Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Andrographolide (AP), a bioactive anti-inflammatory compound of Sambiloto, inhibits NF-κB, TNF-α, and interleukin IL-6. Nowadays, molecular docking simulation between AP and dexamethasone against NF-κB receptor presented the energy AP higher than dexamethasone. This becomes a potential treatment for psoriasis.

This manuscript reported the effectiveness of AP from Sambiloto in treating psoriasis compared to topical steroids.

This study conducted TLC analysis of AP content and its metabolite impurities, emulgel formulation, molecular docking, skin toxicity study, and anti-psoriatic activity. This was a combination study of an study and an study. This study was analyzed through multivariate statistical analysis (PCA) to elucidate the data constellation relationship of andrographolide derivatives with several target proteins. The intervention was performed in seven days. The PASI score, molecular parameters (IL-6, IL-17, VEGF, and TNF-a levels), and histopathological findings were assessed.

Molecular docking results revealed andrographolide to exhibit a relatively high binding affinity towards IL-6, NF-kB, and TNF-α which is comparable to the corticosteroids, andrographolide also shares similar residue interaction profile with each of the respective protein’s native ligand. In the study, we found several parameters statistically significantly different regarding the intervention, including final PASI score ( = 0.017), redness ( = 0.017), scale ( = 0.040), thickness ( = 0.023), total histopathology of psoriasis score ( = 0.037), keratin layer score ( = 0.018).

Emulgel AP 0.1% could lower the anti-inflammatory agent, which is vital to psoriasis progression.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708296983240424102212
2024-05-06
2025-05-14
The full text of this item is not currently available.

References

  1. DharmasamithaI. WarditianiN.K. RusyatiL.M. Systematic review: andrographolide as a potential Anti-inflammatory treatment for psoriasis.Bali Medi. J.20231211871192
    [Google Scholar]
  2. ShaoF. TanT. TanY. SunY. WuX. XuQ. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88.Biochem. Pharmacol.20161159410310.1016/j.bcp.2016.06.00127265145
    [Google Scholar]
  3. JindalS. AwasthiR. SingareD. KulkarniG.T. Isolation, characterization and evaluation of anti-proliferative properties of andrographolide isolated from Andrographis paniculata on cultured HaCaT cells.Herba Pol.2021671354510.2478/hepo‑2021‑0002
    [Google Scholar]
  4. WarditianiNK MadeP SariNA Molecular pharmacology study of andrographolide extracted from andrographis paniculata on atherosclerosis preventive effect.SRP202011920120610.31838/srp.2020.9.33
    [Google Scholar]
  5. NitiyosoN. Pilihan pengobatan sistemik pada psoriasis.Cermin Dunia Kedokteran202249316416910.55175/cdk.v49i3.213
    [Google Scholar]
  6. ChamoliM. VarshneyV.K. SrivastavaP.K. PandeyR. DayalR. TLC-densitometric evaluation of three major bioactive diterpene lactones in andrographis paniculata intercropped with Morus alba.J. Liq. Chromatogr. Relat. Technol.201437162258227410.1080/10826076.2013.830268
    [Google Scholar]
  7. GriffithsC.E.M. ArmstrongA.W. GudjonssonJ.E. BarkerJ.N.W.N. Psoriasis.Lancet2021397102811301131510.1016/S0140‑6736(20)32549‑633812489
    [Google Scholar]
  8. NairP.A. BadriT. Psoriasis. StatPearls202328846344
    [Google Scholar]
  9. RendonA. SchäkelK. Psoriasis pathogenesis and treatment.Int. J. Mol. Sci.2019206147510.3390/ijms2006147530909615
    [Google Scholar]
  10. McCormickT Ayala-FontanezN SolerD Current knowledge on psoriasis and autoimmune diseases.Psoriasis: Targ. Ther.20167
    [Google Scholar]
  11. ZhouX. ChenY. CuiL. ShiY. GuoC. Advances in the pathogenesis of psoriasis: From keratinocyte perspective.Cell Death Dis.20221318110.1038/s41419‑022‑04523‑335075118
    [Google Scholar]
  12. GrebJ.E. GoldminzA.M. ElderJ.T. LebwohlM.G. GladmanD.D. WuJ.J. MehtaN.N. FinlayA.Y. GottliebA.B. Psoriasis.Nat. Rev. Dis. Primers2016211608210.1038/nrdp.2016.8227883001
    [Google Scholar]
  13. NickoloffB.J. QinJ.Z. NestleF.O. Immunopathogenesis of psoriasis.Clin. Rev. Allergy Immunol.2007331-2455610.1007/s12016‑007‑0039‑218094946
    [Google Scholar]
  14. HardenJ.L. KruegerJ.G. BowcockA.M. The immunogenetics of Psoriasis: A comprehensive review.J. Autoimmun.201564667310.1016/j.jaut.2015.07.00826215033
    [Google Scholar]
  15. RabeonyH. PohinM. VasseurP. Petit-ParisI. JégouJ.F. FavotL. FrouinE. BoutetM.A. BlanchardF. TogbeD. RyffelB. BernardF.X. LecronJ.C. MorelF. IMQ-induced skin inflammation in mice is dependent on IL-1R1 and MyD88 signaling but independent of the NLRP3 inflammasome.Eur. J. Immunol.201545102847285710.1002/eji.20144521526147228
    [Google Scholar]
  16. BoehnckeW.H. Etiology and pathogenesis of psoriasis.Rheum. Dis. Clin. North Am.201541466567510.1016/j.rdc.2015.07.01326476225
    [Google Scholar]
  17. SchönM.P. Adaptive and innate immunity in psoriasis and other inflammatory disorders.Front. Immunol.201910176410.3389/fimmu.2019.0176431402919
    [Google Scholar]
  18. DhabaleA. NagpureS. Types of psoriasis and their effects on the immune system.Cureus2022149e2953610.7759/cureus.2953636312680
    [Google Scholar]
  19. LowesM.A. Suárez-FariñasM. KruegerJ.G. Immunology of psoriasis.Annu. Rev. Immunol.201432122725510.1146/annurev‑immunol‑032713‑12022524655295
    [Google Scholar]
  20. BannoT. GazelA. BlumenbergM. Effects of tumor necrosis factor-α (TNF α) in epidermal keratinocytes revealed using global transcriptional profiling.J. Biol. Chem.200427931326333264210.1074/jbc.M40064220015145954
    [Google Scholar]
  21. JangD. LeeA.H. ShinH.Y. SongH.R. ParkJ.H. KangT.B. LeeS.R. YangS.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics.Int. J. Mol. Sci.2021225271910.3390/ijms2205271933800290
    [Google Scholar]
  22. SatoK. TakaishiM. TokuokaS. SanoS. Involvement of TNF-α converting enzyme in the development of psoriasis-like lesions in a mouse model.PLoS One2014911e11240810.1371/journal.pone.011240825384035
    [Google Scholar]
  23. GuptaS. MishraK.P. KumarB. SinghS.B. GanjuL. Andrographolide attenuates complete freund’s adjuvant induced arthritis via suppression of inflammatory mediators and pro-inflammatory cytokines.J. Ethnopharmacol.202026111302210.1016/j.jep.2020.11302232569719
    [Google Scholar]
  24. MitraA. FallenR.S. LimaH.C. Cytokine-based therapy in psoriasis.Clin. Rev. Allergy Immunol.201344217318210.1007/s12016‑012‑8306‑222426927
    [Google Scholar]
  25. Johnson-HuangL.M. LowesM.A. KruegerJ.G. Putting together the psoriasis puzzle: An update on developing targeted therapies.Dis. Model. Mech.20125442343310.1242/dmm.00909222730473
    [Google Scholar]
  26. KoppT. RiedlE. BangertC. BowmanE.P. GreiseneggerE. HorowitzA. KittlerH. BlumenscheinW.M. McClanahanT.K. MarburyT. ZachariaeC. XuD. HouX.S. MehtaA. ZandvlietA.S. MontgomeryD. van AarleF. KhaliliehS. Clinical improvement in psoriasis with specific targeting of interleukin-23.Nature2015521755122222610.1038/nature1417525754330
    [Google Scholar]
  27. GirolomoniG. StrohalR. PuigL. BachelezH. BarkerJ. BoehnckeW.H. PrinzJ.C. The role of IL-23 and the IL-23/ T H 17 immune axis in the pathogenesis and treatment of psoriasis.J. Eur. Acad. Dermatol. Venereol.201731101616162610.1111/jdv.1443328653490
    [Google Scholar]
  28. CaiY. XueF. QuanC. QuM. LiuN. ZhangY. FlemingC. HuX. ZhangH. WeichselbaumR. FuY. TieriD. RouchkaE.C. ZhengJ. YanJ. A critical role of the IL-1β–IL-1R signaling pathway in skin inflammation and psoriasis pathogenesis.J. Invest. Dermatol.2019139114615610.1016/j.jid.2018.07.02530120937
    [Google Scholar]
  29. GränF. KerstanA. SerflingE. GoebelerM. MuhammadK. Current developments in the immunology of psoriasis.Yale J. Biol. Med.20209319711032226340
    [Google Scholar]
  30. MoscaM. HongJ. HadelerE. HakimiM. LiaoW. BhutaniT. The Role of IL-17 cytokines in psoriasis.ImmunoTargets Ther.20211040941810.2147/ITT.S24089134853779
    [Google Scholar]
  31. EgebergA. GisondiP. CarrascosaJ.M. WarrenR.B. MrowietzU. The role of the interleukin-23/Th17 pathway in cardiometabolic comorbidity associated with psoriasis.J. Eur. Acad. Dermatol. Venereol.20203481695170610.1111/jdv.1627332022950
    [Google Scholar]
  32. SchülerR. BrandA. KlebowS. WildJ. VerasF.P. UllmannE. RoohaniS. KolbingerF. KossmannS. WohnC. DaiberA. MünzelT. WenzelP. WaismanA. ClausenB.E. KarbachS. Antagonization of IL-17A attenuates skin inflammation and vascular dysfunction in mouse models of psoriasis.J. Invest. Dermatol.2019139363864710.1016/j.jid.2018.09.02130367871
    [Google Scholar]
  33. KarbachS. CroxfordA.L. OelzeM. SchülerR. MinwegenD. WegnerJ. KoukesL. YogevN. NikolaevA. ReißigS. UllmannA. KnorrM. WaldnerM. NeurathM.F. LiH. WuZ. BrochhausenC. SchellerJ. Rose-JohnS. PiotrowskiC. BechmannI. RadsakM. WildP. DaiberA. von StebutE. WenzelP. WaismanA. MünzelT. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease.Arterioscler. Thromb. Vasc. Biol.201434122658266810.1161/ATVBAHA.114.30410825341795
    [Google Scholar]
  34. GrebJE GoldminzAM ElderJT Psoriasis.Nat. Revi. Dis. Prim.20162117
    [Google Scholar]
  35. KumarD. RajguruJ.P. MayaD. SuriP. BhardwajS. PatelN. Update on psoriasis: A review.J. Family Med. Prim. Care202091202410.4103/jfmpc.jfmpc_689_1932110559
    [Google Scholar]
  36. RaharjaA. MahilS.K. BarkerJ.N. Psoriasis: a brief overview.Clin. Med.202121317017310.7861/clinmed.2021‑025734001566
    [Google Scholar]
  37. ArmstrongA.W. ReadC. Pathophysiology, clinical presentation, and treatment of psoriasis.JAMA2020323191945196010.1001/jama.2020.400632427307
    [Google Scholar]
  38. ShenY.C. ChenC.F. ChiouW.F. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect.Br. J. Pharmacol.2002135239940610.1038/sj.bjp.070449311815375
    [Google Scholar]
  39. VetvickaV. VannucciL. Biological properties of andrographolide, an active ingredient of Andrographis Paniculata: a narrative review.Ann. Transl. Med.20219141186118610.21037/atm‑20‑783034430627
    [Google Scholar]
  40. KumarG. SinghD. TaliJ.A. DheerD. ShankarR. Andrographolide: Chemical modification and its effect on biological activities.Bioorg. Chem.20209510351110.1016/j.bioorg.2019.10351131884143
    [Google Scholar]
  41. YanY. FangL-H. DuG-H. Andrographolide.Natural small molecule drugs from plants.SingaporeSpringer Singapore201835736210.1007/978‑981‑10‑8022‑7_60
    [Google Scholar]
  42. ZhuT. WangD. ZhangW. LiaoX. GuanX. BoH. SunJ. HuangN. HeJ. ZhangY. TongJ. LiC. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB.PLoS One201382e5640710.1371/journal.pone.005640723437127
    [Google Scholar]
  43. ZhaiZ.J. LiH.W. LiuG.W. QuX.H. TianB. YanW. LinZ. TangT.T. QinA. DaiK.R. Andrographolide suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo.Br. J. Pharmacol.2014171366367510.1111/bph.1246324125472
    [Google Scholar]
  44. WatanabeA. KamataM. ShimizuT. UchidaH. SakuraiE. SuzukiS. NakajimaH. NiimuraY. ItoM. EgawaS. NagataM. FukayaS. HayashiK. FukuyasuA. TanakaT. IshikawaT. TadaY. Serum levels of angiogenesis-related factors in patients with psoriasis.J. Dermatol.202350222222810.1111/1346‑8138.1658836120723
    [Google Scholar]
  45. FlisiakI. ZaniewskiP. RogalskaM. MyśliwiecH. JaroszewiczJ. ChodynickaB. Effect of psoriasis activity on VEGF and its soluble receptors concentrations in serum and plaque scales.Cytokine201052322522910.1016/j.cyto.2010.09.01220980160
    [Google Scholar]
  46. NielsenH.J. ChristensenI.J. SvendsenM.N. HansenU. WertherK. BrünnerN. PetersenL.J. KristensenJ.K. Elevated plasma levels of vascular endothelial growth factor and plasminogen activator inhibitor-1 decrease during improvement of psoriasis.Inflamm. Res.2002511156356710.1007/PL0001242812540021
    [Google Scholar]
  47. MarinaM.E. RomanI.I. ConstantinA-M. MihuC.M. TătaruA.D. VEGF involvement in psoriasis.Clujul Med.201588324725226609252
    [Google Scholar]
  48. AnggraeniS. The role of vascular endothelial growth factor as a potential therapy of psoriasis vulgaris: A literature review.J. Pakistan Assoc. Dermatolo.2023334
    [Google Scholar]
  49. BurgosR.A. AlarcónP. QuirogaJ. ManosalvaC. HanckeJ. Andrographolide, an anti-inflammatory multitarget drug: all roads lead to cellular metabolism.Molecules2020261510.3390/molecules2601000533374961
    [Google Scholar]
  50. LiX. YuanW. WuJ. ZhenJ. SunQ. YuM. Andrographolide, a natural anti-inflammatory agent: An Update.Front. Pharmacol.20221392043510.3389/fphar.2022.92043536238575
    [Google Scholar]
  51. CaiQ. ZhangW. SunY. XuL. WangM. WangX. WangS. NiZ. Study on the mechanism of andrographolide activation.Front. Neurosci.20221697737610.3389/fnins.2022.97737636177361
    [Google Scholar]
  52. Abu-GhefrehA.A. CanatanH. EzeamuzieC.I. In vitro and in vivo anti-inflammatory effects of andrographolide.Int. Immunopharmacol.20099331331810.1016/j.intimp.2008.12.00219110075
    [Google Scholar]
  53. TarachandS.P. ThirumoorthyG. LakshmaiahV.V. NagellaP. In silico molecular docking study of Andrographis paniculata phytochemicals against TNF-α as a potent anti-rheumatoid drug.J. Biomol. Struct. Dyn.20234172687269710.1080/07391102.2022.203746335147481
    [Google Scholar]
  54. MenéndezC.A. AccordinoS.R. GerbinoD.C. AppignanesiG.A. Hydrogen bond dynamic propensity studies for protein binding and drug design.PLoS One20161110e0165767Epub ahead of print10.1371/journal.pone.016576727792778
    [Google Scholar]
  55. KennyP.W. Hydrogen-bond donors in drug design.J. Med. Chem.20226521142611427510.1021/acs.jmedchem.2c0114736282210
    [Google Scholar]
  56. ShuJ. HuangR. TianY. LiuY. ZhuR. ShiG. Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways.Ann. Palliat. Med.2020941965197510.21037/apm‑20‑960
    [Google Scholar]
  57. ShiS. JiX. ShiJ. ShiS. SheF. ZhangQ. DongY. CuiH. HuY. Andrographolide in atherosclerosis: integrating network pharmacology and in vitro pharmacological evaluation.Biosci. Rep.2022427BSR2021281210.1042/BSR2021281235543243
    [Google Scholar]
  58. Al BatranR Al-BayatyF Jamil Al-ObaidiMM Evaluation of the effect of andrographolide on atherosclerotic rabbits induced by porphyromonas gingivalis.Biomed Res Int201410.1155/2014/724718
    [Google Scholar]
  59. LasaM. AbrahamS.M. BoucheronC. SaklatvalaJ. ClarkA.R. Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38.Mol. Cell. Biol.200222227802781110.1128/MCB.22.22.7802‑7811.200212391149
    [Google Scholar]
  60. RamamoorthyS. CidlowskiJ.A. Corticosteroids.Rheum. Dis. Clin. North Am.20164211531, vii10.1016/j.rdc.2015.08.00226611548
    [Google Scholar]
  61. ShahS. KingE.M. ChandrasekharA. NewtonR. Roles for the mitogen-activated protein kinase (MAPK) phosphatase, DUSP1, in feedback control of inflammatory gene expression and repression by dexamethasone.J. Biol. Chem.201428919136671367910.1074/jbc.M113.54079924692548
    [Google Scholar]
  62. BienS. Bartusik-AebisherD. AebisherD. Corticosteroids.The Biochemical Guide to Hormones20233337
    [Google Scholar]
  63. RosmarwatiE MuliantoN FebriantoB Comparison of psoriasis area and severity index (PASI) scores in patients treated with oral methotrexate and a combination of oral methotrexate and narrow band-ultraviolet B (NB-UVB) phototherapy.Berkala Ilmu Kesehatan Kulit dan Kelamin202234169173
    [Google Scholar]
  64. WarditianiN.K. SariP.M.N.A. RamonaY. Molecular pharmacology study of andrographolide extracted from andrographis paniculata on atherosclerosis preventive effect.Systematic Reviews in Pharmacy202011201206
    [Google Scholar]
  65. NugrohoA. WarditianiN.K. PramonoS. AndrieM. SiswantoE. LukitaningsihE. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats.Indian J. Pharmacol.201244337738110.4103/0253‑7613.9634322701250
    [Google Scholar]
  66. Di MeglioP. VillanovaF. NestleF.O. Psoriasis.Cold Spring Harb. Perspect. Med.201448a015354a01535410.1101/cshperspect.a01535425085957
    [Google Scholar]
  67. De RosaG. MignognaC. The histopathology of psoriasis.Reumatismo2011591sSuppl. 1464810.4081/reumatismo.2007.1s.4617828343
    [Google Scholar]
  68. KimB.Y. ChoiJ.W. KimB.R. YounS.W. Histopathological findings are associated with the clinical types of psoriasis but not with the corresponding lesional psoriasis severity index.Ann. Dermatol.2015271263110.5021/ad.2015.27.1.2625673928
    [Google Scholar]
  69. ZhangS. WangJ. LiuL. SunX. ZhouY. ChenS. LuY. CaiX. HuM. YanG. MiaoX. LiX. Efficacy and safety of curcumin in psoriasis: preclinical and clinical evidence and possible mechanisms.Front. Pharmacol.20221390316010.3389/fphar.2022.90316036120325
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708296983240424102212
Loading
/content/journals/raiad/10.2174/0127722708296983240424102212
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test