Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Alopecia is defined by a loss of hair density and is often considered a symptom of multiple illnesses, such as infection and inflammation.

The molecular mechanisms underlying the hair-promoting effects include inhibition of 5α-reductase activity, reducing the binding affinity of Dihydrotestosterone (DHT) to androgen receptors, and decreasing/down-regulating TGF-β2 activity, which have a suggestive role in androgenetic alopecia. Finasteride and minoxidil are the approved non-surgical treatment alternatives for hair loss, but they cause side effects in patients. Therefore, bioactive phytoconstituents with multiple targets can be used to find novel, secure, and efficacious hair-promoting medicinal products.

This study has carried out the evaluation of berberine using various software. To find possible interactions between the 5α-reductase enzyme and Transforming Growth Factor-beta 2 (TGF-β2), a critical protein involved in the human hair development cycle, computer-aided drug discovery was employed.

According to studies, berberine has been found to bind well to the 4K7a and 6M2N binding sites. The drug has been found to adhere to Lipinski's rule of five, and its pharmacokinetic characteristics were noteworthy. Drug-likeness and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties showed appreciable results. Furthermore, berberine showed docking scores of -8.4 (5α-reductase) and -7.1 (TGF-β2), which were significantly better than minoxidil (-4.8, -3.2). In general, the drug exhibited improved binding interactions, and the possible toxicity investigations provided very little basis for risk prediction.

The current protocol has offered experimental support for berberine's possible therapeutic use in reducing male pattern baldness. Therefore, it can be a possible target for the therapy of androgenetic alopecia through the regulation of TGF-β2 and 5α-reductase activity.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708307894240624105514
2024-07-05
2025-05-05
Loading full text...

Full text loading...

References

  1. KumarN. RungseevijitprapaW. NarkkhongN.A. SuttajitM. ChaiyasutC. 5α-reductase inhibition and hair growth promotion of some Thai plants traditionally used for hair treatment.J. Ethnopharmacol.2012139376577110.1016/j.jep.2011.12.01022178180
    [Google Scholar]
  2. RossiA. AnzaloneA. FortunaM.C. CaroG. GarelliV. PrantedaG. CarlesimoM. Multi-therapies in androgenetic alopecia: Review and clinical experiences.Dermatol. Ther.201629642443210.1111/dth.1239027424565
    [Google Scholar]
  3. AhnS.Y. PiL.Q. HwangS.T. LeeW.S. Effect of IGF-I on hair growth is related to the anti-apoptotic effect of IGF-I and up-regulation of PDGF-A and PDGF-B.Ann. Dermatol.2012241263110.5021/ad.2012.24.1.2622363152
    [Google Scholar]
  4. EllisJ.A. SinclairR. HarrapS.B. Androgenetic alopecia: Pathogenesis and potential for therapy.Expert Rev. Mol. Med.200242211110.1017/S146239940200511214585162
    [Google Scholar]
  5. EllisJ.A. SinclairR.D. Male pattern baldness: Current treatments, future prospects.Drug Discov. Today20081317-1879179710.1016/j.drudis.2008.05.01018617016
    [Google Scholar]
  6. NaitoA. MidorikawaT. YoshinoT. OhderaM. Lipid peroxides induce early onset of catagen phase in murine hair cycles.Int. J. Mol. Med.200822672572910.3892/IJMM_00000078/HTML19020769
    [Google Scholar]
  7. Urysiak-CzubatkaI. KmiećM.L. Broniarczyk-DyłaG. Assessment of the usefulness of dihydrotestosterone in the diagnostics of patients with androgenetic alopecia.Postepy Dermatol. Alergol.20144420721510.5114/pdia.2014.4092525254005
    [Google Scholar]
  8. BankaN. BunaganM.J.K. ShapiroJ. Pattern hair loss in men: Diagnosis and medical treatment.Dermatol. Clin.201331112914010.1016/j.det.2012.08.00323159182
    [Google Scholar]
  9. HanJ.H. KwonO.S. ChungJ.H. ChoK.H. EunH.C. KimK.H. Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle.J. Dermatol. Sci.2004342919810.1016/j.jdermsci.2004.01.00215033191
    [Google Scholar]
  10. LibeccoJ.F. BergfeldW.F. Finasteride in the treatment of alopecia.Expert Opin. Pharmacother.20045493394010.1517/14656566.5.4.93315102575
    [Google Scholar]
  11. KaufmanK.D. DawberR.P. Finasteride, a type 2 5α-reductase inhibitor, in the treatment of men with androgenetic alopecia.Expert Opin. Investig. Drugs19998440341510.1517/13543784.8.4.40315992088
    [Google Scholar]
  12. MysoreV. ShashikumarB.M. Guidelines on the use of finasteride in androgenetic alopecia.Indian J. Dermatol. Venereol. Leprol.201682212813410.4103/0378‑6323.17743226924401
    [Google Scholar]
  13. VesoulisZ.A. AttarianS.J. ZellerB. ColeF.S. Minoxidil-associated anorexia in an infant with refractory hypertension.Pharmacotherapy20143412e341e34410.1002/phar.149525280267
    [Google Scholar]
  14. SatohH. MorikawaS. FujiwaraC. TeradaH. UeharaA. OhnoR. A case of acute myocardial infarction associated with topical use of minoxidil (RiUP) for treatment of baldness.Jpn. Heart J.200041451952310.1536/jhj.41.51911041102
    [Google Scholar]
  15. ChaiyanaW. PunyoyaiC. SomwonginS. LeelapornpisidP. IngkaninanK. WaranuchN. SrivilaiJ. ThitipramoteN. WisuitiprotW. SchusterR. ViernsteinH. MuellerM. Inhibition of 5α-Reductase, IL-6 secretion, and oxidation process of equisetum debile roxb. ex vaucher extract as functional food and nutraceuticals ingredients.Nutrients2017910110510.3390/nu910110528994714
    [Google Scholar]
  16. ParkS. LeeJ. Modulation of hair growth promoting effect by natural products.Pharmaceutics20211312216310.3390/pharmaceutics13122163
    [Google Scholar]
  17. NeagM.A. MocanA. EcheverríaJ. PopR.M. BocsanC.I. CrişanG. BuzoianuA.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders.Front. Pharmacol.2018955710.3389/fphar.2018.0055730186157
    [Google Scholar]
  18. ImenshahidiM. HosseinzadehH. Berberis Vulgaris and berberine: An update review.Phytother. Res.201630111745176410.1002/ptr.569327528198
    [Google Scholar]
  19. ArayneM.S. SultanaN. BahadurS.S. The berberis story: Berberis vulgaris in therapeutics.Pak J Pharm Sci.20072018392Available from: https://europepmc.org/article/med/17337435
    [Google Scholar]
  20. RadS.Z.K. RameshradM. HosseinzadehH. Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: A review.Iran. J. Basic Med. Sci.201720551652910.22038/IJBMS.2017.867628656087
    [Google Scholar]
  21. De RubisG. PaudelK.R. LiuG. AgarwalV. MacLoughlinR. de Jesus Andreoli PintoT. SinghS.K. AdamsJ. NammiS. ChellappanD.K. OliverB.G.G. HansbroP.M. DuaK. Berberine-loaded engineered nanoparticles attenuate TGF-β-induced remodelling in human bronchial epithelial cells. Toxicol. In vitro 20239210566010.1016/j.tiv.2023.10566037591407
    [Google Scholar]
  22. KimS. LeeJ. YouD. JeongY. JeonM. YuJ. KimS.W. NamS.J. LeeJ.E. Berberine suppresses cell motility through downregulation of TGF-β1 in triple negative breast cancer cells.Cell. Physiol. Biochem.201845279580710.1159/00048717129414799
    [Google Scholar]
  23. YounD.H. ParkJ. KimH.L. JungY. KangJ. LimS. SongG. KwakH.J. UmJ.Y. Berberine improves benign prostatic hyperplasia via suppression of 5 alpha reductase and extracellular signal-regulated kinase in vivo and in vitro. Front. Pharmacol.20189JUL77310.3389/fphar.2018.0077330061836
    [Google Scholar]
  24. ShabaniE. KalantariH. KalantarM. GoudarziM. MansouriE. KalantarH. Berberine ameliorates testosterone-induced benign prostate hyperplasia in rats.BMC Complement. Med. Ther.202121130110.1186/s12906‑021‑03472‑234930229
    [Google Scholar]
  25. SemaltyM. SemaltyA. JoshiG.P. RawatM.S.M. Hair growth and rejuvenation: An overview.J. Dermatolog. Treat.201122312313210.3109/0954663090357857420536276
    [Google Scholar]
  26. AdilA. GodwinM. The effectiveness of treatments for androgenetic alopecia: A systematic review and meta-analysis.J. Am. Acad. Dermatol.2017771136141.e510.1016/j.jaad.2017.02.05428396101
    [Google Scholar]
  27. KaufmanK. D. Finasteride in the treatment of men with androgenetic alopecia. finasteride male pattern hair loss study group.J Am Acad Dermatol1998394 Pt 157858910.1016/S0190‑9622(98)70007‑6
    [Google Scholar]
  28. SaidM.A. MehtaA. The impact of 5α-reductase inhibitor use for male pattern hair loss on men’s health.Curr. Urol. Rep.20181986510.1007/s11934‑018‑0814‑z29909472
    [Google Scholar]
  29. ShinH. YooH.G. InuiS. ItamiS. KimI.G. ChoA.R. LeeD.H. ParkW.S. KwonO. ChoK.H. WonC.H. Induction of transforming growth factor-beta 1 by androgen is mediated by reactive oxygen species in hair follicle dermal papilla cells.BMB Rep.201346946046410.5483/BMBRep.2013.46.9.22824064061
    [Google Scholar]
  30. TsujiY. DendaS. SomaT. RafteryL. MomoiT. HibinoT. A potential suppressor of TGF-beta delays catagen progression in hair follicles.J. Investig. Dermatol. Symp. Proc.200381656810.1046/j.1523‑1747.2003.12173.x12894996
    [Google Scholar]
  31. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  32. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: new data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  33. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  34. El-HachemN. Haibe-KainsB. KhalilA. KobeissyF.H. NemerG. Autodock and autodocktools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study.Methods Mol. Biol.2017159839140310.1007/978‑1‑4939‑6952‑4_2028508374
    [Google Scholar]
  35. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  36. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  37. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein data bank (PDB): The single global macromolecular structure archive.Methods Mol. Biol.2017160762764110.1007/978‑1‑4939‑7000‑1_2628573592
    [Google Scholar]
  38. ShuklaA. SharmaP. PrakashO. SinghM. KalaniK. KhanF. BawankuleD.U. LuqmanS. SrivastavaS.K. QSAR and docking studies on capsazepine derivatives for immunomodulatory and anti-inflammatory activity.PLoS One201497e10079710.1371/journal.pone.010079725003344
    [Google Scholar]
  39. DiS. HanL. AnX. KongR. GaoZ. YangY. WangX. ZhangP. DingQ. WuH. WangH. ZhaoL. TongX. In silico network pharmacology and in vivo analysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications.J. Ethnopharmacol.202127611418010.1016/j.jep.2021.11418033957209
    [Google Scholar]
  40. VilarS. ChakrabartiM. CostanziS. Prediction of passive blood–brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors.J. Mol. Graph. Model.201028889990310.1016/j.jmgm.2010.03.01020427217
    [Google Scholar]
  41. ShinH.K. KangY-M. NoK.T. Predicting ADME properties of chemicals. LeszczynskiJ. Handbook of Computational Chemistry.SpringerDordrecht201613710.1007/978‑94‑007‑6169‑8_59‑1
    [Google Scholar]
  42. AbbottN.J. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models.Drug Discov. Today. Technol.20041440741610.1016/j.ddtec.2004.11.01424981621
    [Google Scholar]
  43. KimR.B. Drugs as P-glycoprotein substrates, inhibitors, and inducers.Drug Metab. Rev.2002341-2475410.1081/DMR‑12000138911996011
    [Google Scholar]
  44. FinchA. PillansP. P-glycoprotein and its role in drug-drug interactions.Aust. Prescr.201437413713910.18773/austprescr.2014.050
    [Google Scholar]
  45. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci Rep201774271710.1038/srep42717
    [Google Scholar]
  46. GhoshN. GhoshR.C. KunduA. MandalS.C. Herb and drug interaction.Nat. Prod. Drug. Dis. Integ. Appr.201846749010.1016/B978‑0‑08‑102081‑4.00017‑4
    [Google Scholar]
  47. RitchieD.W. VenkatramanV. Ultra-fast FFT protein docking on graphics processors.Bioinformatics201026192398240510.1093/bioinformatics/btq44420685958
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708307894240624105514
Loading
/content/journals/raiad/10.2174/0127722708307894240624105514
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test