Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

A complicated biological reaction of vascular tissues to damaging stimuli like infections, harmed cells, or irritants is called inflammation. Symptoms include redness, inflamed joints, stiffness, discomfort in the joints, and loss of joint function. NSAIDs are frequently used to treat inflammation. Sadly, these drugs raise the possibility of blood clots, which can result in heart attacks and strokes. Consequently, there is ongoing research focusing on developing potent anti-inflammatory drugs using natural ingredients. Natural products, due to their diverse chemical composition, offer a rich source for the development of novel medications. The treatment of various inflammation-related disorders heavily relies on a natural substance derived from medicinal plants. The objective of the present study is to assemble information on potential parts of the plants or phytochemicals derived from medicinal plants used on inflammatory models, employing state-of-the-art scientific methodologies. In this study, state-of-the-art scientific methodologies are utilized to investigate the effects of phytochemicals derived from medicinal plants. Relevant data is collected, focusing on the examination of these phytochemicals in experimental models of inflammation. The study aims to collect thorough data on potential plant parts or promising phytochemicals derived from medicinal plants that have been evaluated using advanced scientific techniques in the realm of inflammation models. This compilation will offer valuable insights into their potential as anti-inflammatory agents. The findings have the potential to contribute to the development of new and improved anti-inflammatory medications with fewer or no adverse effects compared to current treatments. While many of these studies hold academic interest only a few are accepted into clinical trials. Numerous phytoconstituents have been identified for exhibiting diverse pharmacological actions.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708292961240508110207
2024-09-01
2025-01-20
Loading full text...

Full text loading...

References

  1. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  2. SahlmannC.O. StröbelP. Pathophysiology of inflammation.Nucl. Med.20165511610.1055/s‑0037‑1616468
    [Google Scholar]
  3. LevyJ.H. The human inflammatory response.J. Cardiovasc. Pharmacol.199627Suppl. 1313710.1097/00005344‑199600001‑000088938281
    [Google Scholar]
  4. ScottA. KhanK.M. CookJ.L. DuronioV. What is “inflammation”? Are we ready to move beyond Celsus?Br. J. Sports Med.200438324824910.1136/bjsm.2003.01122115155418
    [Google Scholar]
  5. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843510.1038/nature0720118650913
    [Google Scholar]
  6. ChoH. MaduA. Etiology and treatment of the inflammatory causes of cystoid macular edema.J. Inflamm. Res.20092374310.2147/JIR.S570622096351
    [Google Scholar]
  7. KumarS. BajwaB.S. KuldeepS. KaliaA.N. Anti-inflammatory activity of herbal plants: A review.Int J Adv Pharm Biol Chem.201322272281
    [Google Scholar]
  8. ApuAS BhuyanSH ProvaSS MuhitMA Anti-inflammatory activity of medicinal plants native to Bangladesh: A review.J Appl Pharm Sci2012710
    [Google Scholar]
  9. BritannicaT. Encyclopaedia Britannica.2023Available from: https://www.britannica.com/plant/ginger
  10. WongJ. MagunB. WoodL. Lung inflammation caused by inhaled toxicants: A review.Int. J. Chron. Obstruct. Pulmon. Dis.2016111391140110.2147/COPD.S10600927382275
    [Google Scholar]
  11. InoueK. TakanoH. YanagisawaR. HiranoS. SakuraiM. ShimadaA. YoshikawaT. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice.Environ. Health Perspect.200611491325133010.1289/ehp.890316966083
    [Google Scholar]
  12. TasneemS. LiuB. LiB. ChoudharyM.I. WangW. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents.Pharmacol. Res.201913912614010.1016/j.phrs.2018.11.00130395947
    [Google Scholar]
  13. AzabA. NassarA. AzabA. Anti-inflammatory activity of natural products.Molecules20162110132110.3390/molecules2110132127706084
    [Google Scholar]
  14. MaioneF. RussoR. KhanH. MascoloN. Medicinal plants with anti-inflammatory activities.Nat. Prod. Res.201630121343135210.1080/14786419.2015.106276126221780
    [Google Scholar]
  15. ArdalaniH. HadipanahA. SahebkarA. Medicinal plants in the treatment of peptic ulcer disease: A review.Mini Rev. Med. Chem.202020866270210.2174/138955752066619122715193931880244
    [Google Scholar]
  16. YeshiK. TurpinG. JamtshoT. WangchukP. Indigenous uses, phytochemical analysis, and anti-inflammatory properties of Australian tropical medicinal plants.Molecules20222712384910.3390/molecules2712384935744969
    [Google Scholar]
  17. YatooM.I. GopalakrishnanA. SaxenaA. ParrayO.R. TufaniN.A. ChakrabortyS. TiwariR. DhamaK. IqbalH.M.N. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders - a review.Recent Pat. Inflamm. Allergy Drug Discov.2018121395810.2174/1872213X1266618011515363529336271
    [Google Scholar]
  18. PahujaM. MehlaJ. GuptaY.K. Status analysis of herbal drug therapies in epilepsy: advancements in the use of medicinal plants with anti-inflammatory properties.Comb. Chem. High Throughput Screen.202225101601161810.2174/138620732466621021910343033605852
    [Google Scholar]
  19. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: An overview.Sci. World J.2013201311610.1155/2013/16275024470791
    [Google Scholar]
  20. NunesC.R. Barreto ArantesM. Menezes de Faria PereiraS. Leandro da CruzL. de Souza PassosM. Pereira de MoraesL. VieiraI.J.C. Barros de OliveiraD. Plants as sources of anti-inflammatory agents.Molecules20202516372610.3390/molecules2516372632824133
    [Google Scholar]
  21. SinghS. SinghT.G. MahajanK. DhimanS. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis.J. Pharm. Pharmacol.202072101306132710.1111/jphp.1332632812250
    [Google Scholar]
  22. AlamW. KhanH. ShahM.A. CauliO. SasoL. Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing.Molecules20202518407310.3390/molecules2518407332906577
    [Google Scholar]
  23. PompermaierL. MarzoccoS. AdessoS. MoniziM. SchwaigerS. NeinhuisC. StuppnerH. LautenschlägerT. Medicinal plants of northern Angola and their anti-inflammatory properties.J. Ethnopharmacol.2018216263610.1016/j.jep.2018.01.01929355707
    [Google Scholar]
  24. NigussieD. MakonnenE. TufaT.B. BrewsterM. LegesseB.A. FekaduA. DaveyG. Systematic review of Ethiopian medicinal plants used for their anti-inflammatory and wound healing activities.J. Ethnopharmacol.202127611417910.1016/j.jep.2021.11417933989738
    [Google Scholar]
  25. MorenoM.A. ZampiniI.C. IslaM.I. Antifungal, anti-inflammatory and antioxidant activity of bi-herbal mixtures with medicinal plants from Argentinean highlands.J. Ethnopharmacol.202025311264210.1016/j.jep.2020.11264232035220
    [Google Scholar]
  26. HeM. MinJ.W. KongW.L. HeX.H. LiJ.X. PengB.W. A review on the pharmacological effects of vitexin and isovitexin.Fitoterapia2016115748510.1016/j.fitote.2016.09.01127693342
    [Google Scholar]
  27. IslamM.A. ZilaniM.N.H. BiswasP. KhanD.A. RahmanM.H. NahidR. NaharN. SamadA. AhammadF. HasanM.N. Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme.J. Ethnopharmacol.202228511490010.1016/j.jep.2021.11490034896569
    [Google Scholar]
  28. GrewalA.S. GargM. SharmaA. BansalS. GroverR. SharmaT. KumariS. GoyalA. BhatiaS. VaidL. DeswalG. Role of medicinal plants in the management of inflammatory disorders: An overview.Recent Adv. Inflamm. Allergy Drug Discov.2023171203010.2174/277227081766623022714065936847227
    [Google Scholar]
  29. JongrungraungchokS. MadakaF. WunnakupT. SudsaiT. PongphaewC. SongsakT. PradubyatN. In vitro antioxidant, anti-inflammatory, and anticancer activities of mixture Thai medicinal plants.BMC Complement. Med. Ther.20232314310.1186/s12906‑023‑03862‑836765341
    [Google Scholar]
  30. RecioM.C. AndujarI. RiosJ.L. Anti-inflammatory agents from plants: Progress and potential.Curr. Med. Chem.201219142088210310.2174/09298671280022906922414101
    [Google Scholar]
  31. KazemiS. ShirzadH. Rafieian-KopaeiM. Recent findings in molecular basis of inflammation and anti-inflammatory plants.Curr. Pharm. Des.201824141551156210.2174/138161282466618040312200329611479
    [Google Scholar]
  32. ChenJ.T. Phytochemical omics in medicinal plants.Biomolecules202010693610.3390/biom1006093632575904
    [Google Scholar]
  33. RavipatiA.S. ZhangL. KoyyalamudiS.R. JeongS.C. ReddyN. BartlettJ. SmithP.T. ShanmugamK. MünchG. WuM.J. SatyanarayananM. VysettiB. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content.BMC Complement. Altern. Med.201212117310.1186/1472‑6882‑12‑17323038995
    [Google Scholar]
  34. NandiS. Mawkhlieng LyndemL. Clerodendrum viscosum : Traditional uses, pharmacological activities and phytochemical constituents.Nat. Prod. Res.201630549750610.1080/14786419.2015.102522925825067
    [Google Scholar]
  35. KumarS. MalhotraS. PrasadA. EyckenE. BrackeM. Stetler-StevensonW. ParmarV. GhoshB. Anti-inflammatory and antioxidant properties of Piper species: A perspective from screening to molecular mechanisms.Curr. Top. Med. Chem.201515988689310.2174/156802661566615022012065125697561
    [Google Scholar]
  36. FierascuR.C. FierascuI. OrtanA. FierascuI.C. AnutaV. VelescuB.S. PituruS.M. Dinu-PirvuC.E. Leonurus cardiaca L. as a source of bioactive compounds: An update of the european medicines agency assessment report (2010).BioMed Res. Int.2019201911310.1155/2019/430321531119169
    [Google Scholar]
  37. UpasaniC.D. BachhavR.S. GulechaV.S. Analgesic and anti-inflammatory activity of argyreia speciosa root.Indian J. Pharmacol.200941415816110.4103/0253‑7613.5606620523865
    [Google Scholar]
  38. JayawardenaR. FrancisT.V. AbhayaratnaS. RanasingheP. The use of Caralluma fimbriata as an appetite suppressant and weight loss supplement: A systematic review and meta-analysis of clinical trials.BMC Complement. Med. Ther.202121127910.1186/s12906‑021‑03450‑834758791
    [Google Scholar]
  39. NohrL.A. RasmussenL.B. StraandJ. Resin from the mukul myrrh tree, guggul, can it be used for treating hypercholesterolemia? A randomized, controlled study.Complement. Ther. Med.2009171162210.1016/j.ctim.2008.07.00119114224
    [Google Scholar]
  40. RajamuruganR. SuyavaranA. SelvaganabathyN. RamamurthyC.H. ReddyG.P. SujathaV. ThirunavukkarasuC. Brassica nigra plays a remedy role in hepatic and renal damage.Pharm. Biol.201250121488149710.3109/13880209.2012.68512922978659
    [Google Scholar]
  41. AliM.Y. ParkS. ChangM. Phytochemistry, ethnopharmacological uses, biological activities, and therapeutic applications of Cassia obtusifolia L.: A comprehensive review.Molecules20212620625210.3390/molecules2620625234684833
    [Google Scholar]
  42. ZahidinN.S. SaidinS. ZulkifliR.M. MuhamadI.I. Ya’akobH. NurH. A review of Acalypha indica L. (Euphorbiaceae) as traditional medicinal plant and its therapeutic potential.J. Ethnopharmacol.201720714617310.1016/j.jep.2017.06.01928647509
    [Google Scholar]
  43. AlshehriS.A. WahabS. AbullaisS.S. DasG. HaniU. AhmadW. AmirM. AhmadA. KandasamyG. VasudevanR. Pharmacological efficacy of Tamarix aphylla: A comprehensive review.Plants202111111810.3390/plants1101011835009121
    [Google Scholar]
  44. SalehiB. Gültekin-ÖzgüvenM. KirkinC. ÖzçelikB. Morais-BragaM.F.B. CarneiroJ.N.P. BezerraC.F. SilvaT.G. CoutinhoH.D.M. AminaB. ArmstrongL. SelamogluZ. SevindikM. YousafZ. Sharifi-RadJ. MuddathirA.M. DevkotaH.P. MartorellM. JugranA.K. ChoW.C. MartinsN. Antioxidant, antimicrobial, and anticancer effects of Anacardium plants: An ethnopharmacological perspective.Front. Endocrinol.20201129510.3389/fendo.2020.0029532595597
    [Google Scholar]
  45. Sharifi-RadJ. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. Neffe-SkocińskaK. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. El BeyrouthyM. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.0102133041781
    [Google Scholar]
  46. KshirsagarP. GaikwadS. PaiS. DesaiN. BapatV. Evaluation of antioxidant capacity and phytochemical investigation of eleven Clusiaceae members from Western Ghats, India.Biocatal. Agric. Biotechnol.20224410247610.1016/j.bcab.2022.102476
    [Google Scholar]
  47. ShahK.A. PatelM.B. PatelR.J. ParmarP.K. Mangifera indica (mango).Pharmacogn. Rev.201047424810.4103/0973‑7847.6532522228940
    [Google Scholar]
  48. KačániováM. GalovičováL. IvanišováE. VukovicN.L. ŠtefánikováJ. ValkováV. BorotováP. ŽiarovskáJ. TerentjevaM. FelšöciováS. TvrdáE. Antioxidant, antimicrobial and antibiofilm activity of coriander (Coriandrum sativum L.) essential oil for its application in foods.Foods20209328210.3390/foods903028232143314
    [Google Scholar]
  49. GolechhaM. SarangalV. OjhaS. BhatiaJ. AryaD.S. Anti-inflammatory effect of Emblica officinalis in rodent models of acute and chronic inflammation: Involvement of possible mechanisms.Int. J. Inflamm.201420141610.1155/2014/17840825215258
    [Google Scholar]
  50. UrituC.M. MihaiC.T. StanciuG.D. DodiG. Alexa-StratulatT. LucaA. Leon-ConstantinM.M. StefanescuR. BildV. MelnicS. TambaB.I. Medicinal plants of the family Lamiaceae in pain therapy: A review.Pain Res. Manag.2018201814410.1155/2018/780154329854039
    [Google Scholar]
  51. AsseliB. DjeridaneA. MahfoudiR. YousfiM. High anti-inflammatory and antidiabetic activities of Hammada elegans (Bge.)Botsch (Chenopodiaceae) extracts: An in vivo assessment.J. Diabetes Metab. Disord.202120142743810.1007/s40200‑021‑00762‑x34178849
    [Google Scholar]
  52. AlbaayitS.F. AbbaY. RasedeeA. AbdullahN. Effect of Clausena excavata Burm. f. (Rutaceae) leaf extract on wound healing and antioxidant activity in rats.Drug Des. Devel. Ther.201593507351826203223
    [Google Scholar]
  53. TaurD.J. PatilR.Y. Some medicinal plants with antiasthmatic potential: A current status.Asian Pac. J. Trop. Biomed.20111541341810.1016/S2221‑1691(11)60091‑923569804
    [Google Scholar]
  54. BabaeianM. NaseriM. KamalinejadM. GhaffariF. EmadiF. FeiziA. Hosseini YektaN. AdibiP. Herbal remedies for functional dyspepsia and traditional Iranian medicine perspective.Iran. Red Crescent Med. J.20151711e2074110.5812/ircmj.2074126734483
    [Google Scholar]
  55. NoureenS. NoreenS. GhummanS.A. BatoolF. BukhariS.N.A. The genus Cuscuta (Convolvolaceac): An updated review on indigenous uses, phytochemistry, and pharmacology.Iran. J. Basic Med. Sci.201922111225125232128087
    [Google Scholar]
  56. GhoshegirS.A. MazaheriM. GhannadiA. FeiziA. BabaeianM. TanhaeeM. KarimiM. AdibiP. Pimpinella anisum in the treatment of functional dyspepsia: A double-blind, randomized clinical trial.J. Res. Med. Sci.2015201132125767516
    [Google Scholar]
  57. Montalvo-GonzálezE. VillagránZ. González-TorresS. Iñiguez-MuñozL. Isiordia-EspinozaM. Ruvalcaba-GómezJ. Arteaga-GaribayR. AcostaJ. González-SilvaN. Anaya-EsparzaL. Physiological effects and human health benefits of Hibiscus sabdariffa: A review of clinical trials.Pharmaceuticals202215446410.3390/ph1504046435455462
    [Google Scholar]
  58. HaoD.C. GuX.J. XiaoP.G. Phytochemical and biological research of Polygoneae medicinal resources.Med Plants201546552910.1016/B978‑0‑08‑100085‑4.00012‑8
    [Google Scholar]
  59. BarretoF.S. SousaE.O. RodriguesF.F.G. CostaJ.G.M. CamposA.R. Antibacterial activity of Lantana camara Linn and Lantana montevidensis Brig extracts from Cariri-Ceará, brazil.J. Young Pharm.201021424410.4103/0975‑1483.6221121331189
    [Google Scholar]
  60. StohsS.J. BagchiD. Antioxidant, anti-inflammatory, and chemoprotective Properties of Acacia catechu Heartwood Extracts.Phytother. Res.201529681882410.1002/ptr.533525802170
    [Google Scholar]
  61. SaranyaR. ThirumalaiT. HemalathaM. BalajiR. DavidE. Pharmacognosy of Enicostemma littorale: A review.Asian Pac. J. Trop. Biomed.201331798410.1016/S2221‑1691(13)60028‑323570022
    [Google Scholar]
  62. DeyA. DeJ.N. Traditional use of plants against snakebite in Indian subcontinent: A review of the recent literature.Afr. J. Tradit. Complement. Altern. Med.20119115317410.4314/ajtcam.v9i1.2023983332
    [Google Scholar]
  63. RajashekarY. RavindraK.V. BakthavatsalamN. Leaves of Lantana camara Linn. (Verbenaceae) as a potential insecticide for the management of three species of stored grain insect pests.J. Food Sci. Technol.201451113494349910.1007/s13197‑012‑0884‑826396352
    [Google Scholar]
  64. ThongmeeP. ItharatA. Anti-inflammatory activities of Erythrina variegata Bark ethanolic extract.J. Med. Assoc. Thai.201699Suppl. 4S166S17129926696
    [Google Scholar]
  65. MaoX. WuL.F. GuoH.L. ChenW.J. CuiY.P. QiQ. LiS. LiangW.Y. YangG.H. ShaoY.Y. ZhuD. SheG.M. YouY. ZhangL.Z. The genus Phyllanthus: An ethnopharmacological, phytochemical, and pharmacological review.Evid. Based Complement. Alternat. Med.2016201613610.1155/2016/758495227200104
    [Google Scholar]
  66. PascualM.E. SlowingK. CarreteroE. Sánchez MataD. VillarA. Lippia: Traditional uses, chemistry and pharmacology: A review.J. Ethnopharmacol.200176320121410.1016/S0378‑8741(01)00234‑311448540
    [Google Scholar]
  67. KumarS. MalhotraR. KumarD. Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities.Pharmacogn. Rev.201047586110.4103/0973‑7847.6532722228942
    [Google Scholar]
  68. Dawid-PaćR. Medicinal plants used in treatment of inflammatory skin diseases.Postepy Dermatol. Alergol.20133317017710.5114/pdia.2013.3562024278070
    [Google Scholar]
  69. GhoshP. GhoshC. DasS. DasC. MandalS. ChatterjeeS. Botanical description, phytochemical constituents and pharmacological properties of Euphorbia hirta Linn: A review.Int. J. Health Sci. Res.201993273286
    [Google Scholar]
  70. QureshiH. AsifS. AhmedH. Al-KahtaniH.A. HayatK. Chemical composition and medicinal significance of Fagonia cretica : A review.Nat. Prod. Res.201630662563910.1080/14786419.2015.103626825921950
    [Google Scholar]
  71. MurugesuS. SelamatJ. PerumalV. Phytochemistry, pharmacological properties, and recent applications of Ficus benghalensis and Ficus religiosa. Plants20211012274910.3390/plants1012274934961220
    [Google Scholar]
  72. MawaS. HusainK. JantanI. Ficus carica L. (Moraceae): Phytochemistry, traditional uses and biological activities.Evid. Based Complement. Alternat. Med.201320131810.1155/2013/97425624159359
    [Google Scholar]
  73. GulechaV. SivakumarT. UpaganlawarA. MahajanM. UpasaniC. Screening of Ficus religiosa leaves fractions for analgesic and anti-inflammatory activities.Indian J. Pharmacol.201143666266622144770
    [Google Scholar]
  74. BadgujarS.B. PatelV.V. BandivdekarA.H. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology.BioMed Res. Int.2014201413210.1155/2014/84267425162032
    [Google Scholar]
  75. MirzaeeF. HosseiniA. JouybariH.B. DavoodiA. AzadbakhtM. Medicinal, biological and phytochemical properties of Gentiana species.J. Tradit. Complement. Med.20177440040810.1016/j.jtcme.2016.12.01329034186
    [Google Scholar]
  76. RahmatullahM. JahanR. Safiul AzamF.M. HossanS. MollikM.A.H. RahmanT. Folk medicinal uses of Verbenaceae family plants in Bangladesh.Afr. J. Tradit. Complement. Altern. Med.201185SSuppl.536510.4314/ajtcam.v8i5S.1522754058
    [Google Scholar]
  77. GauthamanK.K. SaleemM.T.S. ThanislasP.T. PrabhuV.V. KrishnamoorthyK.K. DevarajN.S. SomasundaramJ.S. Cardioprotective effect of the Hibiscus rosa sinensis flowers in an oxidative stress model of myocardial ischemic reperfusion injury in rat.BMC Complement. Altern. Med.2006613210.1186/1472‑6882‑6‑3216987414
    [Google Scholar]
  78. PalanuvejC. GanogpichayagraiA. RuangrungsiN. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves.J. Adv. Pharm. Technol. Res.201781192410.4103/2231‑4040.19737128217550
    [Google Scholar]
  79. SinghP. SrivastavaS. JhaK.K. MishraG. KhosaR.L. SrivastavaS. Antiinflammatory, analgesic and antipyretic activities of aerial parts of Costus speciosus Koen.Indian J. Pharm. Sci.2013751838810.4103/0250‑474X.11353223901165
    [Google Scholar]
  80. JungY.K. ShinD. Imperata cylindrica: A review of phytochemistry, pharmacology, and industrial applications.Molecules2021265145410.3390/molecules2605145433800104
    [Google Scholar]
  81. TsumbuC.N. Deby-DupontG. TitsM. AngenotL. FranckT. SerteynD. Mouithys-MickaladA. Antioxidant and antiradical activities of Manihot esculenta Crantz (Euphorbiaceae) leaves and other selected tropical green vegetables investigated on lipoperoxidation and phorbol-12-myristate-13-acetate (PMA) activated monocytes.Nutrients20113981883810.3390/nu309081822254126
    [Google Scholar]
  82. LanhersM.C. FleurentinJ. DorfmanP. MortierF. PeltJ.M. Analgesic, antipyretic and anti-inflammatory properties of Euphorbia hirta.Planta Med.199157322523110.1055/s‑2006‑9600791896520
    [Google Scholar]
  83. KumadohD. ArcherM.A. YeboahG.N. KyeneM.O. Boakye-YiadomM. Adi-DakoO. Osei-AsareC. AdaseE. AppiahA.A. MintahS.O. A review on anti-peptic ulcer activities of medicinal plants used in the formulation of Enterica, Dyspepsia and NPK 500 capsules. Heliyon2021712e0846510.1016/j.heliyon.2021.e0846534917789
    [Google Scholar]
  84. GuptaA. KumarR. GangulyR. SinghA.K. RanaH.K. PandeyA.K. Antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity.Toxicol. Rep.20218445210.1016/j.toxrep.2020.12.01033391996
    [Google Scholar]
  85. GuptaR. SinghS. KumarN. Manvi Trichosanthes dioica Roxb.: An overview.Pharmacogn. Rev.2012611616710.4103/0973‑7847.9588622654406
    [Google Scholar]
  86. DhongadeH.J. PaikraB.K. GidwaniB. Phytochemistry and Pharmacology of Moringa oleifera Lam. J. Pharmacopuncture201720319420010.3831/KPI.2017.20.02230087795
    [Google Scholar]
  87. GoelR.K. JoshiV.K. GautamM.K. GhildiyalS. Pharmacological evaluation of extracts of Hedychium spicatum (Ham-ex-Smith) rhizome.Anc. Sci. Life201231311712210.4103/0257‑7941.10318923284217
    [Google Scholar]
  88. MuhammadN. SaeedM. KhanH. Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant.BMC Complement. Altern. Med.20121215910.1186/1472‑6882‑12‑5922551220
    [Google Scholar]
  89. da CostaY.F.G. Llorent-MartínezE.J. FernandesL.S. de FreitasP.H.S. ScioE. de SousaO.V. CastilhoP.C. AlvesM.S. Phenolics profiling by HPLC-DAD-ESI/MSn of the scientific unknown Polygonum hydropiperoides Michx. and its antioxidant and anti-methicillin-resistant Staphylococcus aureus activities.Plants2023128160610.3390/plants1208160637111830
    [Google Scholar]
  90. CalixtoJ.B. SantosA.R.S. FilhoV.C. YunesR.A. A review of the plants of the genusPhyllanthus: Their chemistry, pharmacology, and therapeutic potential.Med. Res. Rev.199818422525810.1002/(SICI)1098‑1128(199807)18:4<225::AID‑MED2>3.0.CO;2‑X9664291
    [Google Scholar]
  91. RamanA. LauC. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae).Phytomedicine19962434936210.1016/S0944‑7113(96)80080‑823194773
    [Google Scholar]
  92. LiC. HeY. YangY. GouY. LiS. WangR. ZengS. ZhaoX. Antioxidant and inflammatory effects of Nelumbo nucifera Gaertn. Leaves.Oxid. Med. Cell. Longev.2021202111410.1155/2021/837596134992717
    [Google Scholar]
  93. AhmadA. HusainA. MujeebM. KhanS.A. NajmiA.K. SiddiqueN.A. DamanhouriZ.A. AnwarF. A review on therapeutic potential of Nigella sativa: A miracle herb.Asian Pac. J. Trop. Biomed.20133533735210.1016/S2221‑1691(13)60075‑123646296
    [Google Scholar]
  94. LamparielloL.R. CortelazzoA. GuerrantiR. SticozziC. ValacchiG. The magic velvet bean of mucuna pruriens.J. Tradit. Complement. Med.20122433133910.1016/S2225‑4110(16)30119‑524716148
    [Google Scholar]
  95. ChoudharyM. KumarV. MalhotraH. SinghS. Medicinal plants with potential anti-arthritic activity.J. Intercult. Ethnopharmacol.20154214717910.5455/jice.2015031302191826401403
    [Google Scholar]
  96. TilakJ.C. AdhikariS. DevasagayamT.P.A. Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin.Redox Rep.20049421922710.1179/13510000422500597615479566
    [Google Scholar]
  97. BalilashakiK. Martinez-MonteroM.E. VahediM. CardosoJ.C. Silva AgurtoC.L. Leiva-MoraM. FeiziF. Musharof HossainM. Medicinal use, flower trade, preservation and mass propagation techniques of cymbidium orchids—an overview.Horticulturae20239669010.3390/horticulturae9060690
    [Google Scholar]
  98. KasaliF.M. KadimaJ.N. PeterE.L. MtewaA.G. AjayiC.O. TusiimireJ. ToloC.U. OgwangP.E. WeisheitA. AgabaA.G. Antidiabetic medicinal plants used in Democratic Republic of Congo: A critical review of ethnopharmacology and bioactivity data.Front. Pharmacol.20211275709010.3389/fphar.2021.75709034776975
    [Google Scholar]
  99. ChidambaramK. AlqahtaniT. AlghazwaniY. AldahishA. AnnaduraiS. VenkatesanK. DhandapaniK. ThilagamE. VenkatesanK. PaulsamyP. VasudevanR. KandasamyG. Medicinal plants of Solanum Species: The promising sources of phyto-insecticidal compounds.J. Trop. Med.2022202212210.1155/2022/495222136187457
    [Google Scholar]
  100. PalbagS. DeyB.K. SinghN.K. Ethnopharmacology, phytochemistry and pharmacology of Tephrosia purpurea.Chin. J. Nat. Med.20141211710.1016/S1875‑5364(14)60001‑724484589
    [Google Scholar]
  101. IlavarasanR. MohideenS. VenkataramanS. Analgesic and anti-inflammatory properties of Thespesia populnea leaf extracts.Nat. Prod. Res.201226171616162010.1080/14786419.2011.57413421916770
    [Google Scholar]
  102. BangJ.S. OhD.H. ChoiH.M. SurB.J. LimS.J. KimJ.Y. YangH.I. YooM.C. HahmD.H. KimK.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models.Arthritis Res. Ther.2009112R4910.1186/ar266219327174
    [Google Scholar]
  103. JabbarA. ZamanM.A. IqbalZ. YaseenM. ShamimA. Anthelmintic activity of Chenopodium album (L.) and Caesalpinia crista (L.) against trichostrongylid nematodes of sheep.J. Ethnopharmacol.20071141869110.1016/j.jep.2007.07.02717826017
    [Google Scholar]
  104. AlshehriM.M. QuispeC. Herrera-BravoJ. Sharifi-RadJ. TutuncuS. AydarE.F. TopkayaC. MertdincZ. OzcelikB. AitalM. KumarN.V.A. LapavaN. RajkovicJ. ErtaniA. NicolaS. SemwalP. PainuliS. González-ContrerasC. MartorellM. ButnariuM. BagiuI.C. BagiuR.V. BarbhaiM.D. KumarM. DaştanS.D. CalinaD. ChoW.C. A review of recent studies on the antioxidant and anti-infectious properties of senna plants.Oxid. Med. Cell. Longev.2022202213810.1155/2022/602590035154569
    [Google Scholar]
  105. BalkrishnaA. A Comprehensive Insight into the Phytochemical, Pharmacological Potential, and Traditional Medicinal Uses of Albizia lebbeck (L.) Benth.Evid Based Complement Alternat Med eCAM. 20225359669
    [Google Scholar]
  106. LaiS.C. HoY.L. HuangS.C. HuangT.H. LaiZ.R. WuC.R. LianK.Y. ChangY.S. Antioxidant and antiproliferative activities of Desmodium triflorum (L.) DC.Am. J. Chin. Med.201038232934210.1142/S0192415X1000788920387229
    [Google Scholar]
  107. UpretyY. PoudelR.C. GurungJ. ChettriN. ChaudharyR.P. Traditional use and management of NTFPs in Kangchenjunga Landscape: Implications for conservation and livelihoods.J. Ethnobiol. Ethnomed.20161211910.1186/s13002‑016‑0089‑827142597
    [Google Scholar]
  108. MaliR.G. DhakeA.S. A review on herbal antiasthmatics.Orient. Pharm. Exp. Med.2011112779010.1007/s13596‑011‑0019‑122207824
    [Google Scholar]
  109. FranzottiE.M. SantosC.V.F. RodriguesH.M.S.L. MourãoR.H.V. AndradeM.R. AntoniolliA.R. Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca).J. Ethnopharmacol.2000721-227327710.1016/S0378‑8741(00)00205‑110967481
    [Google Scholar]
  110. AmbuG. ChaudharyR.P. MariottiM. CornaraL. Traditional uses of medicinal plants by ethnic people in the Kavrepalanchok District, central Nepal.Plants20209675910.3390/plants906075932560543
    [Google Scholar]
  111. MishraM.R. MishraA. PradhanD.K. PandaA.K. BeheraR.K. JhaS. Antidiabetic and antioxidant activity of Scoparia dulcis Linn.Indian J. Pharm. Sci.201375561061424403665
    [Google Scholar]
  112. GouK.J. ZengR. MaY. LiA.N. YangK. YanH.X. JinS. QuY. Traditional uses, phytochemistry, and pharmacology of Persicaria orientalis (L.) Spach - A review.J. Ethnopharmacol.202024911240710.1016/j.jep.2019.11240731751652
    [Google Scholar]
  113. SharmaP. DwivedeeB.P. BishtD. DashA.K. KumarD. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon201959e0243710.1016/j.heliyon.2019.e0243731701036
    [Google Scholar]
  114. CarvalhoA.R.Jr DinizR.M. SuarezM.A.M. FigueiredoC.S.S.S. ZagmignanA. GrisottoM.A.G. FernandesE.S. da SilvaL.C.N. Use of some Asteraceae Plants for the treatment of wounds: From ethnopharmacological studies to scientific evidences.Front. Pharmacol.2018978410.3389/fphar.2018.0078430186158
    [Google Scholar]
  115. AliS.I. GopalakrishnanB. VenkatesaluV. Pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: A review.Phytother. Res.20173181140116110.1002/ptr.584028618131
    [Google Scholar]
  116. AlamgeerW. YounisW. AsifH. SharifA. RiazH. BukhariI.A. AssiriA.M. Traditional medicinal plants used for respiratory disorders in Pakistan: A review of the ethno-medicinal and pharmacological evidence.Chin. Med.20181314810.1186/s13020‑018‑0204‑y30250499
    [Google Scholar]
  117. KuldipS.D. SandeepC. JeewanS.J. Assessment of Indian medicinal plants for the treatment of asthma.J. Med. Plants Res.201593285186210.5897/JMPR2015.5890
    [Google Scholar]
  118. SonD. LeeJ. LeeY. SongH. LeeC. HongJ. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds.Pharmacol. Ther.2007115224627010.1016/j.pharmthera.2007.04.00417555825
    [Google Scholar]
  119. AlzohairyM.A. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment.Evid. Based Complement. Alternat. Med.2016201611110.1155/2016/738250627034694
    [Google Scholar]
  120. RahmaniA. AlmatroudiA. AlrumaihiF. KhanA. Pharmacological and therapeutic potential of neem (Azadirachta indica).Pharmacogn. Rev.2018122425025510.4103/phrev.phrev_8_18
    [Google Scholar]
  121. IgnacimuthuS. ShanmugamN. Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adhatoda vasica Ness. leaves.J. Biosci.201035456557010.1007/s12038‑010‑0065‑821289439
    [Google Scholar]
  122. BirdiT.J. DaswaniP.G. GholkarM.S. Psidium guajava: A single plant for multiple health problems of rural Indian population.Pharmacogn. Rev.2017112216717410.4103/phrev.phrev_17_1728989253
    [Google Scholar]
  123. GooY.K. Therapeutic potential of ranunculus species (Ranunculaceae): A literature review on traditional medicinal herbs.Plants20221112159910.3390/plants1112159935736749
    [Google Scholar]
  124. SheuS.Y. YaoC.H. LeiY.C. KuoT.F. Recent progress in Glinus oppositifolius research.Pharm. Biol.20145281079108410.3109/13880209.2013.87665324617922
    [Google Scholar]
  125. BaligaM.S. ThilakchandK.R. RaiM.P. RaoS. VenkateshP. Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer.Integr. Cancer Ther.201312318719610.1177/153473541245132023089553
    [Google Scholar]
  126. PatelSM VenkataKC BhattacharyyaP SethiG BishayeeA Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases.InSeminars in cancer biologyAcademic Press.201640100115
    [Google Scholar]
  127. NemetchekM.D. StierleA.A. StierleD.B. LurieD.I. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain.J. Ethnopharmacol.20171979210010.1016/j.jep.2016.07.07327473605
    [Google Scholar]
  128. BanerjeeS. AnandU. GhoshS. RayD. RayP. NandyS. DeshmukhG.D. TripathiV. DeyA. Bacosides from Bacopa monnieri extract: An overview of the effects on neurological disorders.Phytother. Res.202135105668567910.1002/ptr.720334254371
    [Google Scholar]
  129. PatelA. Rojas-VeraJ. DackeC. Therapeutic constituents and actions of Rubus species.Curr. Med. Chem.200411111501151210.2174/092986704336514315180580
    [Google Scholar]
  130. SiddiquiM.Z. Boswellia serrata, a potential antiinflammatory agent: An overview.Indian J. Pharm. Sci.201173325526122457547
    [Google Scholar]
  131. YadavM. GulkariV. WanjariM. Bryophyllum pinnatum leaf extracts prevent formation of renal calculi in lithiatic rats.Anc. Sci. Life2016362909710.4103/asl.ASL_90_1628446830
    [Google Scholar]
  132. EbadaS.S. LajkiewiczN. PorcoJ.A.Jr Li-WeberM. ProkschP. Chemistry and biology of rocaglamides (= flavaglines) and related derivatives from aglaia species (meliaceae).Fortschr. Chem. Org. Naturst.20119415810.1007/978‑3‑7091‑0748‑5_121833837
    [Google Scholar]
  133. AeriV. IlyasU. KatareD.P. NaseefP. A review on hepatoprotective and immunomodulatory herbal plants.Pharmacogn. Rev.20161019667010.4103/0973‑7847.17654427041876
    [Google Scholar]
  134. AliM. KhanT. FatimaK. AliQ.A. OvaisM. KhalilA.T. UllahI. RazaA. ShinwariZ.K. IdreesM. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions.Phytother. Res.201832219921510.1002/ptr.595729047177
    [Google Scholar]
  135. DeFilippsR.A. KrupnickG.A. The medicinal plants of Myanmar.PhytoKeys2018102102134110.3897/phytokeys.102.2438030002597
    [Google Scholar]
  136. NyagumboE PoteW ShopoB NyirendaT ChagondaI MapayaRJ MaunganidzeF MavengereWN MawereC MutasaI KademetemeE MaroyiA TadereraT BhebheM Medicinal plants used for the management of respiratory diseases in Zimbabwe: Review and perspectives potential management of COVID-19.Phys Chem Earth 2002128103232
    [Google Scholar]
  137. KuruppuA.I. ParanagamaP. GoonasekaraC.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka.Saudi Pharm. J.201927456557310.1016/j.jsps.2019.02.00431061626
    [Google Scholar]
  138. DharmasiriM.G. JayakodyJ.R.A.C. GalhenaG. LiyanageS.S.P. RatnasooriyaW.D. Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo.J. Ethnopharmacol.2003872-319920610.1016/S0378‑8741(03)00159‑412860308
    [Google Scholar]
  139. MaoQ.Q. XuX.Y. CaoS.Y. GanR.Y. CorkeH. BetaT. LiH.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe).Foods20198618510.3390/foods806018531151279
    [Google Scholar]
  140. AdomM.B. TaherM. MutalabisinM.F. AmriM.S. Abdul KudosM.B. Wan SulaimanM.W.A. SenguptaP. SusantiD. Chemical constituents and medical benefits of Plantago major.Biomed. Pharmacother.20179634836010.1016/j.biopha.2017.09.15229028587
    [Google Scholar]
  141. ZhangL. RavipatiA.S. KoyyalamudiS.R. JeongS.C. ReddyN. SmithP.T. BartlettJ. ShanmugamK. MünchG. WuM.J. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds.J. Agric. Food Chem.20115923123611236710.1021/jf203146e22023309
    [Google Scholar]
  142. PolatD.Ç. İlgünS. KaratoprakG.Ş. AkkolE.K. CapassoR. Phytochemical profiles, antioxidant, cytotoxic, and anti-inflammatory activities of traditional medicinal plants: Centaurea pichleri subsp. pichleri, Conyza canadensis, and Jasminum fruticans. Molecules20222723824910.3390/molecules2723824936500342
    [Google Scholar]
  143. Torres-CarroR. IslaM.I. Thomas-ValdesS. Jiménez-AspeeF. Schmeda-HirschmannG. AlbertoM.R. Inhibition of pro-inflammatory enzymes by medicinal plants from the Argentinean highlands (Puna).J. Ethnopharmacol.2017205576810.1016/j.jep.2017.04.01328433637
    [Google Scholar]
  144. KudumelaR.G. McGawL.J. MasokoP. Antibacterial interactions, anti-inflammatory and cytotoxic effects of four medicinal plant species.BMC Complement. Altern. Med.201818119910.1186/s12906‑018‑2264‑z29970064
    [Google Scholar]
  145. JaiareeN. ItharatA. RuangnooS. Cytotoxic and anti-inflammatory activities of medicinal plants and women’s health remedy found in “Mahachotarat scripture” of Thai traditional medicine.J. Med. Assoc. Thai.201699Suppl. 4S211S22129926715
    [Google Scholar]
  146. Ndoye FoeF.M.C. TchinangT.F.K. NyegueA.M. AbdouJ.P. YayaA.J.G. TchindaA.T. EssameJ.L.O. EtoaF.X. Chemical composition, in vitro antioxidant and anti-inflammatory properties of essential oils of four dietary and medicinal plants from Cameroon.BMC Complement. Altern. Med.201616111710.1186/s12906‑016‑1096‑y27056828
    [Google Scholar]
  147. NapagodaM. GerstmeierJ. ButschekH. De SoyzaS. PaceS. LorenzS. QaderM. WitharanaS. NagahawatteA. WijayaratneG. SvatošA. JayasingheL. KoeberleA. WerzO. The anti-inflammatory and antimicrobial potential of selected ethnomedicinal plants from Sri Lanka.Molecules2020258189410.3390/molecules2508189432326068
    [Google Scholar]
  148. BoghratiZ. Sabouri-RadS. EmamiS.A. SaberM.T. SahebkarA. Tayarani-NajaranZ. The use of medicinal plants for the treatment of alopecia in the canon of Avicenna: an evidence-based review.Adv. Exp. Med. Biol.2021130829130810.1007/978‑3‑030‑64872‑5_2133861452
    [Google Scholar]
  149. MarahathaR. GyawaliK. SharmaK. GyawaliN. TandanP. AdhikariA. TimilsinaG. BhattaraiS. LamichhaneG. AcharyaA. PathakI. DevkotaH.P. ParajuliN. Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and therapeutic potentials.Phytother. Res.20213595103512410.1002/ptr.713833957012
    [Google Scholar]
  150. HuY. MaoA. YuZ. HeK. Anti-endotoxin and anti-inflammatory effects of Chinese herbal medicinal alkaloid ingredients in vivo.Microb. Pathog.201699515510.1016/j.micpath.2016.08.00627498361
    [Google Scholar]
  151. NugrahaA. AgustinaR. MirzaS. RaniD. WinartoN. TriatmokoB. PratamaA. KellerP. WangchukP. Phytochemistry and pharmacology of medicinal plants used by the Tenggerese society in java island of Indonesia.Molecules20222721753210.3390/molecules2721753236364351
    [Google Scholar]
  152. Bashir DarK. Hussain BhatA. AminS. MasoodA. Afzal ZargarM. Ahmad GanieS. Inflammation: A multidimensional insight on natural anti-inflammatory therapeutic compounds.Curr. Med. Chem.201623333775380010.2174/092986732366616081716353127538691
    [Google Scholar]
  153. WuS. YanoS. ChenJ. HisanagaA. SakaoK. HeX. HeJ. HouD.X. Polyphenols from Lonicera caerulea L. berry inhibit LPS-induced inflammation through dual modulation of inflammatory and antioxidant mediators.J. Agric. Food Chem.201765255133514110.1021/acs.jafc.7b0159928573848
    [Google Scholar]
  154. CaiJ. JingD. ShiM. LiuY. LinT. XieZ. ZhuY. ZhaoH. ShiX. DuF. ZhaoG. Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation.J. Nutr. Biochem.201425771672510.1016/j.jnutbio.2014.02.01224746834
    [Google Scholar]
  155. ZhuH. BianC. YuanJ. ChuW. XiangX. ChenF. WangC. FengH. LinJ. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury.J. Neuroinflammation20141115910.1186/1742‑2094‑11‑5924669820
    [Google Scholar]
  156. NicholasC. BatraS. VargoM.A. VossO.H. GavrilinM.A. WewersM.D. GuttridgeD.C. GrotewoldE. DoseffA.I. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation.J. Immunol.2007179107121712710.4049/jimmunol.179.10.712117982104
    [Google Scholar]
  157. BianY. LiuP. ZhongJ. HuY. ZhuangS. FanK. LiuZ. Quercetin attenuates adhesion molecule expression in intestinal microvascular endothelial cells by modulating multiple pathways.Dig. Dis. Sci.201863123297330410.1007/s10620‑018‑5221‑230076503
    [Google Scholar]
  158. Pinho-RibeiroF.A. ZarpelonA.C. FattoriV. ManchopeM.F. MizokamiS.S. CasagrandeR. VerriW.A.Jr Naringenin reduces inflammatory pain in mice.Neuropharmacology201610550851910.1016/j.neuropharm.2016.02.01926907804
    [Google Scholar]
  159. MatuE.N. van StadenJ. Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya.J. Ethnopharmacol.2003871354110.1016/S0378‑8741(03)00107‑712787952
    [Google Scholar]
  160. FawoleO.A. NdhlalaA.R. AmooS.O. FinnieJ.F. Van StadenJ. Anti-inflammatory and phytochemical properties of twelve medicinal plants used for treating gastro-intestinal ailments in South Africa.J. Ethnopharmacol.2009123223724310.1016/j.jep.2009.03.01219429367
    [Google Scholar]
  161. RoyA. KhanA. AhmadI. AlghamdiS. RajabB.S. BabalghithA.O. AlshahraniM.Y. IslamS. IslamM.R. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications.BioMed Res. Int.202220221910.1155/2022/544529135707379
    [Google Scholar]
  162. ElishaI.L. DzoyemJ.P. McGawL.J. BothaF.S. EloffJ.N. The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis.BMC Complement. Altern. Med.201616130710.1186/s12906‑016‑1301‑z27554099
    [Google Scholar]
  163. FormisanoC. SannaC. BalleroM. ChianeseG. SirignanoC. RiganoD. MillánE. MuñozE. Taglialatela-ScafatiO. Anti-inflammatory sesquiterpene lactones from Onopordum illyricum L. (Asteraceae), an Italian medicinal plant.Fitoterapia2017116616510.1016/j.fitote.2016.11.00627871974
    [Google Scholar]
  164. BellikY. BoukraâL. AlzahraniH. BakhotmahB. AbdellahF. HammoudiS. Iguer-OuadaM. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update.Molecules201218132235310.3390/molecules1801032223271469
    [Google Scholar]
  165. HowesM.J.R. SimmondsM.S.J. The role of phytochemicals as micronutrients in health and disease.Curr. Opin. Clin. Nutr. Metab. Care201417655856610.1097/MCO.000000000000011525252018
    [Google Scholar]
  166. LinghuK.G. WuG.P. FuL.Y. YangH. LiH.Z. ChenY. YuH. TaoL. ShenX.C. 1, 8-Cineole ameliorates LPS-induced vascular endothelium dysfunction in mice via PPAR-γ dependent regulation of NF-κB.Front. Pharmacol.20191017810.3389/fphar.2019.0017830930772
    [Google Scholar]
  167. CaoW. HuC. WuL. XuL. JiangW. Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice.J. Pharmacol. Sci.2016132213113710.1016/j.jphs.2016.09.00327707649
    [Google Scholar]
  168. KimC.Y. KangB. SuhH.J. ChoiH.S. Parthenolide, a feverfew-derived phytochemical, ameliorates obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 pathway.Pharmacol. Res.201914510425910.1016/j.phrs.2019.10425931078744
    [Google Scholar]
  169. LatruffeN. LançonA. FrazziR. AiresV. DelmasD. MichailleJ.J. DjouadiF. BastinJ. Cherkaoui-MalkiM. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation.Ann. N. Y. Acad. Sci.2015134819710610.1111/nyas.1281926190093
    [Google Scholar]
  170. ZhaoS.Q. XuS.Q. ChengJ. CaoX.L. ZhangY. ZhouW.P. HuangY.J. WangJ. HuX.M. Anti-inflammatory effect of external use of escin on cutaneous inflammation: Possible involvement of glucocorticoids receptor.Chin. J. Nat. Med.201816210511210.1016/S1875‑5364(18)30036‑029455725
    [Google Scholar]
  171. GentileD. FornaiM. ColucciR. PellegriniC. TirottaE. BenvenutiL. SegnaniC. IppolitoC. DurantiE. VirdisA. CarpiS. NieriP. NémethZ.H. PistelliL. BernardiniN. BlandizziC. AntonioliL. The flavonoid compound apigenin prevents colonic inflammation and motor dysfunctions associated with high fat diet-induced obesity.PLoS One2018134e019550210.1371/journal.pone.019550229641549
    [Google Scholar]
  172. LiuY. FuX. LanN. LiS. ZhangJ. WangS. LiC. ShangY. HuangT. ZhangL. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice.Behav. Brain Res.201426717818810.1016/j.bbr.2014.02.04024667364
    [Google Scholar]
  173. HeX. WeiZ. ZhouE. ChenL. KouJ. WangJ. YangZ. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice.Int. Immunopharmacol.201528147047610.1016/j.intimp.2015.07.01226202808
    [Google Scholar]
  174. KhanA. AliT. RehmanS.U. KhanM.S. AlamS.I. IkramM. MuhammadT. SaeedK. BadshahH. KimM.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain.Front. Pharmacol.20189138310.3389/fphar.2018.0138330618732
    [Google Scholar]
  175. ParkS.H. GongJ.H. ChoiY.J. KangM.K. KimY.H. KangY.H. Kaempferol inhibits endoplasmic reticulum stress-associated mucus hypersecretion in airway epithelial cells and ovalbumin-sensitized mice.PLoS One20151011e014352610.1371/journal.pone.014352626599511
    [Google Scholar]
  176. ManchopeM.F. Calixto-CamposC. Coelho-SilvaL. ZarpelonA.C. Pinho-RibeiroF.A. GeorgettiS.R. BaracatM.M. CasagrandeR. VerriW.A.Jr Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO− cGMP− PKG− KATPChannel signaling pathway.PLoS One2016114e015301510.1371/journal.pone.015301527045367
    [Google Scholar]
  177. VisnagriA. KandhareA.D. ChakravartyS. GhoshP. BodhankarS.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions.Pharm. Biol.201452781482810.3109/13880209.2013.87058424559476
    [Google Scholar]
  178. LeeS.R. KwonS.W. LeeY.H. KayaP. KimJ.M. AhnC. JungE.M. LeeG.S. AnB.S. JeungE.B. ParkB. HongE.J. Dietary intake of genistein suppresses hepatocellular carcinoma through AMPK-mediated apoptosis and anti-inflammation.BMC Cancer2019191610.1186/s12885‑018‑5222‑830606143
    [Google Scholar]
  179. LiuM LiaoK YuC LiX LiuS YangS. Puerarin alleviates neuropathic pain by inhibiting neuroinflammation in spinal cord.Mediators Inflamm.2014201448592710.1155/2014/485927
    [Google Scholar]
  180. GanY. FuY. YangL. ChenJ. LeiH. LiuQ. Cyanidin-3-O-glucoside and cyanidin protect against intestinal barrier damage and 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis.J. Med. Food2020231909910.1089/jmf.2019.452431657664
    [Google Scholar]
  181. LinghuK. LinD. YangH. XuY. ZhangY. TaoL. ChenY. ShenX. Ameliorating effects of 1,8-cineole on LPS-induced human umbilical vein endothelial cell injury by suppressing NF-κB signaling in vitro.Eur. J. Pharmacol.201678919520110.1016/j.ejphar.2016.07.03927455900
    [Google Scholar]
  182. ZhouD. ZhangS. HuL. GuY.F. CaiY. WuD. LiuW.T. JiangC.Y. KongX. ZhangG.Q. Inhibition of apoptosis signal-regulating kinase by paeoniflorin attenuates neuroinflammation and ameliorates neuropathic pain.J. Neuroinflammation20191618310.1186/s12974‑019‑1476‑630975172
    [Google Scholar]
  183. RaiS.N. ZahraW. SinghS.S. BirlaH. KeswaniC. DilnashinH. RathoreA.S. SinghR. SinghR.K. SinghS.P. Anti-inflammatory activity of ursolic acid in MPTP-induced parkinsonian mouse model.Neurotox. Res.201936345246210.1007/s12640‑019‑00038‑631016688
    [Google Scholar]
  184. WangT. ZhaoS. WangY. YangY. YaoL. ChuL. DuH. FuF. Protective effects of escin against indomethacin-induced gastric ulcer in mice.Toxicol. Mech. Methods201424856056610.3109/15376516.2014.95181525137224
    [Google Scholar]
  185. YanX. HuangG. LiuQ. ZhengJ. ChenH. HuangQ. ChenJ. HuangH. Withaferin A protects against spinal cord injury by inhibiting apoptosis and inflammation in mice.Pharm. Biol.20175511171117610.1080/13880209.2017.128826228228044
    [Google Scholar]
  186. LiuR. HaoD. XuW. LiJ. LiX. ShenD. ShengK. ZhaoL. XuW. GaoZ. ZhaoX. LiuQ. ZhangY. β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice.Pharm. Biol.201957116116810.1080/13880209.2019.157746130905278
    [Google Scholar]
  187. ShahidH. ShahzadM. ShabbirA. SaghirG. Immunomodulatory and anti-inflammatory potential of curcumin for the treatment of allergic asthma: Effects on expression levels of pro-inflammatory cytokines and aquaporins.Inflammation20194262037204710.1007/s10753‑019‑01066‑231407145
    [Google Scholar]
  188. ChenJ. YangX. ZhangW. PengD. XiaY. LuY. HanX. SongG. ZhuJ. LiuR. Therapeutic effects of resveratrol in a mouse model of LPS and cigarette smoke-induced COPD.Inflammation20163961949195910.1007/s10753‑016‑0430‑327590234
    [Google Scholar]
  189. JinB.R. ChungK.S. CheonS.Y. LeeM. HwangS. Noh HwangS. RheeK.J. AnH.J. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation.Sci. Rep.2017714625210.1038/srep4625228383063
    [Google Scholar]
  190. a ZhouB. LiQ. WangJ. ChenP. JiangS. Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling.Food Chem. Toxicol.2019123162710.1016/j.fct.2018.10.03630342113
    [Google Scholar]
  191. b ZhuL. GuP. ShenH. Gallic acid improved inflammation via NF-κB pathway in TNBS-induced ulcerative colitis.Int. Immunopharmacol.20196712913710.1016/j.intimp.2018.11.04930544066
    [Google Scholar]
  192. de Cássia da Silveira e SáR. AndradeL. de SousaD. A review on anti-inflammatory activity of monoterpenes.Molecules20131811227125410.3390/molecules1801122723334570
    [Google Scholar]
  193. CuéllarM.J. GinerR.M. RecioM.C. MáñezS. RíosJ.L. Topical anti-inflammatory activity of some Asian medicinal plants used in dermatological disorders.Fitoterapia200172322122910.1016/S0367‑326X(00)00305‑111295297
    [Google Scholar]
  194. DzoyemJ.P. EloffJ.N. Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa.J. Ethnopharmacol.201516019420110.1016/j.jep.2014.11.03425476488
    [Google Scholar]
  195. KakatumN. JaiarreeN. MakchucitS. ItharatA. Antioxidant and anti-inflammatory activities of Thai medicinal plants in Sahasthara remedy for muscle pain treatment.J. Med. Assoc. Thai.201295Suppl. 1S120S12623964454
    [Google Scholar]
  196. GutiérrezD.M.A. BahM. GarduñoM.L.R. MendozaS.O.M. SerranoV.C. Anti-inflammatory and antioxidant activities of methanol extracts and alkaloid fractions of four Mexican medicinal plants of Solanaceae.Afr. J. Tradit. Complement. Altern. Med.201411325926710.4314/ajtcam.v11i3.3625371591
    [Google Scholar]
  197. BrezaniV. SmejkalK. HosekJ. TomasovaV. Anti-inflammatory natural prenylated phenolic compounds - potential lead substances.Curr. Med. Chem.201825101094115910.2174/092986732466617081016115728799496
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708292961240508110207
Loading
/content/journals/raiad/10.2174/0127722708292961240508110207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test