Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Linn has been used as a traditional medicine to treat various ailments, including snakebite. It is found in India, Ceylon and Thailand.

The study was performed to determine the inhibiting potential of methanolic leaf extract on the pharmacological effects of Viper venom.

The dose-dependent enzymatic studies, pharmacological and studies were conducted using standard methods.

It neutralized toxic enzymes in a dose-dependent manner with concentrations ranging from 53.3 –1190.4 μg/mL, inhibited lysis of fibrinogen at 1:8 (venom: extract, w/w), and increased the procoagulant activity and lecithin lysis at 1:25 (venom: extract, w/w). The extract neutralized the LD of venom in mice and embryos, reduced haemorrhage, myotoxicity and edema induced by the venom in mice.

The observed results confirm that the leaf extract possesses adequate phytochemicals that could neutralize the toxic properties of the venom.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121701999201216144752
2021-03-01
2025-02-17
Loading full text...

Full text loading...

References

  1. KasturiratneA. WickremasingheA.R. de SilvaN. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths.PLoS Med.2008511: e218.10.1371/journal.pmed.0050218 18986210
    [Google Scholar]
  2. MohapatraB. WarrellD.A. SuraweeraW. Million Death Study CollaboratorsSnakebite mortality in India: a nationally representative mortality survey.PLoS Negl. Trop. Dis.201154: e1018.10.1371/journal.pntd.0001018 21532748
    [Google Scholar]
  3. LeongP.K. SimS.M. FungS.Y. SumanaK. SitprijaV. TanN.H. Cross neutralization of Afro-Asian cobra and Asian krait venoms by a Thai polyvalent snake antivenom (Neuro Polyvalent Snake Antivenom).PLoS Negl. Trop. Dis.201266: e1672.10.1371/journal.pntd.0001672 22679522
    [Google Scholar]
  4. LeónG. HerreraM. SeguraÁ. VillaltaM. VargasM. GutiérrezJ.M. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms.Toxicon201376637610.1016/j.toxicon.2013.09.010 24055551
    [Google Scholar]
  5. MakhijaI.K. KhamarD. Anti-snake venom properties of medicinal plants.Der Pharmacia Lettre201025399411
    [Google Scholar]
  6. SanthoshM.S. HemshekharM. SunithaK. Snake venom induced local toxicities: plant secondary metabolites as an auxiliary therapy.Mini Rev. Med. Chem.201313110612310.2174/138955713804484730 22876950
    [Google Scholar]
  7. KirtikarK.R. Indian Medicinal Plants: Lalit Mohan Basu. Allahabad, India1935
  8. HegdeK. JoshiA.B. Preliminary phytochemical screening and antipyretic activity of Carissa spinarum root extract.Der Pharmacia Lettre201023255260
    [Google Scholar]
  9. LowryO.H. RosebroughN.J. FarrA.L. RandallR.J. Protein measurement with the Folin phenol reagent.J. Biol. Chem.19511931265275 14907713
    [Google Scholar]
  10. JanardhanB. ShrikanthV.M. MirajkarK.K. MoreS.S. In vitro Anti-Snake Venom Properties of Carisssa spinarum Linn Leaf Extracts.J. Herbs Spices Med. Plants201521328329310.1080/10496475.2014.961627
    [Google Scholar]
  11. EllmanG.L. CourtneyK.D. AndresV.Jr Feather-StoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  12. BesseyO.A. LowryO.H. BrockM.J. A method for the rapid determination of alkaline phosphates with five cubic millimeters of serum.J. Biol. Chem.1946164321329 20989492
    [Google Scholar]
  13. LoT.B. ChenY.H. LeeC.Y. Chemical Studies of Formosan Cobra (Naja naja atra) Venom. Part I. Chromatographic Separation of Crude Venom on CM‐Sepadex and Preliminary Characterization of its Components.J. Chin. Chem. Soc. (Taipei)1966131253710.1002/jccs.196600004
    [Google Scholar]
  14. TanN.H. TanC.S. Acidimetric assay for phospholipase A using egg yolk suspension as substrate.Anal. Biochem.1988170228228810.1016/0003‑2697(88)90632‑X 3394929
    [Google Scholar]
  15. PukrittayakameeS. WarrellD.A. DesakornV. McMichaelA.J. WhiteN.J. BunnagD. The hyaluronidase activities of some Southeast Asian snake venoms.Toxicon198826762963710.1016/0041‑0101(88)90245‑0 3176052
    [Google Scholar]
  16. GreenbergD.M. Plant proteolytic enzymes.Methods in Enzymology.New York, USAAcademic Press Inc.1955546410.1016/S0076‑6879(55)02169‑1
    [Google Scholar]
  17. RoweM. de GastG.C. Platts-MillsT.A. AshersonG.L. WebsterA.D. JohnsonS.M. Lymphocyte 5′-nucleotidase in primary hypogammaglobulinaemia and cord blood.Clin. Exp. Immunol.1980392337343 6248281
    [Google Scholar]
  18. CondreaE. YangC.C. RosenbergP. Anticoagulant activity and plasma phosphatidylserine hydrolysis by snake venom phospholipases A2.Thromb. Haemost.198349215110.1055/s‑0038‑1657347 6868012
    [Google Scholar]
  19. OuyangC. TengC.M. Fibrinogenolytic enzymes of Trimeresurus mucrosquamatus venom. Biochimica et Biophysica Acta (BBA)-.Protein Structure1976420229830810.1016/0005‑2795(76)90321‑4
    [Google Scholar]
  20. KrishnanS.A. DileepkumarR. NairA.S. OommenO.V. Studies on neutralizing effect of Ophiorrhiza mungos root extract against Daboia russelii venom.J. Ethnopharmacol.2014151154354710.1016/j.jep.2013.11.010 24280030
    [Google Scholar]
  21. GutiérrezJ.M. AvilaC. RojasE. CerdasL. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica.Toxicon198826441141310.1016/0041‑0101(88)90010‑4 3406951
    [Google Scholar]
  22. MeierJ. TheakstonR.D. Approximate LD50 determinations of snake venoms using eight to ten experimental animals.Toxicon198624439540110.1016/0041‑0101(86)90199‑6 3715904
    [Google Scholar]
  23. VishwanathB.S. KiniR.M. GowdaT.V. Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid.Toxicon198725550151510.1016/0041‑0101(87)90286‑8 3617087
    [Google Scholar]
  24. KondoH. KondoS. IkezawaH. MurataR. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom.Jpn. J. Med. Sci. Biol.1960131-2435210.7883/yoken1952.13.43 13853435
    [Google Scholar]
  25. GutiérrezJ.M. ArceV. BrenesF. ChavesF. Changes in myofibrillar components after skeletal muscle necrosis induced by a myotoxin isolated from the venom of the snake Bothrops asper.Exp. Mol. Pathol.1990521253610.1016/0014‑4800(90)90055‑I 2307211
    [Google Scholar]
  26. DunnB.E. BooneM.A. Growth of the chick embryo in vitro.Poult. Sci.19765531067107110.3382/ps.0551067 935040
    [Google Scholar]
  27. SellsP.G. RichardsA.M. LaingG.D. TheakstonR.D. The use of hens’ eggs as an alternative to the conventional in vivo rodent assay for antidotes to haemorrhagic venoms.Toxicon19973591413142110.1016/S0041‑0101(97)00022‑6 9403964
    [Google Scholar]
  28. SoaresA.M. TicliF.K. MarcussiS. Medicinal plants with inhibitory properties against snake venoms.Curr. Med. Chem.200512222625264110.2174/092986705774370655 16248818
    [Google Scholar]
  29. AirdS.D. Ophidian envenomation strategies and the role of purines.Toxicon200240433539310.1016/S0041‑0101(01)00232‑X 11738231
    [Google Scholar]
  30. GirishK.S. ShashidharamurthyR. NagarajuS. GowdaT.V. KemparajuK. Isolation and characterization of hyaluronidase a “spreading factor” from Indian cobra (Naja naja) venom.Biochimie200486319320210.1016/j.biochi.2004.02.004 15134834
    [Google Scholar]
  31. KiniRM EvansHJ Effects of phospholipase A2 enzymes on platelet aggregation.Venom phospholipase A 1997236987
    [Google Scholar]
  32. BiondoR. PereiraA.M. MarcussiS. PereiraP.S. FrançaS.C. SoaresA.M. Inhibition of enzymatic and pharmacological activities of some snake venoms and toxins by Mandevilla velutina (Apocynaceae) aqueous extract.Biochimie200385101017102510.1016/S0300‑9084(03)00138‑X 14644557
    [Google Scholar]
  33. MarklandF.S. Snake venoms and the hemostatic system.Toxicon199836121749180010.1016/S0041‑0101(98)00126‑3 9839663
    [Google Scholar]
  34. DhananjayaB.L. ZameerF. GirishK.S. D’SouzaC.J. Anti-venom potential of aqueous extract of stem bark of Mangifera indica L. against Daboia russellii (Russell’s viper) venom.Indian J. Biochem. Biophys.2011483175183 21793309
    [Google Scholar]
  35. GomesA. BhattacharyaS. MukherjeeS. GomesA. Inn-ho-Tsai. Inhibition of toxic actions of phospholipase A2 isolated & characterized from the Indian Banded Krait (Bungarus fasciatus) venom by synthetic herbal compounds.Indian J. Med. Res.201213614045 22885262
    [Google Scholar]
  36. GutiérrezJ.M. RucavadoA. EscalanteT. DíazC. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage.Toxicon2005458997101110.1016/j.toxicon.2005.02.029 15922771
    [Google Scholar]
  37. GutiérrezJ.M. OwnbyC.L. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity.Toxicon200342891593110.1016/j.toxicon.2003.11.005 15019491
    [Google Scholar]
/content/journals/vat/10.2174/2666121701999201216144752
Loading
/content/journals/vat/10.2174/2666121701999201216144752
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Carissa spinarum Linn; fibrinogenolysis; haemorrhage; In vivo; snake bite; Vipera russelli
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test