Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Within the current production systems, the need for low environmental impact processes to produce chemicals, the treatment of aqueous effluents and the production of fuels is becoming an increasingly urgent challenge. In this context, photoelectrocatalysis (PEC), which couples the electrochemical method (EC) with photocatalysis (PC), can be considered a valid alternative to traditional catalytic processes. It increases the photocatalytic and the electrochemical efficiency by improving the separation of the photoproduced electrons and holes on the active electrode surface and addressing the partial oxidation products formation by selecting the applied potential values. This review is concerned with the possibility of forming PEC high-added-value chemicals, sometimes with the contemporary production of hydrogen, by using different materials for the fabrication of photoanodes and photocathodes in different solvents and system configuration, obtaining very interesting values of conversion, selectivity, and Faradaic efficiencies. In particular, the review presents results related to the production of valuable compounds by the valorisation of alcohols, biomass derivatives and some peculiar organic substrates, highlighting the influence of electrode composition, applied bias, electrolyte type, and solvent.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/2665976X03666220513153344
2022-07-18
2025-01-31
Loading full text...

Full text loading...

References

  1. FriedmannD. HakkiA. KimH. ChoiW. BahnemannD.W. Heterogeneous photocatalytic organic synthesis: State-of-the-art and future perspectives.Green Chem.201618205391541110.1039/C6GC01582D
    [Google Scholar]
  2. KouJ. LuC. WangJ. ChenY. XuZ. VarmaR.S. Selectivity enhancement in heterogeneous photocatalytic transformations.Chem. Rev.201711731445151410.1021/acs.chemrev.6b0039628093903
    [Google Scholar]
  3. ParrinoF. BellarditaM. García-LópezE.I. MarcìG. LoddoV. PalmisanoL. Heterogeneous photocatalysis for selective formation of high value-added molecules: Some chemical and engineering aspects.ACS Catal.2018812111911122510.1021/acscatal.8b03093
    [Google Scholar]
  4. BellarditaM. LoddoV. PalmisanoL. Formation of high added value chemicals by photocatalytic treatment of biomass.Mini Rev. Org. Chem.202017788490110.2174/1570193X17666200131112856
    [Google Scholar]
  5. YurdakalS. PalmisanoG. LoddoV. AugugliaroV. PalmisanoL. Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water.J. Am. Chem. Soc.200813051568156910.1021/ja709989e18189405
    [Google Scholar]
  6. AddamoM. AugugliaroV. BellarditaM. Di PaolaA. LoddoV. PalmisanoG. PalmisanoL. YurdakalS. Environmentally friendly photocatalytic oxidation of aromatic alcohol to aldehyde in aqueous suspension of brookite TiO2.Catal. Lett.20081261-2586210.1007/s10562‑008‑9596‑0
    [Google Scholar]
  7. LiC-J. XuG-R. ZhangB. GongJ.R. High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods.Appl. Catal. B201211520120810.1016/j.apcatb.2011.12.003
    [Google Scholar]
  8. BellarditaM. GarlisiC. VeneziaA.M. PalmisanoG. PalmisanoL. Influence of fluorine on the synthesis of anatase TiO2 for photocatalytic partial oxidation: Are exposed facets the main actors?Catal. Sci. Technol.2018861606162010.1039/C7CY02382K
    [Google Scholar]
  9. YuY. GuoP. ZhongJ-S. YuanY. YeK-Y. Merging photochemistry with electrochemistry in organic synthesis.Org. Chem. Front.20207113113510.1039/C9QO01193E
    [Google Scholar]
  10. LiP. ZhangT. MushtaqM.A. WuS. XiangX. YanD. Research progress in organic synthesis by means of photoelectrocatalysis.Chem. Rec.202121484185710.1002/tcr.20200018633656241
    [Google Scholar]
  11. LiuJ. LuL. WoodD. LinS. New redox strategies in organic synthesis by means of electrochemistry and photochemistry.ACS Cent. Sci.2020681317134010.1021/acscentsci.0c0054932875074
    [Google Scholar]
  12. Garcia-SeguraS. BrillasE. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters.J. Photochem. Photobiol. Photochem. Rev.20173113510.1016/j.jphotochemrev.2017.01.005
    [Google Scholar]
  13. BarhamJ.P. KönigB. Synthetic photoelectrochemistry.Angew. Chem. Int. Ed. Engl.20205929117321174710.1002/anie.20191376731805216
    [Google Scholar]
  14. WangY. ZuM. ZhouX. LinH. PengF. ZhangS. Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing.Chem. Eng. J.202038112260510.1016/j.cej.2019.122605
    [Google Scholar]
  15. TruongH.B. BaeS. ChoJ. HurJ. Advances in application of g-C3N4-based materials for treatment of polluted water and wastewater via activation of oxidants and photoelectrocatalysis: A comprehensive review.Chemosphere2022286Pt 213173710.1016/j.chemosphere.2021.13173734352551
    [Google Scholar]
  16. ChenW. LiuS. FuY. YanH. QinL. LaiC. ZhangC. YeH. ChenW. QinF. XuF. HuoX. QinH. Recent advances in photoelectrocatalysis for environmental applications: Sensing, pollutants removal and microbial inactivation.Coord. Chem. Rev.202245421434110.1016/j.ccr.2021.214341
    [Google Scholar]
  17. QinJ. YeS. YanK. ZhangJ. Visible light-driven photoelectrocatalysis for simultaneous removal of oxytetracycline and Cu (II) based on plasmonic Bi/Bi2O3/TiO2 nanotubes.J. Colloid Interface Sci.2022607Pt 21936194310.1016/j.jcis.2021.10.00834695742
    [Google Scholar]
  18. MarinhoB. Suhadolnik, L.; Likozar, B.; Huš, M.; Marinko, Ž.; Čeh, M. Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: Analytical methods, mechanisms, simulations, catalysts and reactors.J. Clean. Prod.202234313106110.1016/j.jclepro.2022.131061
    [Google Scholar]
  19. ClarkJ.H. MacquarrieD.J. Heterogeneous catalysis in liquid phase transformations of importance in the industrial preparation of fine chemicals.Org. Process Res. Dev.19971214916210.1021/op960008m
    [Google Scholar]
  20. OnoY. Solid base catalysts for the synthesis of fine chemicals.J. Catal.20032161-240641510.1016/S0021‑9517(02)00120‑3
    [Google Scholar]
  21. YangP. CuiQ. ZuY. LiuX. LuG. WangY. Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ni/Co3O4 catalyst.Catal. Commun.201566555910.1016/j.catcom.2015.02.014
    [Google Scholar]
  22. TakagakiA. OharaM. NishimuraS. EbitaniK. A one-pot reaction for biorefinery: Combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides.Chem. Commun. (Camb.)2009416276627810.1039/b914087e19826693
    [Google Scholar]
  23. KraeutlerB. BardA.J. Photoelectrosynthesis of ethane from acetate ion at an n-type titanium dioxide electrode. The photo-Kolbe reaction.J. Am. Chem. Soc.197799237729773110.1021/ja00465a065
    [Google Scholar]
  24. PeleyejuM.G. ArotibaO.A. Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater.Environ. Sci. Water Res. Technol.20184101389141110.1039/C8EW00276B
    [Google Scholar]
  25. PanL. VlachopoulosN. HagfeldtA. Directly photoexcited oxides for photoelectrochemical water splitting.ChemSusChem201912194337435210.1002/cssc.20190084931478349
    [Google Scholar]
  26. LianosP. Review of recent trends in a photoelectrocatalytic conversion of solar energy to electricity and hydrogen.Appl. Catal. B201721023525410.1016/j.apcatb.2017.03.067
    [Google Scholar]
  27. KumaravelV. BartlettJ. PillaiS.C. Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products.ACS Energy Lett.20205248651910.1021/acsenergylett.9b02585
    [Google Scholar]
  28. BellarditaM. LoddoV. ParrinoF. PalmisanoL. (Photo)-electrocatalytic versus heterogeneous photocatalytic CO2 reduction.ChemPhotoChem20215976779110.1002/cptc.202100030
    [Google Scholar]
  29. PalombariR. RanchellaM. RolC. SebastianiG.V. Oxidative photoelectrochemical technology with Ti/TiO2 anodes.Sol. Energy Mater. Sol. Cells200271335936810.1016/S0927‑0248(01)00093‑9
    [Google Scholar]
  30. BettoniM. RolC. SebastianiG.V. Photoelectrochemistry on TiO2/Ti anodes as a tool to increase the knowledge about some photo-oxidation mechanisms in CH3CN.J. Phys. Org. Chem.200821321922410.1002/poc.1303
    [Google Scholar]
  31. Monteiro FabraoR. Ferreira de BritoJ. da SilvaJ.L. StradiottoN.R. Boldrin ZanoniM.V. Appraisal of photoelectrocatalytic oxidation of glucose and production of high value chemicals on nanotube Ti/TiO2 electrode.Electrochim. Acta201622212313210.1016/j.electacta.2016.10.164
    [Google Scholar]
  32. ChaH.G. ChoiK-S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell.Nat. Chem.20157432833310.1038/nchem.219425803471
    [Google Scholar]
  33. TatenoH. IguchiS. MisekiY. SayamaK. Photo-electrochemical C-H bond activation of cyclohexane using a WO3 photoanode and visible light.Angew. Chem. Int. Ed. Engl.20185735112381124110.1002/anie.20180507930059182
    [Google Scholar]
  34. CapaldoL. QuadriL.L. MerliD. RavelliD. Photoelectrocatalytic cross-dehydrogenative coupling of unactivated aliphatic hydrogend with benzothiazoles: Synthetic applications and mechanistic insights.ChemRxiv2020Available from: https://chemrxiv.org/engage/chemrxiv/article-details/60c7524f9abda23163f8ddc5
    [Google Scholar]
  35. ZhangL. LiardetL. LuoJ. RenD. GrätzelM. HuX. Photoelectrocatalytic arene C–H amination.Nat. Catal.20192426637310.1038/s41929‑019‑0231‑930984910
    [Google Scholar]
  36. SheldonR.A. ArendsI.W.C.E. Ten BrinkG-J. DijksmanA. Green, catalytic oxidations of alcohols.Acc. Chem. Res.200235977478110.1021/ar010075n12234207
    [Google Scholar]
  37. ZhangY. ZhaoG. ZhangY. HuangX. Highly efficient visible-light-driven photoelectrocatalytic selective aerobic oxidation of biomass alcohols to aldehydes.Green Chem.20141683860386910.1039/C4GC00454J
    [Google Scholar]
  38. SongW. VannucciA.K. FarnumB.H. LapidesA.M. BrennamanM.K. KalanyanB. AlibabaeiL. ConcepcionJ.J. LosegoM.D. ParsonsG.N. MeyerT.J. Visible light driven benzyl alcohol dehydrogenation in a dye-sensitized photoelectrosynthesis cell.J. Am. Chem. Soc.2014136279773977910.1021/ja505022f24933178
    [Google Scholar]
  39. WuZ. WangJ. ZhouZ. ZhaoG. Highly selective aerobic oxidation of biomass alcohol to benzaldehyde by an in-situ doped Au/TiO2 nanotube photonic crystal photoanode for simultaneous hydrogen production promotion.J. Mater. Chem. A Mater. Energy Sustain.2017524124071241510.1039/C7TA03252H
    [Google Scholar]
  40. ZhouZ. XieY-N. ZhuW. ZhaoH. YangN. ZhaoG. Selective photoelectrocatalytic tuning of benzyl alcohol to benzaldehyde for enhanced hydrogen production.Appl. Catal. B202128611986810.1016/j.apcatb.2020.119868
    [Google Scholar]
  41. LuoL. WangZ-J. XiangX. YanD. YeJ. Selective activation of benzyl alcohol coupled with photoelectrochemical water oxidation via a radical relay strategy.ACS Catal.20201094906491310.1021/acscatal.0c00660
    [Google Scholar]
  42. TerryB.D. Di MeglioJ.L. CousineauJ.P. BartleB.M. Nitrate radical facilitates indirect benzyl alcohol oxidation on Bismuth(III) Vanadate photoelectrodes.ChemElectroChem20207183776378210.1002/celc.202000911
    [Google Scholar]
  43. TatenoH. MisekiY. SayamaK. Photoelectrochemical oxidation of benzylic alcohol derivatives on BiVO4/WO3 under Visible Light Irradiation.ChemElectroChem20174123283328710.1002/celc.201700710
    [Google Scholar]
  44. BettoniM. MeniconiS. RolC. SebastianiG.V. Selective photocatalytic oxidation at TiO2/Ti anodes of 4-methoxybenzyl alcohol to the corresponding benzaldehyde in “green” conditions.J. Photochem. Photobiol. Chem.2011222118018410.1016/j.jphotochem.2011.05.019
    [Google Scholar]
  45. ÖzcanL. YurdakalS. AugugliaroV. LoddoV. PalmasS. PalmisanoG. PalmisanoL. Photoelectrocatalytic selective oxidation of 4-methoxybenzyl alcohol in water by TiO2 supported on titanium anodes.Appl. Catal. B2013132-133535542
    [Google Scholar]
  46. YurdakalS. Çetinkaya, S.; Şarlak, M.B.; Özcan, L.; Loddo, V.; Palmisano, L. Photoelectrocatalytic oxidation of 3-pyridinemethanol to 3-pyridinemethanal and vitamin B3 by TiO2 nanotubes.Catal. Sci. Technol.202010112413710.1039/C9CY01583C
    [Google Scholar]
  47. YurdakalS. ÇetinkayaS. ÖzcanL. GökÖ. PalmisanoL. Partial photoelectrocatalytic oxidation of 3-pyridinemethanol by Pt, Au and Pd loaded TiO2 nanotubes on Ti plate.Catal. Today202138024825810.1016/j.cattod.2020.11.003
    [Google Scholar]
  48. ZhangW. CarpenterK.L. LinS. Electrochemistry broadens the scope of flavin photocatalysis: Photoelectrocatalytic oxidation of unactivated alcohols.Angew. Chem. Int. Ed. Engl.202059140941710.1002/anie.20191030031617271
    [Google Scholar]
  49. HeZ-L. YuanC. GaoH. MouZ. QianS. ZhaiC. LuC. Significantly enhanced photoelectrocatalytic alcohol oxidation performance of CdS nanowire-supported Pt via the “bridge” role of Nitrogen-doped Graphene quantum dots.ACS Sustain. Chem.& Eng.2020832123311234110.1021/acssuschemeng.0c05097
    [Google Scholar]
  50. LuS-J. JiS-B. LiuJ-C. LiH. LiW-S. Photoelectrocatalytic oxidation of glucose at a ruthenium complex modified titanium dioxide electrode promoted by uric acid and ascorbic acid for photoelectrochemical fuel cells.J. Power Sources201527314214810.1016/j.jpowsour.2014.09.060
    [Google Scholar]
  51. GanW.Y. FriedmannD. AmalR. ZhangS. ChiangK. ZhaoH. A comparative study between photocatalytic and photoelectrocatalytic properties of Pt deposited TiO2 thin films for glucose degradation.Chem. Eng. J.2010158348248810.1016/j.cej.2010.01.030
    [Google Scholar]
  52. DevadossA. SudhagarP. RavidhasC. HishinumaR. TerashimaC. NakataK. KondoT. ShitandaI. YuasaM. FujishimaA. Simultaneous glucose sensing and biohydrogen evolution from direct photoelectrocatalytic glucose oxidation on robust Cu2O-TiO2 electrodes.Phys. Chem. Chem. Phys.20141639212372124210.1039/C4CP03262D25199593
    [Google Scholar]
  53. ZhangY. ZhaoG. ShiH. ZhangY. HuangW. HuangX. WuZ. Photoelectrocatalytic glucose oxidation to promote hydrogen production over periodically ordered TiO2 nanotube arrays assembled of Pd quantum dots.Electrochim. Acta20151749310110.1016/j.electacta.2015.05.094
    [Google Scholar]
  54. ZhangY. TangB. WuZ. ShiH. ZhangY. ZhaoG. Glucose oxidation over ultrathin Carbon-coated perovskite modified TiO2 nanotube photonic crystals with high-efficiency electron generation and transfer for photoelectrocatalytic Hydrogen production.Green Chem.20161882424243410.1039/C5GC02745D
    [Google Scholar]
  55. RosatellaA.A. SimeonovS.P. FradeR.F. AfonsoC.A. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications.Green Chem.201113475479310.1039/c0gc00401d
    [Google Scholar]
  56. WangT. NolteM.W. ShanksB.H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical.Green Chem.201416254857210.1039/C3GC41365A
    [Google Scholar]
  57. ÖzcanL. YalçinP. AlagözO. YurdakalS. Selective photoelectrocatalytic oxidation of 5-(hydroxymethyl)-2-furaldehyde in water by using Pt loaded nanotube structure of TiO2 on Ti photoanodes.Catal. Today201728120521310.1016/j.cattod.2016.07.024
    [Google Scholar]
  58. BharathaG. RambabuK. PonpandianA.H.N. SchmidtJ.E. DionysiouD.D. HaijaM.A. BanatF. Dual-functional paired photoelectrocatalytic system for the photocathodic reduction of CO2 to fuels and the anodic oxidation of furfural to value-added chemicals.Appl. Catal. B202129812052010.1016/j.apcatb.2021.120520
    [Google Scholar]
  59. HornE.J. RosenB.R. ChenY. TangJ. ChenK. EastgateM.D. BaranP.S. Scalable and sustainable electrochemical allylic C-H oxidation.Nature20165337601778110.1038/nature1743127096371
    [Google Scholar]
  60. MargreyK.A. McManusJ.B. BonazziS. ZecriF. NicewiczD.A. Predictive model for site-selective aryl and heteroaryl C–H functionalization via organic photoredox catalysis.J. Am. Chem. Soc.201713932112881129910.1021/jacs.7b0671528718642
    [Google Scholar]
  61. HongY. SunD. FangY. The highly selective oxidation of cyclohexane to cyclohexanone and cyclohexanol over VAlPO4 berlinite by oxygen under atmospheric pressure.Chem. Cent. J.20181213610.1186/s13065‑018‑0405‑629619597
    [Google Scholar]
  62. SchuchardtU. CardosoD. SercheliR. PereiraR. CruzR.S. GuerreiroM.C. MandelliD. SpinacéE.V. PiresE.L. Cyclohexane oxidation continues to be a challenge.Appl. Catal. A Gen.2001211111710.1016/S0926‑860X(01)00472‑0
    [Google Scholar]
  63. Joseita Dos Santos CostaM. Dos Santos CostaG. Estefany Brandão LimaA. Eduardo da Luz JúniorG. LongoE. Santos CavalcanteL. da Silva SantosR. Photocurrent response and progesterone degradation by employing WO3 films modified with Platinum and Silver nanoparticles.ChemPlusChem201883121153116110.1002/cplu.20180053431950714
    [Google Scholar]
  64. LiZ. LuoL. LiM. ChenW. LiuY. YangJ. XuS-M. ZhouH. MaL. XuM. KongX. DuanH. Photoelectrocatalytic C-H halogenation over an oxygen vacancy-rich TiO2 photoanode.Nat. Commun.2021121669810.1038/s41467‑021‑26997‑z34795245
    [Google Scholar]
  65. YanH. HouZ.W. XuH.C. Photoelectrochemical C–H alkylation of heteroarenes with organotrifluoroborates.Angew. Chem. Int. Ed. Engl.201958144592459510.1002/anie.20181448830650241
    [Google Scholar]
  66. LaiX.L. ShuX.M. SongJ. XuH.C. Electrophotocatalytic decarboxylative C−H functionalization of heteroarenes.Angew. Chem. Int. Ed. Engl.20205926106261063210.1002/anie.20200290032227555
    [Google Scholar]
  67. XuP. ChenP.Y. XuH.C. Scalable photoelectrochemical dehydrogenative cross-coupling of heteroarenes with aliphatic C−H bonds.Angew. Chem. Int. Ed. Engl.20205934142751428010.1002/anie.20200572432489009
    [Google Scholar]
  68. QiuY. ScheremetjewA. FingerL.H. AckermannL. Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes.Chemistry202026153241324610.1002/chem.20190577431875327
    [Google Scholar]
  69. WangJ-H. LiX-B. LiJ. LeiT. WuH-L. NanX-L. TungC-H. WuL-Z. Photoelectrochemical cell for P-H/C-H cross-coupling with hydrogen evolution.Chem. Commun. (Camb.)20195570103761037910.1039/C9CC05375A31386711
    [Google Scholar]
  70. HuangH. StraterZ.M. RauchM. SheeJ. SistoT.J. NuckollsC. LambertT.H. Electrophotocatalysis with a trisaminocyclopropenium radical dication.Angew. Chem. Int. Ed. Engl.20195838133181332210.1002/anie.20190638131306561
    [Google Scholar]
/content/journals/photocat/10.2174/2665976X03666220513153344
Loading
/content/journals/photocat/10.2174/2665976X03666220513153344
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test