Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Flos Magnoliae is one of the important medicinal plants in different traditional medicine, including Chinese herbal medicine. Lignans and neolignans, including tetrahydrofurofuran, tetrahydrofuran, and aryltetralin, are present in the Flos Magnoliae species. A wide range of pharmacological activity of Flos Magnoliae has been reported in medicine. Fargesin has been isolated from and it is a lignan-class phytochemical. Fargesin has numerous pharmacological activities in medicine, including its effectiveness on lipid and glucose metabolism, oxidative stress, myocardial apoptosis, . In the present work, we have summarized the detailed scientific information of fargesin concerning its medicinal properties and pharmacological activities. Numerous biological and chemical aspects of fargesin are discussed here, including the detailed pharmacological activities and analytical aspects of fargesin. In this review, we have also compiled analytical data on fargesin based on available scientific literature. Ethnopharmacological information on fargesin was gathered by a literature survey on PubMed, Science Direct, Google, and Scopus using the terms fargesin, Flos Magnoliae, phytochemical, and herbal medicine. The present review paper compiled the scientific data on fargesin in medicine for its pharmacological activities and analytical aspects in a very concise manner with proper citations. The present work signified the biological importance of fargesin in medicine due to its significant impact on bone disorders, lung injury, colon cancer, atherosclerosis, neurological disorders, ischemia, sars-cov-2, allergy, lipid and glucose metabolism, melanin synthesis, and different classes of enzymes. Furthermore, fargesin also has anti-inflammatory, antihypertensive, antiprotozoal, antimycobacterial, and antifeedant activity. However, analytical methods used for the separation, identification and isolation of fargesin in different biological and non-biological samples were also covered in the present review. The present work revealed the pharmacological activities and analytical aspects of fargesin in medicine and other allied health sectors.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708286664240429093913
2024-09-01
2024-10-22
Loading full text...

Full text loading...

References

  1. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of engeletin in medicine: Therapeutic benefit through scientific data analysis.Endocr. Metab. Immune Disord. Drug Targets202323327328210.2174/187153032266622052016225135619306
    [Google Scholar]
  2. PatelK. PatelD.K. Medicinal importance and therapeutic benefit of bioactive flavonoid eriocitrin: An update on pharmacological activity and analytical aspects.Nat. Prod. J.2024142e10072321858310.2174/2210315514666230710112336
    [Google Scholar]
  3. PatelD.K. Biological potential and therapeutic benefit of Chrysosplenetin: An applications of polymethoxylated flavonoid in medicine from natural sources.Pharmacol.Res. Mod. Chin. Med.2022410015510.1016/j.prmcm.2022.100155
    [Google Scholar]
  4. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.0017724454289
    [Google Scholar]
  5. JianX. LiuY. ZhaoZ. ZhaoL. WangD. LiuQ. The role of traditional Chinese medicine in the treatment of atherosclerosis through the regulation of macrophage activity.Biomed. Pharmacother.201911810937510.1016/j.biopha.2019.10937531548175
    [Google Scholar]
  6. CostaR.A. BarrosG.A. da SilvaJ.N. OliveiraK.M. BezerraD.P. SoaresM.B.P. CostaE.V. Experimental and theoretical study on spectral features, reactivity, solvation, topoisomerase I inhibition and in vitro cytotoxicity in human HepG2 cells of guadiscine and guadiscidine aporphine alkaloids.J. Mol. Struct.2021122912984410.1016/j.molstruc.2020.129844
    [Google Scholar]
  7. PanS.Y. LitscherG. GaoS.H. ZhouS.F. YuZ.L. ChenH.Q. ZhangS.F. TangM.K. SunJ.N. KoK.M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources.Evid. Based Complement. Alternat. Med.2014201412010.1155/2014/52534024872833
    [Google Scholar]
  8. ChenH. ZhuY. ZhangY.L. ZengM.N. CaoY.G. SunP.T. CaoB. DuK. ZhaoX. WangX.W. ZhengX.K. FengW.S. Neolignans and amide alkaloids from the stems of Piper kadsura and their neuroprotective activity.Phytochemistry202220311333610.1016/j.phytochem.2022.11333635933005
    [Google Scholar]
  9. ZálešákF. BonD.J.Y.D. PospíšilJ. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances.Pharmacol. Res.201914610428410.1016/j.phrs.2019.10428431136813
    [Google Scholar]
  10. PatelK. PatelD.K. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects.Curr. Bioact. Compd.202016319120010.2174/1573407214666181023115355
    [Google Scholar]
  11. PatelK. KumarV. RahmanM. VermaA. PatelD.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future.Beni. Suef Univ. J. Basic Appl. Sci.201871314210.1016/j.bjbas.2017.05.009
    [Google Scholar]
  12. PatelDK PatelK Biological potential and antiviral activity of strictinin in the medicine through literature data analysis.Int. J. Surg.202210010628810.1016/j.ijsu.2022.106288
    [Google Scholar]
  13. PatelD.K. Biological importance and therapeutic potential of Trilobatin in the management of human disorders and associated secondary complications.Pharmacol.Res. Mod. Chinese. Med.2022510018510.1016/j.prmcm.2022.100185
    [Google Scholar]
  14. PatelD.K. Therapeutic role of columbianadin in human disorders: Medicinal importance, biological properties and analytical aspects.Pharmacol.Res. Mod. Chinese. Med.2023610021210.1016/j.prmcm.2022.100212
    [Google Scholar]
  15. PatelD.K. Health benefits, therapeutic applications, and recent advances of cirsilineol in the medicine: Potential bioactive natural flavonoids of genus Artemisia.Endocr. Metab. Immune Disord. Drug Targets202323789490710.2174/187153032366622112212345636415094
    [Google Scholar]
  16. PatelD.K. Biological importance, therapeutic benefits, and analytical aspects of active flavonoidal compounds ‘corylin’ from psoralea corylifolia in the field of medicine.Infect. Disord. Drug Targets2023231e25082220800510.2174/187152652266622082516090636028973
    [Google Scholar]
  17. PatelD.K. Biological potential and therapeutic effectiveness of hinokiflavone in medicine: The effective components of herbal medicines for treatment of cancers and associated complications.Curr. Nutr. Food Sci.202420443944910.2174/1573401319666230602121227
    [Google Scholar]
  18. PatelD.K. PatelK. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects.Pharmacol.Res. Mod. Chinese. Med.2022510017510.1016/j.prmcm.2022.100175
    [Google Scholar]
  19. PatelD.K. Grandisin and its therapeutic potential and pharmacological activities: A review.Pharmacol Res20225100176
    [Google Scholar]
  20. PatelD.K. Therapeutic effectiveness of Magnolin on cancers and other human complications.Pharmacol Res20236100203
    [Google Scholar]
  21. BatistaA.N.L. SantosC.H.T. de AlbuquerqueA.C.F. SantosF.M.Jr GarcezF.R. BatistaJ.M.Jr Absolute configuration reassignment of nectamazin A: Implications to related neolignans.Spectrochim. Acta A Mol. Biomol. Spectrosc.202430412328310.1016/j.saa.2023.12328337633100
    [Google Scholar]
  22. PatelK. PatelD.K. Therapeutic benefit and biological importance of ginkgetin in the medicine: Medicinal importance, pharmacological activities and analytical aspects.Curr. Bioact. Compd.2021179e19072119077010.2174/1573407217666210127091221
    [Google Scholar]
  23. SciaccaC. CardulloN. PulvirentiL. Di FrancescoA. MuccilliV. Evaluation of honokiol, magnolol and of a library of new nitrogenated neolignans as pancreatic lipase inhibitors.Bioorg. Chem.202313410645510.1016/j.bioorg.2023.10645536913880
    [Google Scholar]
  24. MansoorT.A. BorralhoP.M. LuoX. MulhovoS. RodriguesC.M.P. FerreiraM.J.U. Apoptosis inducing activity of benzophenanthridine-type alkaloids and 2-arylbenzofuran neolignans in HCT116 colon carcinoma cells.Phytomedicine2013201092392910.1016/j.phymed.2013.03.02623643093
    [Google Scholar]
  25. PatelD.K. PatelK. An overview of medicinal importance, pharmacological activities and analytical aspects of fraxin from cortex fraxinus.Curr. Tradit. Med.202395e19092220892110.2174/2215083808666220919114652
    [Google Scholar]
  26. PatelD.K. PatelK. Herbal medicines genkwadaphnin as therapeutic agent for cancers and other human disorders: A review of pharmacological activities through scientific evidence.Curr. Tradit. Med.2024104e23052321725110.2174/2215083810666230523155650
    [Google Scholar]
  27. PatelD.K. Herbal phytomedicine ‘irisolidone’ in chronic diseases: Biological efficacy and pharmacological activity.Rec. Adv. Anti-Inf. Drug. Disc.2022171132210.2174/1574891X1666622030423193435249525
    [Google Scholar]
  28. PatelD.K. Biological importance of bioactive phytochemical ‘Cimifugin’ as potential active pharmaceutical ingredients against human disorders: A natural phytochemical for new therapeutic alternatives.Pharmacol. Res. Mod. Chin. Med.2023710023210.1016/j.prmcm.2023.100232
    [Google Scholar]
  29. PatelD.K. Biological Importance of a Biflavonoid ‘Bilobetin’ in the Medicine: Medicinal Importance, Pharmacological Activities and Analytical Aspects.Infect. Disord. Drug Targets2022225e21032220249010.2174/187152652266622032115203635319397
    [Google Scholar]
  30. PatelD.K. PatelK. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects.Curr. Cancer Ther. Rev.2022181415010.2174/1573394717666210831163322
    [Google Scholar]
  31. LiJ. WenJ. TangG. LiR. GuoH. WengW. WangD. JiS. Development of a comprehensive quality control method for the quantitative analysis of volatiles and lignans in Magnolia biondii Pamp. by near infrared spectroscopy.Spectrochim. Acta A Mol. Biomol. Spectrosc.202023011808010.1016/j.saa.2020.11808031982656
    [Google Scholar]
  32. XiaH. ZhangJ.F. WangL.Y. XiaG.Y. WangY.N. WuY.Z. LinP.C. XiongL. LinS. Bioactive neolignans and lignans from the roots of Paeonia lactiflora Chin. J. Nat. Med.202220321021410.1016/S1875‑5364(22)60164‑X35369965
    [Google Scholar]
  33. NieW. DingL.F. LeiT. LiuZ.X. LiJ-D. SongL.D. WuX-D. Biphenyl-type neolignans with NO inhibitory activity from the fruits of Magnolia tripetala.Phytochem. Lett.20214422222610.1016/j.phytol.2021.06.026
    [Google Scholar]
  34. RenouardS. TribalatcM.A. LamblinF. MongelardG. FliniauxO. CorbinC. MarosevicD. PilardS. DemaillyH. GutierrezL. HanoC. MesnardF. LainéE. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: Consequences on lignans and neolignans accumulation.J. Plant Physiol.2014171151372137710.1016/j.jplph.2014.06.00525046758
    [Google Scholar]
  35. AnjumS. AbbasiB.H. DoussotJ. Favre-RéguillonA. HanoC. Effects of photoperiod regimes and ultraviolet-C radiations on biosynthesis of industrially important lignans and neolignans in cell cultures of Linum usitatissimum L. (Flax).J. Photochem. Photobiol. B201716721622710.1016/j.jphotobiol.2017.01.00628088102
    [Google Scholar]
  36. WangL.X. WangH.L. HuangJ. ChuT.Z. PengC. ZhangH. ChenH.L. XiongY.A. TanY.Z. Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications.Phytochemistry202220211332610.1016/j.phytochem.2022.11332635842031
    [Google Scholar]
  37. ZahirA. AhmadW. NadeemM. Giglioli-Guivarc’hN. HanoC. AbbasiB.H. in vitro cultures of Linum usitatissimum L.: Synergistic effects of mineral nutrients and photoperiod regimes on growth and biosynthesis of lignans and neolignans.J. Photochem. Photobiol. B201818714115010.1016/j.jphotobiol.2018.08.00930145465
    [Google Scholar]
  38. AhmadW. ZahirA. NadeemM. GarrosL. DrouetS. RenouardS. DoussotJ. Giglioli-Guivarc’hN. HanoC. AbbasiB.H. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures.Process Biochem.20197915516510.1016/j.procbio.2018.12.025
    [Google Scholar]
  39. Sathish KumarB. SinghA. KumarA. SinghJ. HasanainM. SinghA. MasoodN. YadavD.K. KonwarR. MitraK. SarkarJ. LuqmanS. PalA. KhanF. ChandaD. NegiA.S. Synthesis of neolignans as microtubule stabilisers.Bioorg. Med. Chem.20142241342135410.1016/j.bmc.2013.12.06724457094
    [Google Scholar]
  40. BasiniG. SpataforaC. TringaliC. BussolatiS. GrasselliF. Effects of a ferulate-derived dihydrobenzofuran neolignan on angiogenesis, steroidogenesis, and redox status in a swine cell model.SLAS Discov.20141991282128910.1177/108705711453622624916413
    [Google Scholar]
  41. VuV.T. XuX.J. ChenK. NguyenM.T. NguyenB.N. PhamG.N. KongL.Y. LuoJ.G. New oligomeric neolignans from the leaves of Magnolia officinalis var. biloba.Chin. J. Nat. Med.202119749149910.1016/S1875‑5364(21)60048‑134247772
    [Google Scholar]
  42. WangX. ChengY. XueH. YueY. ZhangW. LiX. Fargesin as a potential β1 adrenergic receptor antagonist protects the hearts against ischemia/reperfusion injury in rats via attenuating oxidative stress and apoptosis.Fitoterapia2015105162510.1016/j.fitote.2015.05.01626025856
    [Google Scholar]
  43. PhamT.H. KimM.S. LeM.Q. SongY.S. BakY. RyuH.W. OhS.R. YoonD.Y. Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-ĸB signaling.Phytomedicine2017249610310.1016/j.phymed.2016.11.01428160867
    [Google Scholar]
  44. LeeG.E. LeeC.J. AnH.J. KangH.C. LeeH.S. LeeJ.Y. OhS.R. ChoS.J. KimD.J. ChoY.Y. Fargesin inhibits EGF-induced cell transformation and colon cancer cell growth by suppression of CDK2/Cyclin E signaling pathway.Int. J. Mol. Sci.2021224207310.3390/ijms2204207333669811
    [Google Scholar]
  45. JeongJ.H. KimD.K. JiH.Y. OhS.R. LeeH.K. LeeH.S. Liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for the simultaneous determination of dimethoxyaschantin, dimethylliroresinol, dimethylpinoresinol, epimagnolin A, fargesin and magnolin in rat plasma.Biomed. Chromatogr.201125887988910.1002/bmc.153821058411
    [Google Scholar]
  46. WangG. GaoJ.H. HeL.H. YuX.H. ZhaoZ.W. ZouJ. WenF.J. ZhouL. WanX.J. TangC.K. Fargesin alleviates atherosclerosis by promoting reverse cholesterol transport and reducing inflammatory response.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20201865515863310.1016/j.bbalip.2020.15863331988050
    [Google Scholar]
  47. FuT. ChaiB. ShiY. DangY. YeX. Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes by regulating PKA/CREB and P38/MAPK signaling pathways.J. Dermatol. Sci.201994121321910.1016/j.jdermsci.2019.03.00430956031
    [Google Scholar]
  48. LuJ. ZhangH. PanJ. HuZ. LiuL. LiuY. YuX. BaiX. CaiD. ZhangH. Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways.Arthritis Res. Ther.202123114210.1186/s13075‑021‑02512‑z33990219
    [Google Scholar]
  49. YueB. RenY.J. ZhangJ.J. LuoX.P. YuZ.L. RenG.Y. SunA.N. DengC. WangZ.T. DouW. Anti-inflammatory effects of fargesin on chemically induced inflammatory bowel disease in mice.Molecules2018236138010.3390/molecules2306138029880739
    [Google Scholar]
  50. ShaS. XuD. WangY. ZhaoW. LiX. Antihypertensive effects of fargesin in vitro and in vivo via attenuating oxidative stress and promoting nitric oxide release.Can. J. Physiol. Pharmacol.201694890090610.1139/cjpp‑2015‑061527409158
    [Google Scholar]
  51. KimJ.H. KwonS.S. JeongH.U. LeeH.S. Inhibitory effects of dimethyllirioresinol, epimagnolin A, eudesmin, fargesin, and magnolin on cytochrome p450 enzyme activities in human liver microsomes.Int. J. Mol. Sci.201718595210.3390/ijms1805095228468305
    [Google Scholar]
  52. LeeY.S. ChaB.Y. ChoiS.S. HaradaY. ChoiB.K. YonezawaT. TeruyaT. NagaiK. WooJ.T. Fargesin improves lipid and glucose metabolism in 3T3‐L1 adipocytes and high‐fat diet‐induced obese mice.Biofactors201238430030810.1002/biof.102222674784
    [Google Scholar]
  53. ParkR. ParkE.J. ChoY.Y. LeeJ.Y. KangH.C. SongI.S. LeeH.S. Tetrahydrofurofuranoid lignans, eudesmin, fargesin, epimagnolin A, magnolin, and yangambin inhibit UDP-glucuronosyltransferase 1A1 and 1A3 activities in human liver microsomes.Pharmaceutics202113218710.3390/pharmaceutics1302018733535454
    [Google Scholar]
  54. EM De LimaS.Y. Da SilvaA.R.N. LealC.E.Y. De Alencar FilhoE.B. Virtual screening of fargesin analogs as candidates as inhibitors of aedes aegypti sterol carrier protein.Pharmacognosy Res.2021141121810.5530/pres.14.1.3
    [Google Scholar]
  55. Min SeoL. Chang HoL. Young YoonB. Hye SukL. Quantification of fargesin in mouse plasma using liquid chromatography-high resolution mass spectrometry: Application to pharmacokinetics of fargesin in mice.Mass Spectrom. Lett.2022132025
    [Google Scholar]
  56. ChunH.W. KimS.J. PhamT.H. BakY. OhJ. RyuH.W. OhS.R. HongJ.T. YoonD.Y. Epimagnolin A inhibits IL‐6 production by inhibiting p38/NF‐κB and AP‐1 signaling pathways in PMA‐stimulated THP‐1 cells.Environ. Toxicol.201934779680310.1002/tox.2274630919561
    [Google Scholar]
  57. JunA.Y. KimH.J. ParkK.K. SonK.H. LeeD.H. WooM.H. ChungW.Y. Tetrahydrofurofuran-type lignans inhibit breast cancer-mediated bone destruction by blocking the vicious cycle between cancer cells, osteoblasts and osteoclasts.Invest. New Drugs201432111310.1007/s10637‑013‑9969‑023673814
    [Google Scholar]
  58. ZhangY. MaR. WangJ. Protective effects of fargesin on cadmium‐induced lung injury through regulating aryl hydrocarbon receptor.J. Biochem. Mol. Toxicol.20223611e2319710.1002/jbt.2319735983679
    [Google Scholar]
  59. JayaramanS. UmapathyV.R. GovindarajJ. GovidarajK. Molecular docking analysis of vascular endothelial growth factor receptor with bioactive molecules from Piper longum as potential anti-cancer agents.Bioinformation202117122322810.6026/9732063001722334393441
    [Google Scholar]
  60. ChoiS.S. ChaB.Y. ChoiB.K. LeeY.S. YonezawaT. TeruyaT. NagaiK. WooJ.T. Fargesin, a component of Flos Magnoliae, stimulates glucose uptake in L6 myotubes.J. Nat. Med.201367232032610.1007/s11418‑012‑0685‑422791412
    [Google Scholar]
  61. ChenC.C. ChenH.Y. ShiaoM.S. LinY.L. KuoY.H. OuJ.C. Inhibition of low density lipoprotein oxidation by tetrahydrofurofuran lignans from Forsythia suspensa and Magnolia coco.Planta Med.199965870971110.1055/s‑1999‑1409310630110
    [Google Scholar]
  62. KaurK. DeviB. AgrawalV. KumarR. SandhirR. Identification of potential inhibitors of brain-specific CYP46A1 from phytoconstituents in Indian traditional medicinal plants.J Proteins Proteomics202213422724510.1007/s42485‑022‑00098‑x
    [Google Scholar]
  63. BaekJ.A. LeeY.D. LeeC.B. GoH.K. KimJ.P. SeoJ.J. RheeY.K. KimA.M. NaD.J. Extracts of Magnoliae flos inhibit inducible nitric oxide synthase via ERK in human respiratory epithelial cells.Nitric Oxide200920212212810.1016/j.niox.2008.10.00318976718
    [Google Scholar]
  64. KimJ.S. KimJ.Y. LeeH.J. LimH.J. LeeD.Y. KimD.H. RyuJ.H. Suppression of inducible nitric oxide synthase expression by furfuran lignans from flower buds of Magnolia fargesii in BV-2 microglial cells.Phytother. Res.201024574875310.1002/ptr.302819943243
    [Google Scholar]
  65. LimH. SonK.H. BaeK.H. HungT.M. KimY.S. KimH.P. 5-Lipoxygenase-inhibitory constituents from Schizandra fructus and Magnolia flos.Phytother. Res.200923101489149210.1002/ptr.278319277963
    [Google Scholar]
  66. TripathiD. KooraS. SatyanarayanaK. Saleem BashaS. JayaramanS. Molecular docking analysis of COX-2 with compounds from Piper longum.Bioinformation202117662362710.6026/9732063001762335173384
    [Google Scholar]
  67. Jiménez-ArellanesA. León-DíazR. MeckesM. TapiaA. Molina-SalinasG.M. Luna-HerreraJ. Yépez-MuliaL. Antiprotozoal and antimycobacterial activities of pure compounds from aristolochia elegans Rhizomes.Evid. Based Complement. Alternat. Med.201220121710.1155/2012/59340322454670
    [Google Scholar]
  68. SartorelliP. Salomone CarvalhoC. Quero ReimãoJ. LorenziH. TemponeA. Antitrypanosomal activity of a diterpene and lignans isolated from Aristolochia cymbifera.Planta Med.201076131454145610.1055/s‑0029‑124095220301059
    [Google Scholar]
  69. LakheraS. DevlalK. GhoshA. RanaM. In silico investigation of phytoconstituents of medicinal herb ‘Piper longum’ against SARS-CoV-2 by molecular docking and molecular dynamics analysis.Resul. Chem.2021310019910.1016/j.rechem.2021.10019934603947
    [Google Scholar]
  70. KimH.J. NamY.R. NamJ.H. Flos Magnoliae inhibits chloride secretion via ANO1 inhibition in Calu-3 Cells.Am. J. Chin. Med.20184651079109210.1142/S0192415X1850056829976084
    [Google Scholar]
  71. ShenY. PangE.C.K. XueC.C.L. ZhaoZ.Z. LinJ.G. LiC.G. Inhibitions of mast cell-derived histamine release by different Flos Magnoliae species in rat peritoneal mast cells.Phytomedicine2008151080881410.1016/j.phymed.2008.04.01218585022
    [Google Scholar]
  72. ZhangW. WangY. GengZ. GuoS. CaoJ. ZhangZ. PangX. ChenZ. DuS. DengZ. Antifeedant activities of lignans from stem bark of zanthoxylum armatum DC. against Tribolium castaneum.Molecules201823361710.3390/molecules2303061729522428
    [Google Scholar]
  73. MessianoG.B. VieiraL. MachadoM.B. LopesL.M.X. de BortoliS.A. Zukerman-SchpectorJ. Evaluation of insecticidal activity of diterpenes and lignans from Aristolochia malmeana against Anticarsia gemmatalis.J. Agric. Food Chem.20085682655265910.1021/jf703594z18380460
    [Google Scholar]
  74. AgnihotriS. DobhalP. TamtaS. Chemical composition, polyphenol contents and antioxidant activities of the ‘Himalayan toothache relieving tree’ ( zanthoxylum armatum DC.).Nat. Prod. Res.202337162759276410.1080/14786419.2022.212834436200684
    [Google Scholar]
  75. GuoT. SuD. HuangY. WangY. LiY.H. Ultrasound-assisted aqueous two-phase system for extraction and enrichment of zanthoxylum armatum lignans.Molecules2015208152731528610.3390/molecules20081527326307958
    [Google Scholar]
  76. SamadA. BadshahS. KhanD. AliF. AmanullahM. HanrahanJ. New prenylated carbazole alkaloids from zanthoxylum armatum .J. Asian Nat. Prod. Res.201416121126113110.1080/10286020.2014.96722825355272
    [Google Scholar]
  77. LiD.X. LiuM. ZhouX.J. A new dimeric lignan from Zanthoxylum simulans.Zhongguo Zhongyao Zazhi201540142843284826666037
    [Google Scholar]
  78. KaliaN.K. SinghB. SoodR.P. A new amide from zanthoxylum armatum.J. Nat. Prod.199962231131210.1021/np980224j10075770
    [Google Scholar]
  79. BhattV KumarV SinghB KumarN. A New Geranylbenzofuranone from zanthoxylum armatum.Nat. Prod. Commun.20151021410.1177/1934578X1501000225
    [Google Scholar]
  80. KumarV. KumarS. SinghB. KumarN. Quantitative and structural analysis of amides and lignans in zanthoxylum armatum by UPLC-DAD-ESI-QTOF–MS/MS.J. Pharm. Biomed. Anal.201494232910.1016/j.jpba.2014.01.02824534301
    [Google Scholar]
  81. LiuY.Q. YangS.H. LiuQ. PeiG. PanW.W. LiuM. PengC.Y. Study on chemical constituents of Zanthoxyli cortex’s ethyl acetate extract.Zhong Yao Cai201336111792179524956821
    [Google Scholar]
  82. BhattV. SharmaS. KumarN. SharmaU. SinghB. Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of zanthoxylum armatum using UPLC-DAD-ESI-QTOF–MS/MS.J. Pharm. Biomed. Anal.2017132465510.1016/j.jpba.2016.09.03527693952
    [Google Scholar]
  83. ZhouX. ChenC. YeX. SongF. FanG. WuF. Analysis of lignans in Magnoliae flos by turbulent flow chromatography with online solid‐phase extraction and high‐performance liquid chromatography with tandem mass spectrometry.J. Sep. Sci.20163971266127210.1002/jssc.20150116726833996
    [Google Scholar]
  84. YuH.J. ChenC.C. ShiehB.J. Two new constituents from the leaves of Magnolia coco.J. Nat. Prod.19986181017101910.1021/np970571d9722488
    [Google Scholar]
  85. AnayaA.L. Macías-RubalcavaM. Cruz-OrtegaR. García-SantanaC. Sánchez-MonterrubioP.N. Hernández-BautistaB.E. MataR. Allelochemicals from stauranthus perforatus, a rutaceous tree of the yucatan peninsula, Mexico.Phytochemistry200566448749410.1016/j.phytochem.2004.12.02815694456
    [Google Scholar]
  86. GuoT. DengY.X. XieH. YaoC.Y. CaiC.C. PanS. WangY.L. Antinociceptive and anti-inflammatory activities of ethyl acetate fraction from zanthoxylum armatum in mice.Fitoterapia201182334735110.1016/j.fitote.2010.11.00421059381
    [Google Scholar]
  87. ZhaoW. ZhouT. FanG. ChaiY. WuY. Isolation and purification of lignans from Magnolia biondii Pamp by isocratic reversed‐phase two‐dimensional liquid chromatography following microwave‐assisted extraction.J. Sep. Sci.200730152370238110.1002/jssc.20070009817628872
    [Google Scholar]
  88. LinY. XuJ. JiaQ. SunW. FuJ. LvY. HanS. Cell membrane chromatography coupled online with LC‐MS to screen anti‐anaphylactoid components from Magnolia biondii Pamp. targeting on Mas‐related G protein‐coupled receptor X2.J. Sep. Sci.202043132571257810.1002/jssc.20200001432281296
    [Google Scholar]
  89. MaY. HanG. Biologically active lignins from Magnolia biondii Pamp.Zhongguo Zhongyao Zazhi1995202102104, 1277779269
    [Google Scholar]
  90. SrivastavaS. GuptaM.M. VermaR.K. KumarS. Determination of 1,3-benzodioxanes in Piper mullesua by high-performance thin-layer chromatography.J. AOAC Int.20008361484148810.1093/jaoac/83.6.148411128158
    [Google Scholar]
  91. KimM.R. MoonH.T. LeeD.G. WooE.R. A new lignan glycoside from the stem bark of styrax japonica s. et Z.Arch. Pharm. Res.200730442543010.1007/BF0298021517489357
    [Google Scholar]
  92. HongP.T.L. KimH.J. KimW.K. NamJ.H. Flos Magnoliae constituent fargesin has an anti-allergic effect via ORAI1 channel inhibition.Korean J. Physiol. Pharmacol.202125325125810.4196/kjpp.2021.25.3.25133859065
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708286664240429093913
Loading
/content/journals/raiad/10.2174/0127722708286664240429093913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test