Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

A diversity of marine invertebrates, such as cnidarians are rich sources of large bio-active molecules. This chemo-diversity of bio-active compounds has a promising potential in several biotechnological and therapeutic applications. On the basis of a comparative bibliographic approach, we intend in this review to present and discuss an overview of: i) the diversity of marine invertebrates as a candidate for bio-active molecules production; ii) the diversity of bio-active compounds and venom derived from these organisms; iii) the relationship between, the diversity of these marine organisms and the structure of the toxins they secrete. In this bibliographic study, a focus is going to be made on protein neurotoxins targeting ion channels. We also discuss the potential link between the bioecological characteristics of cnidarians and the diversity of toxins.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121701666211124154216
2022-04-01
2025-01-19
Loading full text...

Full text loading...

References

  1. MalakoffD. Extinction on the High Seas.Science (80-)1997277532510.1126/science.277.5325.486
    [Google Scholar]
  2. BoeufG. Marine biodiversity characteristics.C.R. Biol.20113345-643544010.1016/j.crvi.2011.02.00921640952
    [Google Scholar]
  3. KhalifaS.A.M. EliasN. FaragM. Marine natural products: A source of novel anticancer drugs.Mar Drugs201917949110.3390/md17090491
    [Google Scholar]
  4. NewmanD.J. CraggG.M. Drugs and drug candidates from marine sources: An assessment of the current “State of Play”.Planta Med.2016829-1077578910.1055/s‑0042‑10135326891002
    [Google Scholar]
  5. HansonE. HouseM.R. The origin of major invertebrate groups.Syst. Zool.19813010010410.2307/2992311
    [Google Scholar]
  6. TurkT. KemW.R. The phylum Cnidaria and investigations of its toxins and venoms until 1990.Toxicon20095481031103710.1016/j.toxicon.2009.06.03119576920
    [Google Scholar]
  7. Cnidarians.Available from: http://vividscience.org/index.php/animals/how-long-has-it-been-here/knowledge/cnidarians/
  8. FAO. The living marine resources of the Western Central Pacific. In: Carpenter, K.E.; Niem, V.H., Eds.; Seaweeds, corals, bivalves and gastropods; Rome, 1998; pp. 1-686.
  9. GeigerD. Marine gasteropoda.The mollusks: a guide to their study, collection, and preservation SturmC.F. PearceT.A. ValdesA. American malacological society2006295311
    [Google Scholar]
  10. NybakkenJ.W. Marine biology, an ecological approach.5th ed CummingsB. San Francisco2001
    [Google Scholar]
  11. Kissclipart.Available from: https://www.kissclipart.com/marine- gastropods-clipart-gastropods-seashell-shel-afcaxv/
  12. LiaoQ. FengY. YangB. LeeS.M.Y. Cnidarian peptide neurotoxins: A new source of various ion channel modulators or blockers against central nervous systems disease.Drug Discov. Today201924118919710.1016/j.drudis.2018.08.01130165198
    [Google Scholar]
  13. SunZ. BaoJ. ZhangsunM. DongS. ZhangsunD. LuoS. AO- conotoxin GexIVa inhibits the growth of breast cancer cells via interaction with α9 nicotine acetylcholine receptors.Mar. Drugs2020184E19510.3390/md1804019532272701
    [Google Scholar]
  14. SchroederC.I. LewisR.J. ω-conotoxins GVIA, MVIIA and CVID: SAR and clinical potential.Mar. Drugs20064319321410.3390/md403193
    [Google Scholar]
  15. JouiaeiM CasewellN.R YanagiharaA.A NouwensA CribbB.W WhiteheadD JacksonT.N AliS.A WagstaffS.C KoludarovI AlewoodP HansenJ FryB.G. Firing the sting: chemically induced discharge of cnidae reveals novel proteins and peptides from box jellyfish (Chironex fleckeri) venom.Toxins (Base l)20157393695010.3390/toxins7030936
    [Google Scholar]
  16. Vianna BragaM.C. KonnoK. PortaroF.C. de FreitasJ.C. YamaneT. OliveraB.M. PimentaD.C. Mass spectrometric and high performance liquid chromatography profiling of the venom of the Brazilian vermivorous mollusk Conus regius: feeding behavior and identification of one novel conotoxin.Toxicon200545111312210.1016/j.toxicon.2004.09.01815581690
    [Google Scholar]
  17. FavreauP. StöcklinR. Marine snail venoms: Use and trends in receptor and channel neuropharmacology.Curr. Opin. Pharmacol.20099559460110.1016/j.coph.2009.05.00619540804
    [Google Scholar]
  18. ReimersC. LeeC.H. KalbacherH. TianY. HungC.H. SchmidtA. ProkopL. KaufersteinS. MebsD. ChenC.C. GründerS. Identification of a cono-RFamide from the venom of Conus textile that targets ASIC3 and enhances muscle pain.Proc. Natl. Acad. Sci. USA201711417E3507E351510.1073/pnas.161623211428396446
    [Google Scholar]
  19. Jaimes-BecerraA. GacesaR. DoonanL.B. HartiganA. MarquesA.C. OkamuraB. LongP.F. “Beyond Primary Sequence”-proteomic data reveal complex toxins in cnidarian venoms.Integr. Comp. Biol.201959477778510.1093/icb/icz10631225595
    [Google Scholar]
  20. D’AmbraI. LauritanoC. A Review of toxins from cnidaria.Mar. Drugs20201810E50710.3390/md1810050733036158
    [Google Scholar]
  21. Finol-UrdanetaR.K. BelovanovicA. Micic-VicovacM. KinsellaG.K. McArthurJ.R. Al-SabiA. Marine toxins targeting KV1 channels: Pharmacological tools and therapeutic scaffolds.Mar. Drugs2020183E17310.3390/md1803017332245015
    [Google Scholar]
  22. MadioB. KingG.F. UndheimE.A.B. Sea anemone toxins: A structural overview.Mar. Drugs201917632510.3390/md1706032531159357
    [Google Scholar]
  23. MariottiniG.L. PaneL. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications.Toxins (Basel)20136110815110.3390/toxins601010824379089
    [Google Scholar]
  24. Monroy-EstradaH.I. ChirinoY.I. Soria-MercadoI.E. Sánchez-RodríguezJ. Toxins from the Caribbean sea anemone Bunodeopsis globulifera increase cisplatin-induced cytotoxicity of lung adenocarcinoma cells.J. Venom. Anim. Toxins Incl. Trop. Dis.20131911210.1186/1678‑9199‑19‑1224499018
    [Google Scholar]
  25. GaoB. PengC. YangJ. YiY. ZhangJ. ShiQ. Cone snails: A big store of conotoxins for novel drug discovery.Toxins (Basel)2017912E39710.3390/toxins912039729215605
    [Google Scholar]
  26. Available from: www.york.ac.uk
  27. RobinsonS.D. NortonR.S. Conotoxin gene superfamilies.Mar. Drugs201412126058610110.3390/md1212605825522317
    [Google Scholar]
  28. LewisR.J. Conotoxins as selective inhibitors of neuronal ion channels, receptors and transporters.IUBMB Life2004562899310.1080/1521654041000166805515085932
    [Google Scholar]
  29. DalyN.L. CraikD.J. Structural studies of conotoxins.IUBMB Life200961214415010.1002/iub.15819165896
    [Google Scholar]
  30. BraudS. BelinP. DassaJ. PardoL. MourierG. CaruanaA. PriestB.T. DulskiP. GarciaM.L. MénezA. BoulainJ.C. GaspariniS. BgK, a disulfide-containing sea anemone toxin blocking K+ channels, can be produced in Escherichia coli cytoplasm as a functional tagged protein.Protein Expr. Purif.2004381697810.1016/j.pep.2004.07.01115477084
    [Google Scholar]
  31. Alessandri-HaberN. PaillartC. ArsacC. GolaM. CouraudF. CrestM. Specific distribution of sodium channels in axons of rat embryo spinal motoneurones.J. Physiol.1999518Pt 120321410.1111/j.1469‑7793.1999.0203r.x10373702
    [Google Scholar]
  32. RauerH. PenningtonM. CahalanM. ChandyK.G. Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin.J. Biol. Chem.199927431218852189210.1074/jbc.274.31.2188510419508
    [Google Scholar]
  33. MoreelsL. PeigneurS. GalanD.T. De PauwE. BéressL. WaelkensE. PardoL.A. QuintonL. TytgatJ. APETx4, a novel sea anemone toxin and a modulator of the cancer-relevant Potassium channel Kv10.1.Mar. Drugs201715928710.3390/md1509028728902151
    [Google Scholar]
  34. OrtsB. D. J; Peigneur, S; Silva-Gonçalves, L.C; Arcisio-Miranda, M; J. E; Bicudo, J.E; Tytgat, J.AbeTx1 is a novel sea anemone toxin with a dual mechanism of action on shaker-type K+ channels activation.Mar. Drugs2018161036010.3390/md16100360
    [Google Scholar]
  35. SalcedaE. LópezO. ZaharenkoA.J. GarateixA. SotoE. The sea anemone Bunodosoma caissarum toxin BcIII modulates the sodium current kinetics of rat dorsal root ganglia neurons and is displaced in a voltage-dependent manner.Peptides201031341241810.1016/j.peptides.2009.12.00520015459
    [Google Scholar]
  36. DiochotS. BaronA. RashL.D. DevalE. EscoubasP. ScarzelloS. SalinasM. LazdunskiM. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons.EMBO J.20042371516152510.1038/sj.emboj.760017715044953
    [Google Scholar]
  37. HimayaS.W JinA.H DutertreS GiacomottoJ MohialdeenH VetterI AlewoodP.F LewisR.J. Comparative venomics reveals the complex prey capture strategy of the piscivorous cone snail Conus catus.J. Proteome Res.201514104372478110.1021/acs.jproteome.5b00630
    [Google Scholar]
  38. OliveraB.M. SegerJ. HorvathM.P. FedosovA.E. Prey-capture strategies of fish-hunting cone snails: Behavior, neurobiology and evolution.Brain Behav. Evol.2015861587410.1159/00043844926397110
    [Google Scholar]
/content/journals/vat/10.2174/2666121701666211124154216
Loading
/content/journals/vat/10.2174/2666121701666211124154216
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cnidarians; diversity; ion channels; marine gastropods; toxins; venoms
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test