Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Tetrabromobisphenol A (4,4’-isopropylidenebis(2,6-dibromophenol), TBBPA) is one of the most widely used brominated flame retardants. Due to its widespread use, high lipophilicity, and persistence, it has been detected in various environmental samples. Therefore, it is of great significance to develop methods to efficiently remove TBBPA from the contaminated environment.

The aim of our study was to examine photocatalytic dehalogenation of TBBPA on micro- and nano-sized FeO exposed to the visible light. The FeO catalyst was chosen due to its indisputable low impact on the environment.

A solution of TBBPA (1.84 × 10-4 mol dm-3) with a pH = 8 with suspended catalyst was illuminated (light intensity about 1.1x1017 photons per second, spectrum range 200-600 nm) for 1 hour. Analysis of the reaction progress was carried out by HPLC measurements of TBBPA decay and potentiometric measurements of an increase in bromide concentration.

The degradation process seems to be the most effective for TBBPA in the reaction mixture containing the n-FeO ( ≈ 2 min). Slightly lower degradation efficacy is observed for TBBPA degradation in the presence of the µ-FeO (decay within the first 5 min). TBBPA decomposition of both n-FeO and µ-FeO is accompanied by different bromide concentrations time-profile.

The photogenerated electron-induced degradation by dissociative-attachment to the aromatic ring was followed by bromine ion expulsion. The micro-magnetite showed a strong tendency for adsorption of bromide anions during the process, which could be adventurous for the overall waste-decontamination process.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/2665976X01999200607181110
2020-05-01
2024-11-26
Loading full text...

Full text loading...

References

  1. BarontiniF. CozzaniV. MarsanichK. RaffaV. PetarcaL. An experimental investigation of tetrabromobisphenol a decomposition pathways.J. Anal. Appl. Pyrolysis200472415310.1016/j.jaap.2004.02.003
    [Google Scholar]
  2. ColnotT. KacewS. DekantW. Mammalian toxicology and human exposures to the flame retardant 2,2′,6,6′-tetrabromo-4,4′-isopropylidenediphenol (TBBPA): implications for risk assessment.Arch. Toxicol.201488355357310.1007/s00204‑013‑1180‑8 24352537
    [Google Scholar]
  3. KimS. ParkJ. KimH-J. LeeJ.J. ChoiG. ChoiS. KimS. KimS.Y. MoonH-B. KimS. ChoiK. Association between several persistent organic pollutants and thyroid hormone levels in cord blood serum and bloodspot of the newborn infants of Korea.PLoS One2015105e012521310.1371/journal.pone.0125213 25965908
    [Google Scholar]
  4. CovaciA. VoorspoelsS. AbdallahM.A-E. GeensT. HarradS. LawR.J. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives.J. Chromatogr. A20091216334636310.1016/j.chroma.2008.08.035 18760795
    [Google Scholar]
  5. NiH-G. ZengH. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China.Sci. Total Environ.2013458-460151910.1016/j.scitotenv.2013.04.003 23639907
    [Google Scholar]
  6. YangS. WangS. LiuH. YanZ. TetrabromobisphenolA. Tetrabromobisphenol A: tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China.Environ. Sci. Pollut. Res. Int.20121994090409610.1007/s11356‑012‑1023‑9 22825637
    [Google Scholar]
  7. MorfL.S. TrempJ. GloorR. HuberY. StengeleM. ZenneggM. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant.Environ. Sci. Technol.200539228691869910.1021/es051170k 16323764
    [Google Scholar]
  8. SöderströmG. MarklundS. PBCDD and PBCDF from incineration of waste-containing brominated flame retardants.Environ. Sci. Technol.20023691959196410.1021/es010135k 12026978
    [Google Scholar]
  9. AndreozziR. CaprioV. InsolaA. MarottaR. Advanced oxidation processes (AOP) for water purification and recovery.Catal. Today199953515910.1016/S0920‑5861(99)00102‑9
    [Google Scholar]
  10. HaagW.R. YaoC.C.D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants.Environ. Sci. Technol.1992261005101310.1021/es00029a021
    [Google Scholar]
  11. VogelT.M. CriddleC.S. McCartyP.L. ES Critical Reviews: Transformations of halogenated aliphatic compounds.Environ. Sci. Technol.198721872273610.1021/es00162a001 19995052
    [Google Scholar]
  12. R.H.H. Sims J.L. Suflita J.M. Reductive dehalogenation of organic contaminants in soils and ground water.Remediat. J.199017593
    [Google Scholar]
  13. BoothF. Theory of electrokinetic effects.Nature19481614081838610.1038/161083a0 18898334
    [Google Scholar]
  14. SaadJ.G. ShermanM.N. Using Zeta Potential to Determine Equivalency of Generic and Non-Generic Oral Suspensions2018Available from: https://www.particulatesystems.com/wp-content/uploads/2017/08/application-note-ps-029_v2.pdf [Accessed on: November 14, 2019]
    [Google Scholar]
  15. NetaP. SchulerR.H. Rate constants for the reaction of oxygen(1-) radicals with organic substrates in aqueous solution.J. Phys. Chem.1975791610.1021/j100568a001
    [Google Scholar]
  16. VermaN.C. FessendenR.W. Time resolved ESR spectroscopy. IV. Detailed measurement and analysis of the ESR time profile.J. Chem. Phys.1976652139215510.1063/1.433370
    [Google Scholar]
  17. HatchardC.G. ParkerC.A. A new sensitive chemical actinometer - II. Potassium ferrioxalate as a standard chemical actinometer, Proc. R. Soc. London. Ser. A. Math. Phys. Sci.19562351956pp 518536
    [Google Scholar]
  18. WhiteA.F. PetersonM.L. HochellaM.F. Electrochemistry and dissolution kinetics of magnetite and ilmenite.Geochim. Cosmochim. Acta1994581859187510.1016/0016‑7037(94)90420‑0
    [Google Scholar]
  19. BentonD.P. HorsfallG.A. Sorption from some electrolyte solutions by synthetic magnetite.J. Chem. Soc.196203899390410.1039/jr9620003899
    [Google Scholar]
  20. RegazzoniA.E. BlesaM.A. MarotoA.J.G. Interfacial properties of zirconium dioxide and magnetite in water.J. Colloid Interface Sci.19839156057010.1016/0021‑9797(83)90370‑3
    [Google Scholar]
  21. BlesaM.A. FiglioliaN.M. MarotoA.J.G. RegazzoniA.E. The influence of temperature on the interface magnetite-aqueous electrolyte solution.J. Colloid Interface Sci.198410141041810.1016/0021‑9797(84)90052‑3
    [Google Scholar]
  22. AllenG.C. TuckekP.M. WildR.K. Characterization of iron/oxygen surface reactions by X-ray photoelectron spectroscopy.Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop.19824641142110.1080/01418638208224020
    [Google Scholar]
  23. PetersonM.L. BrownG.E. ParksG.A. Direct XAFS evidence for heterogeneous redox reaction at the aqueous chromium/magnetite interface.Colloids Surfaces A Physicochem. Eng. Asp; Elsevier Science B.V.1996107778810.1016/0927‑7757(95)03345‑9
    [Google Scholar]
  24. GutzI.G.R. pH Calculation and Acid-Base Titration Curves - Freeware for Data Analysis and Simulation. Available from:http://www.iq.usp.br/gutz/Curtipot_.html[Accessed on: April 6, 2020]
  25. KischH. Semiconductor photocatalysis--mechanistic and synthetic aspects.Angew. Chem. Int. Ed. Engl.201352381284710.1002/anie.201201200 23212748
    [Google Scholar]
  26. PazY. Specificity in Photocatalysis.Photocatalysis: Fundamentals and Perspectives. SchneiderJ. BahnemannD. YeJ. PumaG.L. DionysiouD.D. The Royal Society of Chemistry20168010910.1039/9781782622338‑00080
    [Google Scholar]
  27. SwallowA.J. Radiation chemistry; an introduction.Wiley1973
    [Google Scholar]
  28. BuxtonG.V. GreenstockC.L. HelmanW.P. RossA.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O − in Aqueous Solution.J. Phys. Chem. Ref. Data19881751388610.1063/1.555805
    [Google Scholar]
  29. KrohJ. PolevoiP. Formation of electron-cation pairs in the radiolysis of alkaline ice.Radiat. Phys. Chem. (1977)1978, 1111111510.1016/0146‑5724(78)90005‑5
    [Google Scholar]
  30. LideD.R. CRC Handbook of Chemistry and Physics, Internet Version.Boca Raton, FLCRC Press LLC2005www.hbcpnetbase.com
    [Google Scholar]
  31. NetaP. SteenkenS. Radiation chemistry of phenols.Chem. Phenols.Chichester, UKJohn Wiley & Sons, Ltd20031097110410.1002/0470857277.ch15
    [Google Scholar]
  32. European Union Risk Assessment Report6’-tetrabromo-4,4’- isopropylidenediphenol (tetrabromobisphenol-A or TBBP-A) Part II-human health 4 th Priority List, 2006https://echa.europa.eu/documents/10162/32b000fe-b4fe-4828-b3d3-93c24c1cdd51[February 11, 2019];
  33. ZengG. ZhangC. HuangG. YuJ. WangQ. LiJ. XiB. LiuH. Adsorption behavior of bisphenol A on sediments in Xiangjiang River, Central-south China.Chemosphere20066591490149910.1016/j.chemosphere.2006.04.013 16737729
    [Google Scholar]
  34. WardmanP. Reduction potentials of one‐electron couples involving free radicals in aqueous solution.J. Phys. Chem. Ref. Data1989181637175510.1063/1.555843
    [Google Scholar]
/content/journals/photocat/10.2174/2665976X01999200607181110
Loading
/content/journals/photocat/10.2174/2665976X01999200607181110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test