Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Background

The annual incidence of peptic ulcer disease is estimated to be four million cases worldwide, with an average lifetime risk of 7.5% in individuals of all ages. Polymer nanocomposites have novel prospects in the field of modern medicine.

Objective

The present research endeavors to assess the therapeutic efficacy of nanoparticles composed of silver/chitosan, silver/saponin, and chitosan/saponin against gastric ulcers induced by ethanol in Wistar rats.

Methods

Forty-eight rats were randomly split into eight groups of the same size. Oral ethanol (5 ml/kg of body weight) was given to all rat groups except the control one for 1 hour before treatment. Control and ulcer groups of rats were given distilled water orally. The rats in the other groups were given orally 1/10 LD of each treatment as follows: AgNPs, chitosan NPs, Saponin, AgNPs-Chitosan NPs, AgNP-Saponin, and chitosan-Saponin NPs.

Results

NP-treated groups showed a significant increase in the gastric juice pH, glutathione reduced, catalase, and nitric oxide while gastric juice volume, ulcer index, and malondialdehyde levels decreased compared with the ulcer group. Histopathological investigation of stomach showed improvement in NPs groups specially in the chitosan-Saponin NPs group.

Conclusion

The current study revealed that silver-chitosan, silver-saponin and chitosan-saponin nanocomposites effectively treat gastric ulcers. Chitosan-Saponin nanoparticles showed high therapeutic effectiveness against gastric ulcer in rats.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708283559240405075921
2024-09-01
2025-01-20
Loading full text...

Full text loading...

References

  1. Abbasi-KangevariM. AhmadiN. FattahiN. Quality of care of peptic ulcer disease worldwide: A systematic analysis for the global burden of disease study 1990–2019.PLoS One2022178e027128410.1371/journal.pone.027128435913985
    [Google Scholar]
  2. SiddiqueO. OvalleA. SiddiqueA.S. MossS.F. Helicobacter pylori infection: an update for the internist in the age of increasing global antibiotic resistance.Am. J. Med.2018131547347910.1016/j.amjmed.2017.12.02429353050
    [Google Scholar]
  3. HooiJ.K.Y. LaiW.Y. NgW.K. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis.Gastroenterol2017153242042910.1053/j.gastro.2017.04.02228456631
    [Google Scholar]
  4. RashidM.N. SoomroA.M. ChannaN.A. LaghariZ.A. Prevalence of different types of peptic ulcer disease and treatment modalities used by patients in hyderabad, Sindh.Pakistan J Physiol201612169
    [Google Scholar]
  5. ScallyB. EmbersonJ.R. SpataE. Effects of gastroprotectant drugs for the prevention and treatment of peptic ulcer disease and its complications: a meta-analysis of randomised trials.Lancet Gastroenterol. Hepatol.20183423124110.1016/S2468‑1253(18)30037‑229475806
    [Google Scholar]
  6. LiuY. TianX. GouL. Protective effect of l -citrulline against ethanol-induced gastric ulcer in rats.Environ. Toxicol. Pharmacol.201234228028710.1016/j.etap.2012.04.00922634488
    [Google Scholar]
  7. BeiranvandM. A review of the most common in vivo models of stomach ulcers and natural and synthetic anti-ulcer compounds: a comparative systematic study.Phytomedicine Plus202222100264
    [Google Scholar]
  8. PéricoL.L. Emílio-SilvaM.T. OharaR. Systematic analysis of monoterpenes: advances and challenges in the treatment of peptic ulcer diseases.Biomolecules202010226510.3390/biom1002026532050614
    [Google Scholar]
  9. RepettoM.G. LlesuyS.F. Antioxidant properties of natural compounds used in popular medicine for gastric ulcers.Braz. J. Med. Biol. Res.200235552353410.1590/S0100‑879X200200050000312011936
    [Google Scholar]
  10. AbdelmawgoodI.A. MahanaN.A. BadrA.M. MohamedA.S. Echinochrome exhibits anti-asthmatic activity through the suppression of airway inflammation, oxidative stress, and histopathological alterations in ovalbumin-induced asthma in BALB/c mice.Naunyn Schmiedebergs Arch. Pharmacol.202439731803181510.1007/s00210‑023‑02678‑037750936
    [Google Scholar]
  11. RashedA. MohamedA.S. SolimanA. Ameliorative effect of galium verum (rubiaceae family) methanolic extract on folic acid-induced acute kidney injury in male rats.Iraqi J. Pharm Sci.2023323142410.31351/vol32iss3pp14‑24
    [Google Scholar]
  12. SafarovT. KiranB. BagirovaM. AllahverdiyevA.M. AbamorE.S. An overview of nanotechnology-based treatment approaches against Helicobacter Pylori.Expert Rev. Anti Infect. Ther.2019171082984010.1080/14787210.2019.167746431591930
    [Google Scholar]
  13. JungblutS. YOUMARES 9 - The Oceans: Our Research, Our Future: Proceedings of the 2018 conference for young marine researcher in oldenburg, Germany (Simon. Jungblut, Viola. Liebich, & Maya. Bode-Dalby, Eds.; 1st edition 2020.). Springer Nature.10.1007/978‑3‑030‑20389‑4
    [Google Scholar]
  14. DashM. ChielliniF. OttenbriteR.M. ChielliniE. Chitosan-A versatile semi-synthetic polymer in biomedical applications.Prog. Polym. Sci.2011368981101410.1016/j.progpolymsci.2011.02.001
    [Google Scholar]
  15. BurdușelA.C. GherasimO. GrumezescuA.M. MogoantăL. FicaiA. AndronescuE. Biomedical applications of silver nanoparticles: an up-to-date overview.Nanomaterials20188968110.3390/nano809068130200373
    [Google Scholar]
  16. NogaM. MilanJ. FrydrychA. JurowskiK. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (agnps-critical review: state of the art.Int. J. Mol. Sci.2023246513310.3390/ijms2406513336982206
    [Google Scholar]
  17. Abu El Qassem MahmoudE.A. MohamedA.S. FahmyS.R. SolimanA.M. GaafarK. Antidiabetic potential of silver/chitosan/ascorbic acid nanocomposites.Curr. Nanomed.202111423724810.2174/2468187312666211220115859
    [Google Scholar]
  18. RybkaM. MazurekŁ. KonopM. Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing—from experimental studies to clinical practice.Life20221316910.3390/life1301006936676019
    [Google Scholar]
  19. FeldmanD. Polymer nanocomposites in medicine.J Macromolec Sci Part A20165315562
    [Google Scholar]
  20. HungundB.S. DhulappanavarG.R. AyachitN.H. J. Nanomed. Nanotechnol.2015621000271110.4172/2157‑7439.1000271
    [Google Scholar]
  21. GhadiA. MahjoubS. TabandehF. TalebniaF. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.Caspian J. Intern. Med.20145315616125202443
    [Google Scholar]
  22. BandeF. ArshadS.S. Hair BejoM. Abdullahi KambaS. OmarA.R. Synthesis and characterization of chitosan-saponin nanoparticle for application in plasmid DNA delivery.J. Nanomater.201520151810.1155/2015/371529
    [Google Scholar]
  23. NateZ. MolotoM.J. MubiayiP.K. SibiyaP.N. Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity.MRS Adv.2018342-432505251710.1557/adv.2018.368
    [Google Scholar]
  24. SharmaM. YadavS. SrivastavaM.M. GaneshN. SrivastavaaS. Promising anti-inflammatory bio-efficacy of saponin loaded silver nanoparticles prepared from the plant Madhuca longifolia.Asi J Nanosci Mater201814244261
    [Google Scholar]
  25. ChineduE. AromeD. AmehF. A new method for determining acute toxicity in animal models.Toxicol. Int.201320322422610.4103/0971‑6580.12167424403732
    [Google Scholar]
  26. Sánchez-MendozaM.E. Reyes-TrejoB. Sánchez-GómezP. Bioassay-guided isolation of an anti-ulcer chromene from Eupatorium aschenbornianum: Role of nitric oxide, prostaglandins and sulfydryls.Fitoterapia2010811667110.1016/j.fitote.2009.07.00919651191
    [Google Scholar]
  27. Abdel-Fattah AhmedS.H. El-Sayed El-ShehryM.S.F. Mohamed LotfyB.M. QutbS.A. RashedA.R. MohamedA.S. Accumulation of heavy metals in sepia officinalis extract aggravate acute kidney injury induced by a high folic acid dosage in wistar rats.Curr. Chem. Biol.202317422623610.2174/0122127968272527231226114801
    [Google Scholar]
  28. Abd el-RadyN.M. DahpyM.A. AhmedA. Interplay of biochemical, genetic, and immunohistochemical factors in the etio-pathogenesis of gastric ulcer in rats: a comparative study of the effect of pomegranate loaded nanoparticles versus pomegranate peel extract.Front. Physiol.20211264946210.3389/fphys.2021.64946233833690
    [Google Scholar]
  29. WuX HuangQ XuN Antioxidative and Anti-Inflammatory Effects of Water Extract of Acrostichum aureum Linn. against Ethanol- Induced Gastric Ulcer in Rats.Evidence-based complementary and alternative medicine : eCAM 201820183585394
    [Google Scholar]
  30. BhatnagarM. SisodiaS.S. BhatnagarR. Antiulcer and antioxidant activity of asparagus racemosus willd and withania somnifera dunal in rats.Ann. N. Y. Acad. Sci.20051056126127810.1196/annals.1352.02716387694
    [Google Scholar]
  31. SalaheldinA.T. ShehataM.R. SakrH.I. AtiaT. MohamedA.S. Therapeutic potency of ovothiol a on ethanol-induced gastric ulcers in wistar rats.Mar. Drugs20222112510.3390/md2101002536662198
    [Google Scholar]
  32. LustenbergerT. InabaK. BarmparasG. Ethanol intoxication is associated with a lower incidence of admission coagulopathy in severe traumatic brain injury patients.J. Neurotrauma20112891699170610.1089/neu.2011.186621902539
    [Google Scholar]
  33. BhatiaV. TandonR.K. Stress and the gastrointestinal tract.J. Gastroenterol. Hepatol.200520333233910.1111/j.1440‑1746.2004.03508.x15740474
    [Google Scholar]
  34. WoolfA. & RoseR. (2023). Gastric Ulcer.In StatPearls. StatPearls Publishing.
    [Google Scholar]
  35. LiW. HuangH. NiuX. FanT. MuQ. LiH. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice.Toxicol. Appl. Pharmacol.20132721212910.1016/j.taap.2013.05.03523769714
    [Google Scholar]
  36. TandonR. KhannaH.D. DorababuM. GoelR.K. Oxidative stress and antioxidants status in peptic ulcer and gastric carcinoma.Indian J. Physiol. Pharmacol.200448111511815270379
    [Google Scholar]
  37. BadrA.M. EL- Orabi NF, Ali RA. The implication of the crosstalk of Nrf2 with NOXs, and HMGB1 in ethanol-induced gastric ulcer: Potential protective effect is afforded by Raspberry Ketone.PLoS One2019148e022054810.1371/journal.pone.022054831404064
    [Google Scholar]
  38. MauryaR.P. PrajapatM.K. SinghV.P. Serum malondialdehyde as a biomarker of oxidative stress in patients with primary ocular carcinoma: impact on response to chemotherapy.Clin. Ophthalmol.20211587187910.2147/OPTH.S28774733664564
    [Google Scholar]
  39. El-ShehryM.S.E.F. AmrymiR.A. AtiaT. Hematopoietic effect of echinochrome on phenylhydrazine-induced hemolytic anemia in rats.PeerJ202311e1657610.7717/peerj.1657638089915
    [Google Scholar]
  40. ZuluagaA.M. SilveiraA.G.E. MartìnezA.J.R. Nitric oxide and malondialdehyde in gastric contents and blood in an equine model of gastric ulcer induced by phenylbutazone.Rev. Colomb. Cienc. Pecu.2016291435010.17533/udea.rccp.v29n1a05
    [Google Scholar]
  41. SuzukiH. NishizawaT. TsugawaH. MogamiS. HibiT. Roles of oxidative stress in stomach disorders.J. Clin. Biochem. Nutr.2011501353910.3164/jcbn.11‑115SR22247598
    [Google Scholar]
  42. NandiA. YanL.J. JanaC.K. DasN. Role of catalase in oxidative stress- and age-associated degenerative diseases.Oxid. Med. Cell. Longev.2019201911910.1155/2019/961309031827713
    [Google Scholar]
  43. VergauwenB. PauwelsF. Van BeeumenJ.J. Glutathione and catalase provide overlapping defenses for protection against respiration-generated hydrogen peroxide in Haemophilus influenzae.J. Bacteriol.2003185185555556210.1128/JB.185.18.5555‑5562.200312949108
    [Google Scholar]
  44. (a SunithaJ. JeevaJ.S. AnanthalakshmiR. RajkumariS. RameshM. KrishnanR. Enzymatic antioxidants and its role in oral diseases.J. Pharm. Bioallied Sci.201576Suppl. 233110.4103/0975‑7406.16343826538872
    [Google Scholar]
  45. (b QujeqD. RezvaniT. Catalase (antioxidant enzyme) activity in streptozotocin-induced diabetic rats.Intl J Diab Meta20071512224
    [Google Scholar]
  46. AdinorteyM.B. AnsahC. GalyuonI. NyarkoA. In vivo models used for evaluation of potential antigastroduodenal ulcer agents.Ulcers2013201311210.1155/2013/796405
    [Google Scholar]
  47. ShamsS.G.E. EissaR.G. Amelioration of ethanol-induced gastric ulcer in rats by quercetin: implication of Nrf2/HO1 and HMGB1/TLR4/NF-κB pathways.Heliyon2022810e1115910.1016/j.heliyon.2022.e1115936311358
    [Google Scholar]
  48. WallaceJ.L. Nitric oxide in the gastrointestinal tract: opportunities for drug development.Br. J. Pharmacol.2019176214715410.1111/bph.1452730357812
    [Google Scholar]
  49. LanasA. Role of nitric oxide in the gastrointestinal tract.Arthritis research & therapy200810Suppl. 2S410.1186/ar2465
    [Google Scholar]
  50. (a IdrizajE. TrainiC. VannucchiM.G. BaccariM.C. Nitric oxide: from gastric motility to gastric dysmotility.Int. J. Mol. Sci.20212218999010.3390/ijms2218999034576155
    [Google Scholar]
  51. (b CadirciE. SuleymanH. AksoyH. Effects of onosma armeniacum root extract on ethanol-induced oxidative stress in stomach tissue of rats.Chem. Biol. Interact.20071701404810.1016/j.cbi.2007.06.040
    [Google Scholar]
  52. (c AbdullaM.A. Al-BayatyF.H. YounisL.T. Abu HassanM.I. Anti-ulcer activity of Centella asiatica leaf extract against ethanol-induced gastric mucosal injury in rats.J. Med. Plants Res.201041312531259
    [Google Scholar]
  53. (d El-AbharH.S. Coenzyme Q10: A novel gastroprotective effect via modulation of vascular permeability, prostaglandin E2, nitric oxide and redox status in indomethacin-induced gastric ulcer model.Eur. J. Pharmacol.20106491-331431910.1016/j.ejphar.2010.09.012
    [Google Scholar]
  54. (e SafariS. BahramikiaS. DezfoulianO. Silver nanoparticles synthesized from Quercus brantii ameliorated ethanol-induced gastric ulcers in rats by decreasing oxidative stress and improving antioxidant systems.Inflammopharmacology20233152615263010.1007/s10787‑023‑01284‑z
    [Google Scholar]
  55. Sánchez-MendozaM. López-LorenzoY. Cruz-AntonioL. Matus-MezaA.S. Sánchez-MendozaY. ArrietaJ. Gastroprotection of calein D against ethanol-induced gastric lesions in mice: role of prostaglandins, nitric oxide and sulfhydryls.Molecules201924362210.3390/molecules2403062230754621
    [Google Scholar]
  56. ZhouD. YangQ. TianT. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role.Biomed. Pharmacother.202012611007510.1016/j.biopha.2020.11007532179202
    [Google Scholar]
  57. AkilaR. PriyaN. Screening of gastric antiulcer potential of chitosan extracted from white button mushroom wastes in wistar rats.Adv. Appl. Sci. Res.20123531603164
    [Google Scholar]
  58. AnandanR. NairP.G. MathewS. Anti-ulcerogenic effect of chitin and chitosan on mucosal antioxidant defence system in HCl-ethanol-induced ulcer in rats.J. Pharm. Pharma.200456226526910.1211/0022357023079
    [Google Scholar]
  59. IbrahimI.A.A. HusseinA.I. MuterM.S. Effect of nano silver on gastroprotective activity against ethanol-induced stomach ulcer in rats.Biomed. Pharmacother.202215411355010.1016/j.biopha.2022.11355035994814
    [Google Scholar]
  60. ShichijoK. IharaM. MatsuuM. ItoM. OkumuraY. SekineI. Overexpression of heat shock protein 70 in stomach of stress-induced gastric ulcer-resistant rats.Dig. Dis. Sci.200348234034810.1023/A:102193982951512643613
    [Google Scholar]
  61. ShiZ. LongX. LiY. Protective effect of tea saponins on alcohol-induced gastric mucosal injury in mice.ACS Omega20238167368110.1021/acsomega.2c0588036643417
    [Google Scholar]
  62. AjdaryM. NegahdaryM. ChelongarR. zadeh SK. The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition.Adv. Biomed. Res.2015416910.4103/2277‑9175.15389325878994
    [Google Scholar]
  63. IvanovaDG YanevaZL Antioxidant properties and redox-modulating activity of chitosan and its derivatives: biomaterials with application in cancer therapy.Biores Open Access202091647210.1089/biores.2019.002832219012
    [Google Scholar]
  64. WenZ.S. LiuL.J. QuY.L. OuYangX.K. YangL.Y. XuZ.R. Chitosan nanoparticles attenuate hydrogen peroxide-induced stress injury in mouse macrophage RAW264.7 cells.Mar. Drugs201311103582360010.3390/md1110358224084781
    [Google Scholar]
  65. SanthoshS. SiniT.K. AnandanR. MathewP.T. Effect of chitosan supplementation on antitubercular drugs-induced hepatotoxicity in rats.Toxicology20062191-3535910.1016/j.tox.2005.11.00116337069
    [Google Scholar]
  66. ElekofehintiO.O. KamdemJ.P. KadeI. AdanlawoI. RochaJ. Saponins from Solanum anguivi Lam. fruit exhibit in vitro and in vivo antioxidant activities in alloxan-induced oxidative stress.Asian J. Pharm. Clin. Res.201362249253
    [Google Scholar]
  67. PhungC.D. NguyenB.L. JeongJ.H. Shaping the “hot” immunogenic tumor microenvironment by nanoparticles co‐delivering oncolytic peptide and TGF‐β1 siRNA for boosting checkpoint blockade therapy.Bioeng. Transl. Med.202385e1039210.1002/btm2.1039237693065
    [Google Scholar]
  68. MantryS. ShaikhS. ShindeS. BidkarS. DamaG. Preliminary study on the composition of nanoparticles for the treatment of peptic ulcer.Int. J. Curr. Res. Rev.2022148162510.31782/IJCRR.2022.14803
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708283559240405075921
Loading
/content/journals/raiad/10.2174/0127722708283559240405075921
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chitosan; gastric ulcers; inflammation; Polymer nanocomposites; saponin; silver
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test