH.G. Xanthan and locust bean gum (from ceratoniasiliqua) matrix tablets for oral controlled delivery of metoprolol tartrate.Asian J. Pharm. Sci.200726239248
    [Google Scholar]
  39. VidyadharaS. SasidharR.L.C. NagarajuR. Design and development of polyethylene oxide based matrix tablets for verapamil hydrochloride.Indian J. Pharm. Sci.2013752185190
    [Google Scholar]
  40. MaggiL. SegaleL. TorreM.L. Ochoa MachisteE. ConteU. Dissolution behavior of hydrophilic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study.Biomaterials2002231113111910.1016/S0142‑9612(01)00223‑X
    [Google Scholar]
  41. BashirA. AbbasS. IqbalZ. BahirS. AliJ. Synthesis of cross linked PVP hydrogels and its use for the control release of anti-asthmatic drugs.Middle East J. Sci. Res.2012142273283
    [Google Scholar]
  42. Sreenivasa RaoB. SeshasayanaA. HimasankarK. YalavarthiP.R. KolapalliR.V. Design and evaluation of ethylene vinyl acetate sintered matrix tablets.Indian J. Pharm. Sci.2002655496502
    [Google Scholar]
  43. PrakharA. SemimuL.A. A comprehensive review on sustained release matrix tablets: a promising dosage form.Univers. J. Pharm. Res.2018365358
    [Google Scholar]
  44. KaushikM. TathagataK. Al BiswanathS. 3+ ion cross-linked matrix tablets of sodium carboxymethyl cellulose for controlled release of aceclofenac: Development and in-vitro evaluation.Sch. Res. J.20124616331647
    [Google Scholar]
  45. RishabhaM. SrivastavaP. MayankB. KumarS.P. MalviyaR. MalviyaM. Formulation and optimization of sustained release matrix tablets of diclofenac sodium using pectin as release modifier.Int. J. Drug Deliv.201022330335
    [Google Scholar]
  46. GuggiD. MarschützM.K. Bernkop-SchnürchA. Matrix tablets based on thiolated poly(acrylic acid): pH-dependent variation in disintegration and mucoadhesion.Int. J. Pharm.200441-29710510.1016/j.ijpharm.2003.06.001
    [Google Scholar]
  47. SiahiM.R. Barzegar-JalaliM. MonajjemzadehF. GhaffariF. AzarmiS. Design and evaluation of 1- and 3-layer matrices of verapamil hydrochloride for sustaining its release.APS Pharm. Sci. Tech.200564E626E63210.1208/pt060477
    [Google Scholar]
  48. HuynhC.T. LeeD.S. Controlled release. Encyclopedia of polymeric nanomaterials.Springer-Verlag Berlin Heidelberg2014112
    [Google Scholar]
  49. SiepmannJ. SiegelR.A. SiepmannF. Diffusion controlled drug delivery systems.Fundamentals and applications of controlled release drug delivery. Advances in delivery science and technology SiepmannJ. SiegelR.A. RathboneM.J. New YorkSpringer2012127152
    [Google Scholar]
  50. PanditJ.K. SinghS. MuthuM.S. Controlled release formulations in neurologypractice.Ann. Indian Acad. Neurol.2006920721610.4103/0972‑2327.29202
    [Google Scholar]
  51. MircioiuC. VoicuV. AnutaV. TudoseA. CeliaC. PaolinoD. FrestaM. SanduloviciR. MircioiuI. mathematical modeling of release kinetics from supramolecular drug delivery systems.Pharmaceutics20191114014510.3390/pharmaceutics11030140
    [Google Scholar]
  52. Go1pferich, A. Polymer bulk erosion.Macromolecules1997302598260410.1021/ma961627y
    [Google Scholar]
  53. SevimK. PanJ. A model for hydrolytic degradation and erosion of biodegradable polymers.Acta Biomater.20181566192199[PubMed]10.1016/j.actbio.2017.11.023
    [Google Scholar]
  54. EngineerC. ParikhJ. RavalA. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system.Trends Biomater. Artif. Organs20112527985
    [Google Scholar]
  55. UleryB.D. NairL.S. LaurencinC.T. Biomedical applications of biodegradable polymers.J. Polym. Sci.201149832864
    [Google Scholar]
  56. TamadaJ.A. LangerR. Erosion kinetics of hydrolytically degradable polymers.Proc. Natl. Acad. Sci. USA19939055255610.1073/pnas.90.2.552
    [Google Scholar]
  57. LyuS. UnterekerD. Degradability of polymers for implantable biomedical devices.Int. J. Mol. Sci.2009104033406510.3390/ijms10094033
    [Google Scholar]
  58. RuairíP. AndrewB. DoveP. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.Biomater. Sci.2017592110.1039/C6BM00584E
    [Google Scholar]
  59. HaafF. SannerA. StraubF. Polymers of N-Vinylpyrrolidone: synthesis, characterization and uses.Polym. J.19851714315210.1295/polymj.17.143
    [Google Scholar]
  60. GanesanS. FeloJ. SaldanaM. KalasinskyV.F. Lewin-SmithM.R. and Tomashefski JrJ.F. Embolized crospovidone (polyN-vinyl-2-pyrrolidone) in the lungs of intravenous drug users.Mod. Pathol.200316428629210.1097/01.MP.0000062653.65441.DA
    [Google Scholar]
  61. WohlfarthC. thermodynamic properties of polymer solutions.Landolt-Börnstein, New Series, Group VIII, Volume 6D. Landolt- Börnstein - Group VIII Advanced Materials and Technologies. 6D2Springer Verlag201012661267
    [Google Scholar]
  62. O’NeilM.J. HeckelmanP.E. KochC.B. RomanK.J. The Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals.14th edJ. Chem. Inf. Model2010
    [Google Scholar]
  63. TeodorescuM. BerceaM. Poly(vinylpyrrolidone) – A versatile polymer for biomedical and beyond medical applications.Polym. Plast. Technol. Eng.20155492394310.1080/03602559.2014.979506
    [Google Scholar]
  64. jayarajakumar, k.; hemanth kumar reddy, c.; gunashakaran, v.; ramesh, y.; kalayanbabu, p.; pawan narasimha, n.; venkatewarulu, a.; lakshmi kanth reddy, p. application of broad spectrum antiseptic povidone iodine as powerful action: a review.J. Pharm. Sci. Technol.2009124858
    [Google Scholar]
  65. ZhiX. FangH. BaoC. ShenG. ZhangJ. WangK. GuoS. WanT. CuiD. The immunotoxicity of graphene oxides and the effect of PVP-coating.Biomaterials2013345254526110.1016/j.biomaterials.2013.03.024
    [Google Scholar]
  66. FolttmannB.H. QuadirA. Excipients in pharmaceuticals: An overview.Drug Deliv. Technol.200882227
    [Google Scholar]
  67. HalakeK. BirajdarM. KimB.S. BaeH. LeeC. KimY.J. KimS. KimH.J. AhnS. AnS.Y. LeeJ. Recent application developments of water-soluble synthetic polymers.J. Ind. Eng. Chem.201418431610.1016/j.jiec.2014.01.006
    [Google Scholar]
  68. Raimi-AbrahamB.T. MahalingamS. EdirisingheM. CraigD.Q.M. Generation of poly(N-vinylpyrrolidone) nanofibres using pressurized gyration.Mater. Sci. Eng.20143916817610.1016/j.msec.2014.02.016
    [Google Scholar]
  69. JainP. BangaA.K. Inhibition of crystallization in drug-in-adhesive type transdermal patches.Int. J. Pharm.2010394687410.1016/j.ijpharm.2010.04.042
    [Google Scholar]
  70. VeerenA. Bhaw-LuximonA. JhurryD. Polyvinylpyrrolidone–polycaprolactone block copolymer micelles as nanocarriers of anti-TB drugs.Eur. Polym. J.2013493034304510.1016/j.eurpolymj.2013.06.020
    [Google Scholar]
  71. YangM. XieS. LiQ. WangY. ChangX. ShanL. SunL. HuangX. GaoC. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets.Int. J. Pharm.201446518719610.1016/j.ijpharm.2014.02.021
    [Google Scholar]
  72. JonesD. Pharmaceutical applications of polymers for drug delivery.Smithers Rapra20041561134
    [Google Scholar]
  73. SohailK. KhanI. ShahzadY. HussainT. RanjhaN.M. pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: Impact of material parameters on swelling and drug release.Braz. J. Pharm. Sci.201450117318410.1590/S1984‑82502011000100018
    [Google Scholar]
  74. PrabhaG. RajV. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications.J. Magn. Magn. Mater.2016408263410.1016/j.jmmm.2016.01.070
    [Google Scholar]
  75. KatarzynaA. MierskaK. KucK. CiachT. Polyvinylpyrrolidone-polyurethane interpolymer hydrogel coating as a local drug delivery system.Acta Pol. Pharm. Drug Research.2008656763766
    [Google Scholar]
  76. LeeD.R. HoM. ChoiY.W. KangM.J. A polyvinylpyrrolidone-based supersaturableself-emulsifying drug delivery system for enhanceddissolution of cyclosporine a.Polymers (Basel)20179124111
    [Google Scholar]
  77. De SilvaD.J. OlverJ.M. Hydroxypropyl methylcellulose (HPMC) lubricant facilitates insertion of porous spherical orbital implants.Ophthal. Plast. Reconstr. Surg.200521430130210.1097/01.iop.0000170417.19223.6c
    [Google Scholar]
  78. WilliamsR.O. SykoraM.A. MahagunaV. Method to recover a lipophilic drug from hydroxypropyl methylcellulose matrix tablets.AAPS PharmSciTech200122, , E8..10.1208/pt020208
    [Google Scholar]
  79. MajumderT. BiswasG.R. MajeeS.B. Hydroxy propyl methyl cellulose: Different aspects in drug delivery.J. Pharm. Pharmacol.20164381385
    [Google Scholar]
  80. WilliamsH.D. WardR. HardyI.J. MeliaC.D. Drug Release from HPMC Matrices in Milk and Fat-Rich Emulsion.J. Pharm. Sci.2011100114823483510.1002/jps.22689
    [Google Scholar]
  81. HuichaoW. ShouyingD. YangL. YingL. DiW. The application of biomedical polymer material hydroxypropylmethyl cellulose(HPMC) in pharmaceutical preparations.J. Chem. Pharm. Res.201465155160
    [Google Scholar]
  82. XiaoL. YiT. Mechanisms of hydroxypropyl methylcellulose for the precipitation inhibitor of supersaturatable self-emulsifying drug delivery systems.Yao Xue Xue Bao2013485767772
    [Google Scholar]
  83. OhC.M. SiaHeng, P. W.; Chan, L. W. A study on the impact of hydroxypropyl methylcellulose on the viscosity of PEG melt suspensions using surface plots and principal component analysis.AAPS PharmSciTech201516246647710.1208/s12249‑014‑0204‑x
    [Google Scholar]
  84. SiangR. YongT.S. LeeS.Y. BasavarajA.K. oh, R.Y.; Rathbone, M. J. Formulation and evaluation of topical pentoxifylline-hydroxypropyl methylcellulose gels for wound healing application.Int. J. Pharm. Pharm. Sci.201469535539
    [Google Scholar]
  85. Al-TabakhaM.M. HPMC capsules: current status and future prospects.J. Pharm. Pharm. Sci.201013342844210.18433/J3K881
    [Google Scholar]
  86. NepE.I. ConwayB.R. Grewia Gum 2: Mucoadhesive properties of compacts and gels.Trop. J. Pharm. Res.201110439340110.4314/tjpr.v10i4.4
    [Google Scholar]
  87. EnayatifardR. SaeediM. AkbariJ. Haeri TabatabaeeY. Effect of hydroxypropyl methylcellulose and ethyl cellulose content on release profile and kinetics of diltiazem HCl from matrices.Trop. J. Pharm. Res.20098542543210.4314/tjpr.v8i5.48086
    [Google Scholar]
  88. NasattoP.L. PignonF. SilveiraJ.L.M. DuarteM.E.R. NosedaM.D. RinaudoM. Methylcellulose, a cellulose derivative with original physical properties and extended applications.Polymers (Basel)2015777780310.3390/polym7050777
    [Google Scholar]
  89. RoyA. GhoshA. DattaS. DasS. MohanrajP. DebJ. RaoM.E.B. Effects of plasticizers and surfactants onthe film forming properties of hydroxypropyl methylcellulose for the coating of diclofenac sodium tablets.Saudi Pharm. J.200917323324110.1016/j.jsps.2009.08.004
    [Google Scholar]
  90. MaL. DengL. ChenJ. applications of poly(ethylene oxide) in controlled release tablet systems: a review.Drug Dev. Ind. Pharm.2014407845851
    [Google Scholar]
  91. BoevaZh.A. SergeyevV.G. Polyaniline: Synthesis, properties, and application.Polym. Sci. Ser. C201456114415310.1134/S1811238214010032
    [Google Scholar]
  92. KarimM.R. YeumJ.H. LeeM.S. LimK.T. Preparation of conducting polyaniline/TiO2 composite submicron-rods by the gamma-radiolysis oxidative polymerization method.React. Funct. Polym.2008681371137610.1016/j.reactfunctpolym.2008.06.016
    [Google Scholar]
  93. SixiangL.I. JasimA. ZhaoW. FuL. Wajid Ullah, M.; Shi, Z.; Yang, G. Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system.ES Mater. Manuf.20181414149
    [Google Scholar]
  94. JotiramK.P. PrasadR.G.S.V. Jakka, V. S.; Aparna, R.S.L.; Phani, A.R. Antibacterial activity of nanostructured polyaniline combined with mupirocin.Nano Biomed. Eng.20124314414910.5101/nbe.v4i3.p144‑149
    [Google Scholar]
  95. CooksonB.D. The emergence of mupirocin resistance: achallenge toinfectioncontrolandantibioticprescribingpractice.J. Antimicrob. Chemother.199841111810.1093/jac/41.1.11
    [Google Scholar]
  96. RazzakM.T. DarwisD. Zainuddin; Sukirno. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing.Radiat. Phys. Chem.200162107113[CrossRef]10.1016/S0969‑806X(01)00427‑3
    [Google Scholar]
  97. QiuK. NetravaliA.N. A Composting study of membrane-like polyvinyl alcohol based resins and nanocomposites.J. Polym. Environ.20132165867410.1007/s10924‑013‑0584‑0
    [Google Scholar]
  98. ChoD. NetravaliA.N. JooY.L. Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers.Polym. Degrad.201297747754[CrossRef]10.1016/j.polymdegradstab.2012.02.007
    [Google Scholar]
  99. DemerlisC.C. SchonekerD.R. Review of the oral toxicity of polyvinyl alcohol (PVA).Food Chem. Toxicol.200341319326[CrossRef]10.1016/S0278‑6915(02)00258‑2
    [Google Scholar]
  100. LiuM. GuoB. DuM. JiaD. Drying induced aggregation of halloysite nanotubes in polyvinylalcohol/halloysite nanotubes solution and its effect on properties of composite film.Appl. Phys., A Mater. Sci. Process.20078839139510.1007/s00339‑007‑3995‑8
    [Google Scholar]
  101. LimpanN. ProdpranT. BenjakulS. PrasarpranS. Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films.Food Hydrocoll.20122922623310.1016/j.foodhyd.2012.03.007
    [Google Scholar]
  102. MariaT.M. CarvalhoR.A. SobralP.J. HabitanteaA.M. Solorza-FeriabJ. The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends.J. Food Eng.20088719119910.1016/j.jfoodeng.2007.11.026
    [Google Scholar]
  103. YangJ.M. SuW.Y. LeuT.L. YangM.C. Evaluation of chitosan/PVA blended hydrogel membranes.J. Membr. Sci.20042363951[CrossRef]10.1016/j.memsci.2004.02.005
    [Google Scholar]
  104. KaityS. IsaacJ. GhoshA. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery.Carbohydr. Polym.20139445646710.1016/j.carbpol.2013.01.070
    [Google Scholar]
  105. LeeH. MensireR. CohenR.E. RubnerM.F. Strategies for hydrogen bonding based layer-by-layer assembly of poly (vinyl alcohol) with weak polyacids.Macromolecules20114534735510.1021/ma202092w
    [Google Scholar]
  106. GhebaurA. GareaS.A. IovuH. New polymer–halloysite hybrid materials-potential controlled drug release system.Int. J. Pharm.201243656857310.1016/j.ijpharm.2012.07.014
    [Google Scholar]
  107. HanD. YanL. ChenW. LiW. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state.Carbohydr. Polym.20118365365810.1016/j.carbpol.2010.08.038
    [Google Scholar]
  108. MutsuoS. YamamotoK. FuruzonoT. KimuraT. OnoT. KishidaA. Release behavior from hydrogen-bonded polymer gels prepared by pressurization.J. Appl. Polym. Sci.20111192725272910.1002/app.31622
    [Google Scholar]
  109. ShuaiC. MaoZ. LuH. NieY. HuH. PengS. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering.Biofabrication20135, 015014..10.1088/1758‑5082/5/1/015014
    [Google Scholar]
  110. MuppalaneniS. OmidianH. Polyvinyl alcohol in medicine and pharmacy: A perspective.J. Dev. Drugs2013231610.4172/2329‑6631.1000112
    [Google Scholar]
  111. GajraB. Poly vinyl alcohol hydrogel and its pharmaceutical and biomedical applications: a review.Intl. J. Pharm. Res.2012422026
    [Google Scholar]
  112. MoorthyS.N. Physicochemical and functional properties of tropical tuber starches: A Review.Starke200254559592
    [Google Scholar]
  113. BuildersP.F. ArhewohM.I. Pharmaceutical applications of native starch in conventional drug delivery.Starke201668110
    [Google Scholar]
  114. RoweR.C. SheskeyP.J. OwenS.C. Handbook of pharmaceutical excipients.5th edWashington, DC, USAAmerican Pharmacists Association2003
    [Google Scholar]
  115. RoweR.C. SheskeyP.J. handbook of pharmaceutical excipients.Advantages and Applications of Nature Excipients. Asian J. Pharm. Resed v. royal pharmaceutical society of great britain london. 2006 Corn Refiners Association, Pennsylvania, Washington, D.C Shalin S,2012213039
    [Google Scholar]
  116. PatilB.S. SoodamS.R. KulkarniU. KorwarP.G. Evaluation of moringa oleifera gum as a binder in tablet formulation.Int. J. Res. Ayurveda Pharm.201012590596
    [Google Scholar]
  117. HartesiB. widodo, S.; Abdassah, M.; Chaerunisaa, A. Y. Starch as pharmaceutical excipient.Int. J. Pharm. Sci. Rev. Res.20164125964
    [Google Scholar]
  118. OdeniyiM.A. OmotesoO.A. AdepojuA.O. JaiyeobaK.T. Starch nanoparticles in drug delivery: A review.Polym. Med.2018481414510.17219/pim/99993
    [Google Scholar]
  119. XuY. DingW. LiuJ. Preparation and characterization of organic soluble acetylated starch nanocrystals.Carbohydr. Polym.2010801078108410.1016/j.carbpol.2010.01.027
    [Google Scholar]
  120. BakrudeenH.B. SudarvizhiC. ReddyB.S.R. Starch nanocrystals based hydrogel: Construction, characterizations and transdermal application.Mater. Sci. Eng. C20166888088910.1016/j.msec.2016.07.018
    [Google Scholar]
  121. MichaudJ. Starch based excipients for pharmaceutical tablets.Pharm. J.20024244
    [Google Scholar]
  122. SandeepA. SangameshwarK. MukeshG. ChandrakantR. AvinashD. A Brief overview on chitosan applications.Indo Am. J. Pharm.201312315641574
    [Google Scholar]
  123. Kushwaha SwatantraK.S. Rai AwaniK. Satyawan. S. Chitosan: A platform for targeted drug delivery.Int. J. Pharm. Tech. Res.20102422712282
    [Google Scholar]
  124. KubotaN. TatsumotoN. SanoT. ToyaK. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents.Carbohydr. Res.200032426827410.1016/S0008‑6215(99)00263‑3
    [Google Scholar]
  125. DevA. BinulalN.S. AnithaA. NairS.V. FuruikeT. TamuraH. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications.Carbohydr. Polym.201080383383810.1016/j.carbpol.2009.12.040
    [Google Scholar]
  126. FiniA. OrientiI. The role of chitosan in drug delivery.Am. J. Drug Deliv.200311435910.2165/00137696‑200301010‑00004
    [Google Scholar]
  127. TozakiH. KomoikeJ. TadaC. MaruyamaT. TerabeA. SuzukiT. YamamotoA. MuranishiS. Chitosan capsules for colon specific drug delivery: Improvement of insulin absorption from rat colo.J. Pharmceut. Sci.1997861016102110.1021/js970018g
    [Google Scholar]
  128. TozakiH. FujitaT. OdoribaT. TerabeA. SuzukiT. TanakaC. OkabeS. MuranishiS. YamamotoA. Colon, a specific delivery of R68070 new thromboxane synthase inhibitor, using chitosan capsules: Therapeutic effects against 2,4,6-trinitrobenzene sulfonic acid induced ulcerative colitis in rats.Life Sci.1999641155116210.1016/S0024‑3205(99)00044‑2
    [Google Scholar]
  129. KosarajuS.L. Colon targeted delivery systems: review of polysaccharides for encapsulation and delivery.Crit. Rev. Food Sci. Nutr.20054525125810.1080/10408690490478091
    [Google Scholar]
  130. BoltoB.A. McneillR. WeissD.E. Electronic conduction in polymers III: electronic properties of polypyrrole.Aust. J. Chem.1963161090110310.1071/CH9631090
    [Google Scholar]
  131. SadkiS. SchottlandP. BrodieN. SabouraudG. The mechanisms of pyrrole electro-polymerization.Chem. Soc. Rev.200029283293[Google Scholar]10.1039/a807124a
    [Google Scholar]
  132. WangL.X. LiX.G. YangY.L. Preparation, properties and applications of polypyrroles.React. Funct. Polym.20014712513910.1016/S1381‑5148(00)00079‑1
    [Google Scholar]
  133. FonnerJ.M. ForcinitiL. NguyenH. ByrneJ. KouY.F. Syeda-NawazJ. SchmidtC.E. Biocompatibility implications of polypyrrole synthesis techniques.Biomed. Mater.200833, 034124.10.1088/1748‑6041/3/3/034124
    [Google Scholar]
  134. JanataJ. JosowiczM. Progress Article: Conducting polymers in electronic chemical sensors.Nat. Mater.200321192410.1038/nmat768
    [Google Scholar]
  135. AlshammaryB. WalshF.C. Herrasti; P.; Ponce de Leon, C. Electrodeposited conductive polymers for controlled drug release: polypyrrole.J. Solid State Electrochem.201620839859
    [Google Scholar]
  136. KontturiK. PenttiP. SundholmG. Polypyrrole as a model membrane for drug delivery.J. Electroanal. Chem.199845323123810.1016/S0022‑0728(98)00246‑0
    [Google Scholar]
  137. Ali ShahS.A. FirlakM. BerrowS.R. HalcovitchN.R. BaldockS.J. YousafzaiB.M. HathoutR.M. HardyJ.G. electrochemically enhanced drug delivery using polypyrrole films.Materials (Basel)201811112310.3390/ma11071123
    [Google Scholar]
  138. PernautJ.M. ReynoldsJ.R. Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach.J. Phys. Chem. B20001044080409010.1021/jp994274o
    [Google Scholar]
  139. SmidsrodO. Skjak-BrækG. Alginate as immobilization matrix for cells.Trends Biotechnol.19908717810.1016/0167‑7799(90)90139‑O
    [Google Scholar]
  140. ClarkD.E. GreenH.C. Alginic acid and process of making same. 2036922 US Patent1936
  141. SutherlandI.W. Alginates.Biomaterials: novel materials frombiological sources. ByronD. New YorkStockton Press199130933110.1007/978‑1‑349‑11167‑1_7
    [Google Scholar]
  142. RemminghorstU. RehmB.H.A. Bacterial alginates: from biosynthesis to applications.Biotechnol. Lett.2006281701171210.1007/s10529‑006‑9156‑x
    [Google Scholar]
  143. TønnesenH.H. KarlsenJ. Alginate in drug delivery systems.Drug Dev. Ind. Pharm.2002286621630
    [Google Scholar]
  144. SachanN.K. PushkarS. JhaA. BhattcharyaA. Sodium alginate: the wonder polymer for controlled drug delivery.J. Pharm. Res.20092811911199
    [Google Scholar]
  145. WhiteheadL. CollettJ.H. FellJ.T. Amoxycillin release from a floating dosage form based on alginates.Int. J. Pharm.20052101-24549
    [Google Scholar]
  146. OstbergT. LundE.M. GraffnerC. Calcium alginate matrices for oral multiple unit administration. IV. Release characteristics in different media.Int. J. Pharm.1994112324124810.1016/0378‑5173(94)90360‑3
    [Google Scholar]
  147. HwangS.J. RheeG.J. LeeK.M. OhK.H. KimC.K. Release characteristics of ibuprofen from excipients-loaded alginate gel beads.Int. J. Pharm.1995116112512810.1016/0378‑5173(94)00281‑9
    [Google Scholar]
  148. ShilpaA. AgrawalS.S. RayA.R. Controlled delivery of drugs from alginate matrix. J. Macromol.Sci. Part C Polym.2003432187221
    [Google Scholar]
  149. AgrawalP. Significance of polymers in drug delivery system.J. Pharmacovigil.20143112
    [Google Scholar]
/content/journals/vat/10.2174/2666121701999201116154850
Loading
/content/journals/vat/10.2174/2666121701999201116154850
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test